SlideShare a Scribd company logo
6
Most read
7
Most read
8
Most read
Passive Filter Design
All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 1
Design Services
Contents
Slide
#
1. Filter Design
Category..............................................................................
2. Passive Filter Design Flow-
Chart.............................................................
3. Passive Low Pass Filter
Design...............................................................
3.1
Specifications : ..................................................................................
3.2
Calculation : ......................................................................................
.
3.3
Verification : ......................................................................................
.
3.4
Optimization : ....................................................................................
3.5 Elements
3
4
5
5
6
7
8-9
10-11
12
13-15
16-20
21-23
2All Rights Reserved Copyright (C) Bee Technologies Corporation 2009
1.Filter Design Category
Available Filter Types
• Low Pass Filter
• High Pass Filter
• Band Pass Filter
• Band Reject Filter
Approximation
• Butterworth
- No ripple
- Smooth roll-off (rate of 20dB/decade for every pole)
• Chebyshev
- Pass-band ripple specification would be required.
- Steeper roll-of
Topology
• Passive
- High frequency range (> 1 MHz)
- Source and load impedance specifications would be required
• Active
- Low frequency range (1 Hz to 1 MHz)
- Unity-Gain Sallen-Key configuration (see Figure 1.0)
Number of Order
• 2nd
-10th
All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 3
2.Passive Filter Design Flow Chart
All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 4
2. Circuit design and calculation2. Circuit design and calculation
3. Verification3. Verification
4. Optimize with standard capacitor value4. Optimize with standard capacitor value
5. Elements test (± 5%)5. Elements test (± 5%)
Meet the spec?Meet the spec?
No
Yes
Satisfy?Satisfy?
Yes
YESYES
Result :
Filter circuit with all element values
Result :
Filter circuit with all element values
Use Active FilterUse Active Filter
1.Customer’s
specification
1.Customer’s
specification
No
3.Passive Low Pass Filter Design (1/5)
3.1 Specifications :
All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 5
Fr e que nc y
1 0 0KHz 1. 0MHz 10 MHz
db ( v ( o ut ) )
- 4 0
- 3 0
- 2 0
- 1 0
0
Figure 1 Low-pass filter response and specification
Pass-band Region
Stop-band Region
Pass-band edge frequency = 1 MHz
Pass-band gain = -3 dB
Stop-band edge frequency = 2.5 MHz
Stop-band gain = -30 dB
•Pass-band edge frequency : 1 MHz (fCutoff)
- Pass-band gain : -3 dB
•Stop-band edge frequency : 2.5 MHz
- Stop-band gain : -30 dB
•Load and Source Condition :
- Source Type : Voltage
- Filter Load Impedance : 50 Ω
- Source Impedance : 50 Ω
STEP1.Customer’s
specification
STEP1.Customer’s
specification
3.Passive Low Pass Filter Design (2/5)
3.2 Calculation :
All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 6
Figure 2.1 Low-pass filter circuit with calculated element-values
(Butterworth approximation).
Figure 2.2 Low-pass filter circuit with calculated element-values
(Chebyshev approximation).
0
C 2
1 0 . 6 6 n F
R L 2
5 0
L 1
5 . 6 6 5 u H
1 2
R s
5 0
o u t 3
C 1
1 0 . 6 6 n F
V s o u r c e
0
C 1
5 . 8 7 8 n F
R L
5 0
o u t
L 1
6 . 0 8 7 u H
1 2
L 2
1 4 . 7 u H
1 2
V s o u r c e
R s
5 0
C 2
2 . 4 3 5 n F
•L1=6.087uH
•L2=14.7uH
•C1=5.878nF
•C2=2.435nF
•L1=5.665uH
•C1=10.66nF
•C2=10.66nF
STEP2. Circuit
design and
calculation
STEP2. Circuit
design and
calculation
3.Passive Low Pass Filter Design (3/5)
All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 7
Figure 3 Response and specification of the calculated circuits.
Fr equ en c y
1 00 KHz 1 . 0MHz 1 0MHz
d b( v ( ou t ) ) d b ( v ( o u t 3 ) )
- 4 0
- 3 0
- 2 0
- 1 0
0
Butterworth (1MHz,-3dB)
Chebyshev : (1MHz,-3dB)
(2.5MHz,-34.8dB)
(2.5MHz,-31.8dB)
3.3 Verification :
• Frequency Response Simulation
Pass-band Ripple (-2.81dB)
•Pass-band edge frequencies : 1 MHz
•Pass-band gains : -3 dB 
•Stop-band edge frequencies : 2.5 MHz
•Stop-band gains : < -30 dB 
•Butterworth Approximation
- No ripple 
- Roll-off rate is 80dB/decade 
•Chebyshev Approximation
- Pass-band ripple : -2.81dB 
- Steeper roll-of with less passive
component 
— Butterworth Approximation
— Butterworth Approximation
STEP3.
Verification
STEP3.
Verification
3.Passive Low Pass Filter Design (4/5)
3.4 Optimization :
- Use standard capacitor values (E-12 Capacitor Values)
- Optimize inductor values
All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 8
•L1=6.7 uH
•L2=15.4uH
•C1=5.6nF
•C2=2.2nF
•L1=6.06uH
•C1=10nF
•C2=10nF
Figure 4.1 Low-pass filter circuit with optimized element-values (Butterworth approximation).
Figure 4.2 Low-pass filter circuit with calculated element-values (Chebyshev approximation).
0
C 1
5 . 6 n F
R L
5 0
o u t
L 1
6 . 7 u H
1 2
L 2
1 5 . 4 u H
1 2
V s o u r c e
R s
5 0
C 2
2 . 2 n F
0
C 2
1 0 n F
R L
5 0
L 1
6 . 0 6 u H
1 2
R s
5 0
o u t 3
C 1
1 0 n F
V s o u r c e
STEP4. Optimize with
standard capacitor value
(then verify)
STEP4. Optimize with
standard capacitor value
(then verify)
Fr e q ue n c y
10 0 KHz 1. 0MHz 1 0MHz
db( v ( ou t ) ) d b( v ( out 3) )
- 4 0
- 3 0
- 2 0
- 1 0
0
3.Passive Low Pass Filter Design (4/5)
All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 9
Figure 5 Response and specification of the optimized circuits.
Butterworth (1MHz,-3dB)
Chebyshev : (1MHz,-3dB)
(2.5MHz,-34.3dB)
(2.5MHz,-31.8dB)
3.4 Optimization :
• Frequency Response Simulation
Pass-band Ripple (-2.62dB)
•Pass-band edge frequencies : 1 MHz
•Pass-band gains : -3 dB 
•Stop-band edge frequencies : 2.5 MHz
•Stop-band gains : < -30 dB 
•Butterworth Approximation
- No ripple 
- Roll-off rate is 80dB/decade 
•Chebyshev Approximation
- Pass-band ripple : -2.62dB 
- Steeper roll-of with less passive
component — Butterworth Approximation
— Butterworth Approximation
3.Passive Low Pass Filter Design (5/5)
3.5 Elements test :
- ± 5% test for each element value.
All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 10
•L1=6.7 uH (± 5%)
•L2=15.4uH (± 5%)
•C1=5.6nF (± 5%)
•C2=2.2nF (± 5%)
•L1=6.06uH (± 5%)
•C1=10nF (± 5%)
•C2=10nF (± 5%)
Figure 6.1 Low-pass filter circuit with ± 5% of the element-values (Butterworth approximation).
Figure 6.1 Low-pass filter circuit with ± 5% of the element-values (Chebyshev approximation).
0
C 1
5 . 6 n F
R L
5 0
o u t
L 1
6 . 7 u H
1 2
L 2
1 5 . 4 u H
1 2
V s o u r c e
R s
5 0
C 2
2 . 2 n F
0
C 2
1 0 n F
R L
5 0
L 1
6 . 0 6 u H
1 2
R s
5 0
o u t 3
C 1
1 0 n F
V s o u r c e
± 5% ± 5%
± 5% ± 5%
± 5%
± 5% ± 5%
STEP5. Elements test
(± 5%)
STEP5. Elements test
(± 5%)
Fr eq ue nc y
100 KHz 1. 0 MHz 10 MHz
d b( v ( out 3 ) )
- 4 0
- 2 0
0
Fr eq uenc y
1 00 KHz 1 . 0 MHz 10 MHz
d b( v ( ou t ) )
- 4 0
- 2 0
0
3.Passive Low Pass Filter Design (5/5)
All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 11
Figure 7 Response and specification when the element values are error with ±5%.
3.5 Elements test :
• Frequency Response Simulation, compare to -5% and +5% of all element values.
Butterworth
— +5%
— standard values
— -5%
Pass-band gain (-3 dB)
Cutoff frequency : 0.9525M, 1M, 1.0527M
Chebyshev
— +5%
— standard values
— -5%
Pass-band gain (-3 dB) Cutoff frequency : 0.9524M, 1M, 1.0526M
V s o u r c e
0
C 2
1 0 n F
R L 2
5 0
L 1
6 . 0 6 u H
1 2
R s 2
5 0
o u t
C 1
1 0 n F
0
C 1
5 . 6 n
R L
5 0
o u t
L 1
6 . 7 u
1 2
L 2
1 5 . 4 u
1 2
V s o u r c e
R s
5 0
C 2
2 . 2 n
3.Passive Low Pass Filter Design
3.6 Result :
• Low-pass filter circuit with all element values.
All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 12
•L1=6.7 uH (± 5%)
•L2=15.4uH (± 5%)
•C1=5.6nF (± 5%)
•C2=2.2nF (± 5%)
•L1=6.06uH (± 5%)
•C1=10nF (± 5%)
•C2=10nF (± 5%)
Figure 8.1 Low-pass filter circuit with all element-values (Butterworth approximation).
Figure 8.1 Low-pass filter circuit all element-values (Chebyshev approximation).
± 5% ± 5%
± 5% ± 5%
± 5%
± 5% ± 5%
Result : Filter circuit
with all element values
Result : Filter circuit
with all element values
Fr equen c y
10KHz 100KHz 1. 0MHz 10MHz 100MHz
db( v ( out ) )
- 80
- 60
- 40
- 20
0
4.Passive High Pass Filter Design (Example)
Specifications :
All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 13
Figure 9 High-pass filter response and specification
Pass-band Region
Stop-band Region
Pass-band edge frequency = 1 MHz
Pass-band gain = -3 dB
Stop-band edge frequency = 0.4 MHz
Stop-band gain = -30 dB
•Pass-band edge frequency : 1 MHz (Cutoff frequency)
- Pass-band gain : -3 dB
•Stop-band edge frequency : 0.4 MHz
- Stop-band gain : -30 dB
•Load and Source Condition :
- Source Type : Voltage
- Filter Load Impedance : 50 Ω
- Source Impedance : 50 Ω
V s o u r c e
0
C 2
1 n F
R L 2
5 0
L 1
1 0 . 6 u H
1
2
R s 2
5 0
o u t
C 1
1 n F
0
C 1
4 . 7 n F
R L
5 0
o u t
L 1
4 . 3 u H
1
2
L 2
7 . 1 u H
1
2
V s o u r c e
R s
5 0
C 2
1 . 8 n F
4.Passive High Pass Filter Design (Example)
Result :
• High-pass filter circuit with all element values.
All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 14
•C1=4.7nF (± 5%)
•C2=1.8nF (± 5%)
•L1=4.3uF (± 5%)
•L2=7.1uH (± 5%)
•L1=6.06uH (± 5%)
•C1=10nF (± 5%)
•C2=10nF (± 5%)
Figure 9.1 High-pass filter circuit with all element-values (Butterworth approximation).
Figure 9.1 High-pass filter circuit all element-values (Chebyshev approximation).
± 5% ± 5%
± 5% ± 5%
± 5%
± 5%
± 5%
Fr e quenc y
100KHz 1. 0MHz 10MHz
db( v ( ou t ) )
- 40
- 20
0
Fr eque nc y
100KHz 1 . 0MHz 10MHz
db( v ( out ) )
- 40
- 20
0
4.Passive High Pass Filter Design (Example)
All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 15
Figure 10 Response and specification when the element values are error with ±5%.
Elements test :
• Frequency Response Simulation, compare to -5% and +5% of all element values.
Butterworth
— +5%
— standard values
— -5%
Pass-band gain (-3 dB)
Cutoff frequency : 0.952M, 1M, 1.052M
Chebyshev
— +5%
— standard values
— -5%
Pass-band gain (-3 dB) Cutoff frequency : 0.9523M, 1M, 1.0526M
Pass-band Ripple (-2.7dB)
•Low end pass band frequency : 1 MHz (fC-L)
- Pass-band gain : -3 dB
•Low end stop band frequency : 0.4 MHz
- Stop-band gain : < -25 dB
•High end pass band frequency : 3 MHz (fC-H)
- Pass-band gain : -3 dB
•High end stop band frequency : 5 MHz
- Stop-band gain : < -25 dB
•Load and Source Condition :
- Source Type : Voltage
- Filter Load Impedance : 50 Ω
- Source Impedance : 50 Ω
Fr e qu e nc y
1. 0MHz 10 MHz3 00 KHz
d b( v ( ou t ) )
- 40
- 30
- 20
- 10
0
5.Passive Band Pass Filter Design (Example)
Specifications :
All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 16
Figure 11 Band-pass filter response and specification
Pass-band Region
Low end pass band frequency = 1 MHz
Pass-band gain = -3 dB
Low end stop band frequency = 0.6 MHz
Stop-band gain < -25 dB
Stop-band RegionStop-band Region
High end pass band frequency = 3 MHz
High end stop band frequency = 0.6 MHz
L 4
7 . 3 u H
1
2
C 4
1 . 2 n
0
R L
5 0
o u t
V s o u r c e
R s
5 0
L 1
3 u H
1 2
C 1
2 . 7 n
L 2
2 . 8 u H
1
2
L 3
7 . 8 u H
1 2
C 2
2 . 7 n
C 3
1 . 2 n
5.Passive Band Pass Filter Design (Example)
Result (Butterworth approximation) :
• High-pass filter circuit with all element values.
All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 17
•L1 = 3uH (± 5%)
•L2 = 2.8uH (± 5%)
•L3 = 7.8uH (± 5%)
•L4 = 7.3uH (± 5%)
•C1 = 2.7nH (± 5%)
•C2 = 2.7nF (± 5%)
•C3 = 1.2nF (± 5%)
•C4 = 1.2nF (± 5%)
Figure 12 Band-pass filter circuit with all element-values (Butterworth approximation).
± 5% ± 5%
± 5% ± 5%
± 5% ± 5%
± 5% ± 5%
Fr equenc y
1. 0MHz 10MHz300KHz
db( v ( out ) )
- 40
- 30
- 20
- 10
0
5.Passive Band Pass Filter Design (Example)
All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 18
Figure 13 Response and specification when the element values are error with ±5%.
Elements test (Butterworth approximation) :
• Frequency Response Simulation, compare to -5% and +5% of all element values.
Butterworth
— +5%
— standard values
— -5%
Pass-band gain (-3 dB)
fC-L: 0.95M, 1M, 1.05M
fC-H: 2.876M, 3M, 3.178M
0
R L
5 0
o u t
V s o u r c e
R s
5 0
L 1
1 2 . 3 u
1 2
C 1
6 8 0 p
L 2
7 u
1
2
L 3
1 2 . 3 u
1 2
C 2
1 . 2 n
C 3
6 8 0 p
5.Passive Band Pass Filter Design (Example)
Result (Chebyshev approximation) :
• High-pass filter circuit with all element values.
All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 19
•L1 = 12.3uH (± 5%)
•L2 = 7uH (± 5%)
•L3 = 12.3uH (± 5%)
•C1 = 680pF (± 5%)
•C2 = 1.2nF (± 5%)
•C3 = 680pF (± 5%)
Figure 14 Band-pass filter circuit with all element-values (Chebyshev approximation).
± 5% ± 5%
± 5% ± 5%
± 5% ± 5%
Fr equenc y
1. 0MHz 10MHz300KHz
db( v ( out ) )
- 40
- 30
- 20
- 10
0
5.Passive Band Pass Filter Design (Example)
All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 20
Figure 15 Response and specification when the element values are error with ±5%.
Elements test (Chebyshev approximation) :
• Frequency Response Simulation, compare to -5% and +5% of all element values.
Chebyshev
— +5%
— standard values
— -5%
Pass-band gain (-3 dB)
fC-L: 0.952M, 1M, 1.052M
fC-H: 2.8812M, 3M, 3.184M
Pass-band Ripple (-2.63dB)
Fr equenc y
1. 0MHz 10MHz300KHz
db( v ( out ) )
- 40
- 30
- 20
- 10
0
•Low end pass band frequency : 1 MHz (fC-L)
- Pass-band gain : -3 dB
•Low end stop band frequency : 1.4 MHz
- Stop-band gain : < -25 dB
•High end pass band frequency : 3 MHz (fC-H)
- Pass-band gain : -3 dB
•High end stop band frequency : 2.2 MHz
- Stop-band gain : < -25 dB
•Load and Source Condition :
- Source Type : Voltage
- Filter Load Impedance : 50 Ω
- Source Impedance : 50 Ω
6.Passive Band Reject Filter Design (Example)
Specifications :
All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 21
Figure 16 Band reject filter response and specification
Pass-band Region
Low end pass band frequency = 1 MHz
Pass-band gain = -3 dB
Low end stop band frequency
= 0.6 MHz
Stop-band gain < -25 dB
Stop-band Region
High end pass band frequency = 3 MHz
High end stop band frequency
= 0.6 MHz
Pass-band Region
0
R L
5 0
V s o u r c e
R s
5 0
L 1
3 . 5 5 u
1 2 o u t
C 1
2 n
L 2
2 . 2 u
1
2
C 2
3 . 3 n
L 3
9 u
1 2
C 3
1 . 2 n
6.Passive Band Reject Filter Design (Example)
Result :
• High-pass filter circuit with all element values.
All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 22
•L1 = 3.55uH (± 5%)
•L2 = 2.2uH (± 5%)
•L3 = 9uH (± 5%)
•C1 = 2nH (± 5%)
•C2 = 3.3nF (± 5%)
•C3 = 1.2nF (± 5%)
Figure 17 Band-reject filter circuit with all element-values
± 5%
± 5%
± 5%
± 5%
± 5%
± 5%
Fr equenc y
1. 0MHz 10MHz300KHz
db( v ( out ) )
- 40
- 30
- 20
- 10
0
6.Passive Band Reject Filter Design (Example)
All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 23
Figure 13 Response and specification when the element values are error with ±5%.
Elements test :
• Frequency Response Simulation, compare to -5% and +5% of all element values.
Butterworth
— +5%
— standard values
— -5%
Pass-band gain (-3 dB)
fC-L: 0.9457M, 1M, 1.0456M fC-H: 2.873M, 3M, 3.175M

More Related Content

PPTX
filters
PDF
Electronic DC Voltmeter using PMMC
PPTX
ACD-instrumentation amplifier & peaking amplifier
PPTX
Low pass filters
PDF
Matlab implementation of fast fourier transform
ODP
Semiconductor Devices
PDF
Two port-networks
PPTX
Network synthesis
filters
Electronic DC Voltmeter using PMMC
ACD-instrumentation amplifier & peaking amplifier
Low pass filters
Matlab implementation of fast fourier transform
Semiconductor Devices
Two port-networks
Network synthesis

What's hot (20)

PDF
Operational Amplifiers
PPT
Chapter 5
PPT
Eca unit 6
PPTX
PPTX
Linear dependence(ld) &amp;linear independence(li)
DOCX
digital filter design
PPTX
FILTER DESIGN
PPTX
Two port network
PDF
power electronics digital notes.pdf
PPTX
14699775563. feedback amplifiers
PPTX
Pulse shaping
PPT
Z Transform And Inverse Z Transform - Signal And Systems
PDF
Modern Control - Lec 06 - PID Tuning
PDF
controlled Full Bridge Rectifier
PPT
signal space analysis.ppt
PPTX
R-2R Ladder DAC
PDF
Table of transformation of laplace & z
PPTX
Multistage amplifier
PPT
Two port networks
Operational Amplifiers
Chapter 5
Eca unit 6
Linear dependence(ld) &amp;linear independence(li)
digital filter design
FILTER DESIGN
Two port network
power electronics digital notes.pdf
14699775563. feedback amplifiers
Pulse shaping
Z Transform And Inverse Z Transform - Signal And Systems
Modern Control - Lec 06 - PID Tuning
controlled Full Bridge Rectifier
signal space analysis.ppt
R-2R Ladder DAC
Table of transformation of laplace & z
Multistage amplifier
Two port networks
Ad

Similar to Passive Filter Design using PSpice (20)

PPT
Active Filter Design Using PSpice
PDF
Df3211051114
PPT
ME3100 SAMPLE slide07 Active Filter Design and Implementation v1.01.ppt
PPTX
27 Advanced Filters.pptx
PDF
IRJET- Design and Simulation of Five Stage Band Pass Filter for C Band Applic...
PDF
AHK P5 Active Filter TR5 Final
PDF
Ao4103236259
PPT
Active filters & Low Pass Filters (LMS).ppt
PPTX
Op amp applications filters cw
DOCX
Exp passive filter (6)
DOCX
DOCX
Exp passive filter (5)
DOCX
Laboratory Report Cover Sheet DeVry UniversityCollege of Engin.docx
PDF
IRJET- Designing of Basic Types of Filters using Standard Tool
PPTX
Op amp applications filters cw final (2)
PPTX
Op amp applications filters cw final
DOCX
Exp passive filter (3)
PDF
Chebyshev High Pass Filter
DOCX
Exp passive filter (4)
DOCX
Exp passive filter (7)
Active Filter Design Using PSpice
Df3211051114
ME3100 SAMPLE slide07 Active Filter Design and Implementation v1.01.ppt
27 Advanced Filters.pptx
IRJET- Design and Simulation of Five Stage Band Pass Filter for C Band Applic...
AHK P5 Active Filter TR5 Final
Ao4103236259
Active filters & Low Pass Filters (LMS).ppt
Op amp applications filters cw
Exp passive filter (6)
Exp passive filter (5)
Laboratory Report Cover Sheet DeVry UniversityCollege of Engin.docx
IRJET- Designing of Basic Types of Filters using Standard Tool
Op amp applications filters cw final (2)
Op amp applications filters cw final
Exp passive filter (3)
Chebyshev High Pass Filter
Exp passive filter (4)
Exp passive filter (7)
Ad

More from Tsuyoshi Horigome (20)

PPTX
STHV64SW(STマイクロエレクトロニクス)のデータシートの要約について(Suitable for ultrasound imaging applic...
PDF
Safety Lock Circuits (LTspice + Explanation)
PPTX
H8500-based Scintillation Detection System (Block Diagram) by Bee Technologies
PPT
Package Design Design Kit 20100009 PWM IC by Bee Technologies
PDF
Wio LTE JP Version v1.3b- 4G, Cat.1, Espruino Compatible\202001935, PCBA;Wio ...
PDF
High-frequency high-voltage transformer outline drawing
PPTX
高周波回路のノイズ抑制について回路設計、基板設計、基板製造における対策方法について
PPTX
sub-GHz帯域(315MHzや920MHz)で使用する際のポイントについてのご説明
DOCX
Basic Flow Chart Shapes(Reference Memo)for word version
PPTX
Update 40 models( Solar Cell ) in SPICE PARK(JUL2024)
PPTX
SPICE PARK JUL2024 ( 6,866 SPICE Models )
PPTX
Update 33 models(General Diode ) in SPICE PARK(JUN2024)
PPTX
SPICE PARK JUN2024 ( 6,826 SPICE Models )
PPTX
KGIとKPIについて(営業の目標設定とKPIの商談プロセス) About KGI and KPI
PPTX
FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)
PPTX
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
PPTX
SPICE PARK APR2024 ( 6,793 SPICE Models )
PPTX
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
PPTX
SPICE PARK APR2024 ( 6,747 SPICE Models )
PPTX
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
STHV64SW(STマイクロエレクトロニクス)のデータシートの要約について(Suitable for ultrasound imaging applic...
Safety Lock Circuits (LTspice + Explanation)
H8500-based Scintillation Detection System (Block Diagram) by Bee Technologies
Package Design Design Kit 20100009 PWM IC by Bee Technologies
Wio LTE JP Version v1.3b- 4G, Cat.1, Espruino Compatible\202001935, PCBA;Wio ...
High-frequency high-voltage transformer outline drawing
高周波回路のノイズ抑制について回路設計、基板設計、基板製造における対策方法について
sub-GHz帯域(315MHzや920MHz)で使用する際のポイントについてのご説明
Basic Flow Chart Shapes(Reference Memo)for word version
Update 40 models( Solar Cell ) in SPICE PARK(JUL2024)
SPICE PARK JUL2024 ( 6,866 SPICE Models )
Update 33 models(General Diode ) in SPICE PARK(JUN2024)
SPICE PARK JUN2024 ( 6,826 SPICE Models )
KGIとKPIについて(営業の目標設定とKPIの商談プロセス) About KGI and KPI
FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
SPICE PARK APR2024 ( 6,793 SPICE Models )
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
SPICE PARK APR2024 ( 6,747 SPICE Models )
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)

Recently uploaded (20)

PDF
Quality Control Management for RMG, Level- 4, Certificate
PDF
The Advantages of Working With a Design-Build Studio
PDF
Emailing DDDX-MBCaEiB.pdf DDD_Europe_2022_Intro_to_Context_Mapping_pdf-165590...
PPTX
ANATOMY OF ANTERIOR CHAMBER ANGLE AND GONIOSCOPY.pptx
PPTX
Media And Information Literacy for Grade 12
DOCX
The story of the first moon landing.docx
PPTX
rapid fire quiz in your house is your india.pptx
PDF
Phone away, tabs closed: No multitasking
PPTX
AD Bungalow Case studies Sem 2.pptxvwewev
PDF
BRANDBOOK-Presidential Award Scheme-Kenya-2023
PDF
Urban Design Final Project-Context
PDF
GREEN BUILDING MATERIALS FOR SUISTAINABLE ARCHITECTURE AND BUILDING STUDY
PDF
Design Thinking - Module 1 - Introduction To Design Thinking - Dr. Rohan Dasg...
PDF
Skskkxiixijsjsnwkwkaksixindndndjdjdjsjjssk
PPTX
An introduction to AI in research and reference management
PDF
Key Trends in Website Development 2025 | B3AITS - Bow & 3 Arrows IT Solutions
PPTX
YV PROFILE PROJECTS PROFILE PRES. DESIGN
PPTX
LITERATURE CASE STUDY DESIGN SEMESTER 5.pptx
PPTX
building Planning Overview for step wise design.pptx
PPT
UNIT I- Yarn, types, explanation, process
Quality Control Management for RMG, Level- 4, Certificate
The Advantages of Working With a Design-Build Studio
Emailing DDDX-MBCaEiB.pdf DDD_Europe_2022_Intro_to_Context_Mapping_pdf-165590...
ANATOMY OF ANTERIOR CHAMBER ANGLE AND GONIOSCOPY.pptx
Media And Information Literacy for Grade 12
The story of the first moon landing.docx
rapid fire quiz in your house is your india.pptx
Phone away, tabs closed: No multitasking
AD Bungalow Case studies Sem 2.pptxvwewev
BRANDBOOK-Presidential Award Scheme-Kenya-2023
Urban Design Final Project-Context
GREEN BUILDING MATERIALS FOR SUISTAINABLE ARCHITECTURE AND BUILDING STUDY
Design Thinking - Module 1 - Introduction To Design Thinking - Dr. Rohan Dasg...
Skskkxiixijsjsnwkwkaksixindndndjdjdjsjjssk
An introduction to AI in research and reference management
Key Trends in Website Development 2025 | B3AITS - Bow & 3 Arrows IT Solutions
YV PROFILE PROJECTS PROFILE PRES. DESIGN
LITERATURE CASE STUDY DESIGN SEMESTER 5.pptx
building Planning Overview for step wise design.pptx
UNIT I- Yarn, types, explanation, process

Passive Filter Design using PSpice

  • 1. Passive Filter Design All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 1 Design Services
  • 2. Contents Slide # 1. Filter Design Category.............................................................................. 2. Passive Filter Design Flow- Chart............................................................. 3. Passive Low Pass Filter Design............................................................... 3.1 Specifications : .................................................................................. 3.2 Calculation : ...................................................................................... . 3.3 Verification : ...................................................................................... . 3.4 Optimization : .................................................................................... 3.5 Elements 3 4 5 5 6 7 8-9 10-11 12 13-15 16-20 21-23 2All Rights Reserved Copyright (C) Bee Technologies Corporation 2009
  • 3. 1.Filter Design Category Available Filter Types • Low Pass Filter • High Pass Filter • Band Pass Filter • Band Reject Filter Approximation • Butterworth - No ripple - Smooth roll-off (rate of 20dB/decade for every pole) • Chebyshev - Pass-band ripple specification would be required. - Steeper roll-of Topology • Passive - High frequency range (> 1 MHz) - Source and load impedance specifications would be required • Active - Low frequency range (1 Hz to 1 MHz) - Unity-Gain Sallen-Key configuration (see Figure 1.0) Number of Order • 2nd -10th All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 3
  • 4. 2.Passive Filter Design Flow Chart All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 4 2. Circuit design and calculation2. Circuit design and calculation 3. Verification3. Verification 4. Optimize with standard capacitor value4. Optimize with standard capacitor value 5. Elements test (± 5%)5. Elements test (± 5%) Meet the spec?Meet the spec? No Yes Satisfy?Satisfy? Yes YESYES Result : Filter circuit with all element values Result : Filter circuit with all element values Use Active FilterUse Active Filter 1.Customer’s specification 1.Customer’s specification No
  • 5. 3.Passive Low Pass Filter Design (1/5) 3.1 Specifications : All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 5 Fr e que nc y 1 0 0KHz 1. 0MHz 10 MHz db ( v ( o ut ) ) - 4 0 - 3 0 - 2 0 - 1 0 0 Figure 1 Low-pass filter response and specification Pass-band Region Stop-band Region Pass-band edge frequency = 1 MHz Pass-band gain = -3 dB Stop-band edge frequency = 2.5 MHz Stop-band gain = -30 dB •Pass-band edge frequency : 1 MHz (fCutoff) - Pass-band gain : -3 dB •Stop-band edge frequency : 2.5 MHz - Stop-band gain : -30 dB •Load and Source Condition : - Source Type : Voltage - Filter Load Impedance : 50 Ω - Source Impedance : 50 Ω STEP1.Customer’s specification STEP1.Customer’s specification
  • 6. 3.Passive Low Pass Filter Design (2/5) 3.2 Calculation : All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 6 Figure 2.1 Low-pass filter circuit with calculated element-values (Butterworth approximation). Figure 2.2 Low-pass filter circuit with calculated element-values (Chebyshev approximation). 0 C 2 1 0 . 6 6 n F R L 2 5 0 L 1 5 . 6 6 5 u H 1 2 R s 5 0 o u t 3 C 1 1 0 . 6 6 n F V s o u r c e 0 C 1 5 . 8 7 8 n F R L 5 0 o u t L 1 6 . 0 8 7 u H 1 2 L 2 1 4 . 7 u H 1 2 V s o u r c e R s 5 0 C 2 2 . 4 3 5 n F •L1=6.087uH •L2=14.7uH •C1=5.878nF •C2=2.435nF •L1=5.665uH •C1=10.66nF •C2=10.66nF STEP2. Circuit design and calculation STEP2. Circuit design and calculation
  • 7. 3.Passive Low Pass Filter Design (3/5) All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 7 Figure 3 Response and specification of the calculated circuits. Fr equ en c y 1 00 KHz 1 . 0MHz 1 0MHz d b( v ( ou t ) ) d b ( v ( o u t 3 ) ) - 4 0 - 3 0 - 2 0 - 1 0 0 Butterworth (1MHz,-3dB) Chebyshev : (1MHz,-3dB) (2.5MHz,-34.8dB) (2.5MHz,-31.8dB) 3.3 Verification : • Frequency Response Simulation Pass-band Ripple (-2.81dB) •Pass-band edge frequencies : 1 MHz •Pass-band gains : -3 dB  •Stop-band edge frequencies : 2.5 MHz •Stop-band gains : < -30 dB  •Butterworth Approximation - No ripple  - Roll-off rate is 80dB/decade  •Chebyshev Approximation - Pass-band ripple : -2.81dB  - Steeper roll-of with less passive component  — Butterworth Approximation — Butterworth Approximation STEP3. Verification STEP3. Verification
  • 8. 3.Passive Low Pass Filter Design (4/5) 3.4 Optimization : - Use standard capacitor values (E-12 Capacitor Values) - Optimize inductor values All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 8 •L1=6.7 uH •L2=15.4uH •C1=5.6nF •C2=2.2nF •L1=6.06uH •C1=10nF •C2=10nF Figure 4.1 Low-pass filter circuit with optimized element-values (Butterworth approximation). Figure 4.2 Low-pass filter circuit with calculated element-values (Chebyshev approximation). 0 C 1 5 . 6 n F R L 5 0 o u t L 1 6 . 7 u H 1 2 L 2 1 5 . 4 u H 1 2 V s o u r c e R s 5 0 C 2 2 . 2 n F 0 C 2 1 0 n F R L 5 0 L 1 6 . 0 6 u H 1 2 R s 5 0 o u t 3 C 1 1 0 n F V s o u r c e STEP4. Optimize with standard capacitor value (then verify) STEP4. Optimize with standard capacitor value (then verify)
  • 9. Fr e q ue n c y 10 0 KHz 1. 0MHz 1 0MHz db( v ( ou t ) ) d b( v ( out 3) ) - 4 0 - 3 0 - 2 0 - 1 0 0 3.Passive Low Pass Filter Design (4/5) All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 9 Figure 5 Response and specification of the optimized circuits. Butterworth (1MHz,-3dB) Chebyshev : (1MHz,-3dB) (2.5MHz,-34.3dB) (2.5MHz,-31.8dB) 3.4 Optimization : • Frequency Response Simulation Pass-band Ripple (-2.62dB) •Pass-band edge frequencies : 1 MHz •Pass-band gains : -3 dB  •Stop-band edge frequencies : 2.5 MHz •Stop-band gains : < -30 dB  •Butterworth Approximation - No ripple  - Roll-off rate is 80dB/decade  •Chebyshev Approximation - Pass-band ripple : -2.62dB  - Steeper roll-of with less passive component — Butterworth Approximation — Butterworth Approximation
  • 10. 3.Passive Low Pass Filter Design (5/5) 3.5 Elements test : - ± 5% test for each element value. All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 10 •L1=6.7 uH (± 5%) •L2=15.4uH (± 5%) •C1=5.6nF (± 5%) •C2=2.2nF (± 5%) •L1=6.06uH (± 5%) •C1=10nF (± 5%) •C2=10nF (± 5%) Figure 6.1 Low-pass filter circuit with ± 5% of the element-values (Butterworth approximation). Figure 6.1 Low-pass filter circuit with ± 5% of the element-values (Chebyshev approximation). 0 C 1 5 . 6 n F R L 5 0 o u t L 1 6 . 7 u H 1 2 L 2 1 5 . 4 u H 1 2 V s o u r c e R s 5 0 C 2 2 . 2 n F 0 C 2 1 0 n F R L 5 0 L 1 6 . 0 6 u H 1 2 R s 5 0 o u t 3 C 1 1 0 n F V s o u r c e ± 5% ± 5% ± 5% ± 5% ± 5% ± 5% ± 5% STEP5. Elements test (± 5%) STEP5. Elements test (± 5%)
  • 11. Fr eq ue nc y 100 KHz 1. 0 MHz 10 MHz d b( v ( out 3 ) ) - 4 0 - 2 0 0 Fr eq uenc y 1 00 KHz 1 . 0 MHz 10 MHz d b( v ( ou t ) ) - 4 0 - 2 0 0 3.Passive Low Pass Filter Design (5/5) All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 11 Figure 7 Response and specification when the element values are error with ±5%. 3.5 Elements test : • Frequency Response Simulation, compare to -5% and +5% of all element values. Butterworth — +5% — standard values — -5% Pass-band gain (-3 dB) Cutoff frequency : 0.9525M, 1M, 1.0527M Chebyshev — +5% — standard values — -5% Pass-band gain (-3 dB) Cutoff frequency : 0.9524M, 1M, 1.0526M
  • 12. V s o u r c e 0 C 2 1 0 n F R L 2 5 0 L 1 6 . 0 6 u H 1 2 R s 2 5 0 o u t C 1 1 0 n F 0 C 1 5 . 6 n R L 5 0 o u t L 1 6 . 7 u 1 2 L 2 1 5 . 4 u 1 2 V s o u r c e R s 5 0 C 2 2 . 2 n 3.Passive Low Pass Filter Design 3.6 Result : • Low-pass filter circuit with all element values. All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 12 •L1=6.7 uH (± 5%) •L2=15.4uH (± 5%) •C1=5.6nF (± 5%) •C2=2.2nF (± 5%) •L1=6.06uH (± 5%) •C1=10nF (± 5%) •C2=10nF (± 5%) Figure 8.1 Low-pass filter circuit with all element-values (Butterworth approximation). Figure 8.1 Low-pass filter circuit all element-values (Chebyshev approximation). ± 5% ± 5% ± 5% ± 5% ± 5% ± 5% ± 5% Result : Filter circuit with all element values Result : Filter circuit with all element values
  • 13. Fr equen c y 10KHz 100KHz 1. 0MHz 10MHz 100MHz db( v ( out ) ) - 80 - 60 - 40 - 20 0 4.Passive High Pass Filter Design (Example) Specifications : All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 13 Figure 9 High-pass filter response and specification Pass-band Region Stop-band Region Pass-band edge frequency = 1 MHz Pass-band gain = -3 dB Stop-band edge frequency = 0.4 MHz Stop-band gain = -30 dB •Pass-band edge frequency : 1 MHz (Cutoff frequency) - Pass-band gain : -3 dB •Stop-band edge frequency : 0.4 MHz - Stop-band gain : -30 dB •Load and Source Condition : - Source Type : Voltage - Filter Load Impedance : 50 Ω - Source Impedance : 50 Ω
  • 14. V s o u r c e 0 C 2 1 n F R L 2 5 0 L 1 1 0 . 6 u H 1 2 R s 2 5 0 o u t C 1 1 n F 0 C 1 4 . 7 n F R L 5 0 o u t L 1 4 . 3 u H 1 2 L 2 7 . 1 u H 1 2 V s o u r c e R s 5 0 C 2 1 . 8 n F 4.Passive High Pass Filter Design (Example) Result : • High-pass filter circuit with all element values. All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 14 •C1=4.7nF (± 5%) •C2=1.8nF (± 5%) •L1=4.3uF (± 5%) •L2=7.1uH (± 5%) •L1=6.06uH (± 5%) •C1=10nF (± 5%) •C2=10nF (± 5%) Figure 9.1 High-pass filter circuit with all element-values (Butterworth approximation). Figure 9.1 High-pass filter circuit all element-values (Chebyshev approximation). ± 5% ± 5% ± 5% ± 5% ± 5% ± 5% ± 5%
  • 15. Fr e quenc y 100KHz 1. 0MHz 10MHz db( v ( ou t ) ) - 40 - 20 0 Fr eque nc y 100KHz 1 . 0MHz 10MHz db( v ( out ) ) - 40 - 20 0 4.Passive High Pass Filter Design (Example) All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 15 Figure 10 Response and specification when the element values are error with ±5%. Elements test : • Frequency Response Simulation, compare to -5% and +5% of all element values. Butterworth — +5% — standard values — -5% Pass-band gain (-3 dB) Cutoff frequency : 0.952M, 1M, 1.052M Chebyshev — +5% — standard values — -5% Pass-band gain (-3 dB) Cutoff frequency : 0.9523M, 1M, 1.0526M Pass-band Ripple (-2.7dB)
  • 16. •Low end pass band frequency : 1 MHz (fC-L) - Pass-band gain : -3 dB •Low end stop band frequency : 0.4 MHz - Stop-band gain : < -25 dB •High end pass band frequency : 3 MHz (fC-H) - Pass-band gain : -3 dB •High end stop band frequency : 5 MHz - Stop-band gain : < -25 dB •Load and Source Condition : - Source Type : Voltage - Filter Load Impedance : 50 Ω - Source Impedance : 50 Ω Fr e qu e nc y 1. 0MHz 10 MHz3 00 KHz d b( v ( ou t ) ) - 40 - 30 - 20 - 10 0 5.Passive Band Pass Filter Design (Example) Specifications : All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 16 Figure 11 Band-pass filter response and specification Pass-band Region Low end pass band frequency = 1 MHz Pass-band gain = -3 dB Low end stop band frequency = 0.6 MHz Stop-band gain < -25 dB Stop-band RegionStop-band Region High end pass band frequency = 3 MHz High end stop band frequency = 0.6 MHz
  • 17. L 4 7 . 3 u H 1 2 C 4 1 . 2 n 0 R L 5 0 o u t V s o u r c e R s 5 0 L 1 3 u H 1 2 C 1 2 . 7 n L 2 2 . 8 u H 1 2 L 3 7 . 8 u H 1 2 C 2 2 . 7 n C 3 1 . 2 n 5.Passive Band Pass Filter Design (Example) Result (Butterworth approximation) : • High-pass filter circuit with all element values. All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 17 •L1 = 3uH (± 5%) •L2 = 2.8uH (± 5%) •L3 = 7.8uH (± 5%) •L4 = 7.3uH (± 5%) •C1 = 2.7nH (± 5%) •C2 = 2.7nF (± 5%) •C3 = 1.2nF (± 5%) •C4 = 1.2nF (± 5%) Figure 12 Band-pass filter circuit with all element-values (Butterworth approximation). ± 5% ± 5% ± 5% ± 5% ± 5% ± 5% ± 5% ± 5%
  • 18. Fr equenc y 1. 0MHz 10MHz300KHz db( v ( out ) ) - 40 - 30 - 20 - 10 0 5.Passive Band Pass Filter Design (Example) All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 18 Figure 13 Response and specification when the element values are error with ±5%. Elements test (Butterworth approximation) : • Frequency Response Simulation, compare to -5% and +5% of all element values. Butterworth — +5% — standard values — -5% Pass-band gain (-3 dB) fC-L: 0.95M, 1M, 1.05M fC-H: 2.876M, 3M, 3.178M
  • 19. 0 R L 5 0 o u t V s o u r c e R s 5 0 L 1 1 2 . 3 u 1 2 C 1 6 8 0 p L 2 7 u 1 2 L 3 1 2 . 3 u 1 2 C 2 1 . 2 n C 3 6 8 0 p 5.Passive Band Pass Filter Design (Example) Result (Chebyshev approximation) : • High-pass filter circuit with all element values. All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 19 •L1 = 12.3uH (± 5%) •L2 = 7uH (± 5%) •L3 = 12.3uH (± 5%) •C1 = 680pF (± 5%) •C2 = 1.2nF (± 5%) •C3 = 680pF (± 5%) Figure 14 Band-pass filter circuit with all element-values (Chebyshev approximation). ± 5% ± 5% ± 5% ± 5% ± 5% ± 5%
  • 20. Fr equenc y 1. 0MHz 10MHz300KHz db( v ( out ) ) - 40 - 30 - 20 - 10 0 5.Passive Band Pass Filter Design (Example) All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 20 Figure 15 Response and specification when the element values are error with ±5%. Elements test (Chebyshev approximation) : • Frequency Response Simulation, compare to -5% and +5% of all element values. Chebyshev — +5% — standard values — -5% Pass-band gain (-3 dB) fC-L: 0.952M, 1M, 1.052M fC-H: 2.8812M, 3M, 3.184M Pass-band Ripple (-2.63dB)
  • 21. Fr equenc y 1. 0MHz 10MHz300KHz db( v ( out ) ) - 40 - 30 - 20 - 10 0 •Low end pass band frequency : 1 MHz (fC-L) - Pass-band gain : -3 dB •Low end stop band frequency : 1.4 MHz - Stop-band gain : < -25 dB •High end pass band frequency : 3 MHz (fC-H) - Pass-band gain : -3 dB •High end stop band frequency : 2.2 MHz - Stop-band gain : < -25 dB •Load and Source Condition : - Source Type : Voltage - Filter Load Impedance : 50 Ω - Source Impedance : 50 Ω 6.Passive Band Reject Filter Design (Example) Specifications : All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 21 Figure 16 Band reject filter response and specification Pass-band Region Low end pass band frequency = 1 MHz Pass-band gain = -3 dB Low end stop band frequency = 0.6 MHz Stop-band gain < -25 dB Stop-band Region High end pass band frequency = 3 MHz High end stop band frequency = 0.6 MHz Pass-band Region
  • 22. 0 R L 5 0 V s o u r c e R s 5 0 L 1 3 . 5 5 u 1 2 o u t C 1 2 n L 2 2 . 2 u 1 2 C 2 3 . 3 n L 3 9 u 1 2 C 3 1 . 2 n 6.Passive Band Reject Filter Design (Example) Result : • High-pass filter circuit with all element values. All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 22 •L1 = 3.55uH (± 5%) •L2 = 2.2uH (± 5%) •L3 = 9uH (± 5%) •C1 = 2nH (± 5%) •C2 = 3.3nF (± 5%) •C3 = 1.2nF (± 5%) Figure 17 Band-reject filter circuit with all element-values ± 5% ± 5% ± 5% ± 5% ± 5% ± 5%
  • 23. Fr equenc y 1. 0MHz 10MHz300KHz db( v ( out ) ) - 40 - 30 - 20 - 10 0 6.Passive Band Reject Filter Design (Example) All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 23 Figure 13 Response and specification when the element values are error with ±5%. Elements test : • Frequency Response Simulation, compare to -5% and +5% of all element values. Butterworth — +5% — standard values — -5% Pass-band gain (-3 dB) fC-L: 0.9457M, 1M, 1.0456M fC-H: 2.873M, 3M, 3.175M