SlideShare a Scribd company logo
7
Most read
19
Most read
20
Most read
POLYNOMIAL REGRESSION
polynomial linear regression
PYTHON
IMPORTING THE LIBRARIES
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
IMPORTING THE DATASET
dataset = pd.read_csv('Position_Salaries.csv')
X = dataset.iloc[:, 1:2].values
y = dataset.iloc[:, 2].values
NOTE : X = dataset.iloc[:, 1:2].values can be rewritten as X =
dataset.iloc[: , 1].values
(see whats the problem)
FITTING LINEAR REGRESSION TO
THE DATASET
from sklearn.linear_model import LinearRegression
lin_reg = LinearRegression()
lin_reg.fit(X, y)
FITTING POLYNOMIAL REGRESSION
TO THE DATASET
from sklearn.preprocessing import PolynomialFeatures
poly_reg = PolynomialFeatures(degree = 4)
X_poly = poly_reg.fit_transform(X)
poly_reg.fit(X_poly, y)
lin_reg_2 = LinearRegression()
lin_reg_2.fit(X_poly, y)
VISUALISING THE LINEAR
REGRESSION RESULTS
plt.scatter(X, y, color = 'red')
plt.plot(X, lin_reg.predict(X), color = 'blue')
plt.title('Truth or Bluff (Linear Regression)')
plt.xlabel('Position level')
plt.ylabel('Salary')
plt.show()
VISUALIZING THE POLYNOMIAL
REGRESSION RESULTS
plt.scatter(X, y, color = 'red')
plt.plot(X, lin_reg_2.predict(poly_reg.fit_transform(X)), color = 'blue')
plt.title('Truth or Bluff (Polynomial Regression)')
plt.xlabel('Position level')
plt.ylabel('Salary')
plt.show()
VISUALIZING THE POLYNOMIAL
REGRESSION RESULTS (FOR HIGHER
RESOLUTION AND SMOOTHER CURVE)
X_grid = np.arange(min(X), max(X), 0.1)
X_grid = X_grid.reshape((len(X_grid), 1))
plt.scatter(X, y, color = 'red')
plt.plot(X_grid, lin_reg_2.predict(poly_reg.fit_transform(X_grid)), color
= 'blue')
plt.title('Truth or Bluff (Polynomial Regression)')
plt.xlabel('Position level')
plt.ylabel('Salary')
plt.show()
polynomial linear regression
PREDICTING A NEW RESULT WITH
LINEAR REGRESSION
lin_reg.predict(6.5)
PREDICTING A NEW RESULT WITH
POLYNOMIAL REGRESSION
lin_reg_2.predict(poly_reg.fit_transform(6.5))
R
READ DATASET
library(readr)
dataset <- read_csv("D:/machine learning AZ/Machine Learning A-Z
Template Folder/Part 2 - Regression/Section 6 - Polynomial
Regression/Polynomial_Regression/Position_Salaries.csv")
dataset = dataset[2:3]
FITTING LINEAR REGRESSION TO
THE DATASET
lin_reg = lm(formula = Salary ~ .,
data = dataset)
FITTING POLYNOMIAL REGRESSION
TO THE DATASET
dataset$Level2 = dataset$Level^2
dataset$Level3 = dataset$Level^3
dataset$Level4 = dataset$Level^4
poly_reg = lm(formula = Salary ~ .,
data = dataset)
VISUALISING THE LINEAR
REGRESSION RESULTS
# install.packages('ggplot2')
library(ggplot2)
ggplot() +
geom_point(aes(x = dataset$Level, y = dataset$Salary),
colour = 'red') +
geom_line(aes(x = dataset$Level, y = predict(lin_reg, newdata = dataset)),
colour = 'blue') +
ggtitle('Truth or Bluff (Linear Regression)') +
xlab('Level') +
ylab('Salary')
VISUALIZING THE POLYNOMIAL
REGRESSION RESULTS
# install.packages('ggplot2')
library(ggplot2)
ggplot() +
geom_point(aes(x = dataset$Level, y = dataset$Salary),
colour = 'red') +
geom_line(aes(x = dataset$Level, y = predict(poly_reg, newdata = dataset)),
colour = 'blue') +
ggtitle('Truth or Bluff (Polynomial Regression)') +
xlab('Level') +
ylab('Salary')
SMOOTHER CURVE
# install.packages('ggplot2')
library(ggplot2)
x_grid = seq(min(dataset$Level), max(dataset$Level), 0.1)
ggplot() +
geom_point(aes(x = dataset$Level, y = dataset$Salary),
colour = 'red') +
geom_line(aes(x = x_grid, y = predict(poly_reg,
newdata = data.frame(Level = x_grid,
Level2 = x_grid^2,
Level3 = x_grid^3,
Level4 = x_grid^4))),
colour = 'blue') +
ggtitle('Truth or Bluff (Polynomial Regression)') +
xlab('Level') +
ylab('Salary')
PREDICTIONS
# Predicting a new result with Linear Regression
predict(lin_reg, data.frame(Level = 6.5))
# Predicting a new result with Polynomial Regression
predict(poly_reg, data.frame(Level = 6.5,
Level2 = 6.5^2,
Level3 = 6.5^3,
Level4 = 6.5^4))

More Related Content

PDF
Dimensionality Reduction
PPTX
Polynomial regression
PDF
Linear Regression With R
PPTX
Linear regression with gradient descent
PDF
Logistic regression in Machine Learning
PPTX
Linear Regression Analysis | Linear Regression in Python | Machine Learning A...
PPTX
Machine Learning Algorithms | Machine Learning Tutorial | Data Science Algori...
PDF
Principal component analysis and lda
Dimensionality Reduction
Polynomial regression
Linear Regression With R
Linear regression with gradient descent
Logistic regression in Machine Learning
Linear Regression Analysis | Linear Regression in Python | Machine Learning A...
Machine Learning Algorithms | Machine Learning Tutorial | Data Science Algori...
Principal component analysis and lda

What's hot (20)

PPTX
Naive Bayes Presentation
ODP
NAIVE BAYES CLASSIFIER
PDF
List,tuple,dictionary
PPTX
CART – Classification & Regression Trees
PPTX
Python Scipy Numpy
PPTX
Supervised and Unsupervised Learning In Machine Learning | Machine Learning T...
PPTX
Data Wrangling
PPTX
Logistic Regression | Logistic Regression In Python | Machine Learning Algori...
PDF
Introduction to Machine Learning Classifiers
PPTX
Supervised Unsupervised and Reinforcement Learning
PDF
Linear regression
PPTX
Python Lambda Function
PDF
Linear Regression Algorithm | Linear Regression in Python | Machine Learning ...
PDF
Decision Tree Algorithm | Decision Tree in Python | Machine Learning Algorith...
PDF
Data visualization in Python
PDF
Object oriented approach in python programming
PPTX
Machine Learning-Linear regression
PPTX
Linear regression in machine learning
PDF
Introduction to Python Pandas for Data Analytics
PPTX
Supervised learning
Naive Bayes Presentation
NAIVE BAYES CLASSIFIER
List,tuple,dictionary
CART – Classification & Regression Trees
Python Scipy Numpy
Supervised and Unsupervised Learning In Machine Learning | Machine Learning T...
Data Wrangling
Logistic Regression | Logistic Regression In Python | Machine Learning Algori...
Introduction to Machine Learning Classifiers
Supervised Unsupervised and Reinforcement Learning
Linear regression
Python Lambda Function
Linear Regression Algorithm | Linear Regression in Python | Machine Learning ...
Decision Tree Algorithm | Decision Tree in Python | Machine Learning Algorith...
Data visualization in Python
Object oriented approach in python programming
Machine Learning-Linear regression
Linear regression in machine learning
Introduction to Python Pandas for Data Analytics
Supervised learning
Ad

Similar to polynomial linear regression (20)

PDF
Moving Beyond Linearity (Article 7 - Practical Exercises)
PDF
Assessing the Stability and Performance of Linear and Polynomial Regression M...
PPTX
Different Types of Machine Learning Algorithms
PPTX
support vector regression
PDF
eR-Biostat_LinearRegressioninR_2017_V1.pdf
PPTX
decision tree regression
PDF
Linear regression vs polynomial regression v01
PPTX
11Polynomial RegressionPolynomial RegressionPolynomial RegressionPolynomial R...
PPTX
unit-5 Data Wrandling weightage marks.pptx
PPTX
simple linear regression
PPTX
Linear Regression Algorithm | Linear Regression in R | Data Science Training ...
PDF
Linear Regression (Machine Learning)
PDF
CHAPTER 4.1.pdf
PDF
11. Linear Models
 
PDF
12. Linear models
PDF
Linear models
 
PPTX
Regression Analysis.pptx
PPTX
Regression Analysis Techniques.pptx
PDF
Chapter12-Regression-PolynomialRegression.pdf
Moving Beyond Linearity (Article 7 - Practical Exercises)
Assessing the Stability and Performance of Linear and Polynomial Regression M...
Different Types of Machine Learning Algorithms
support vector regression
eR-Biostat_LinearRegressioninR_2017_V1.pdf
decision tree regression
Linear regression vs polynomial regression v01
11Polynomial RegressionPolynomial RegressionPolynomial RegressionPolynomial R...
unit-5 Data Wrandling weightage marks.pptx
simple linear regression
Linear Regression Algorithm | Linear Regression in R | Data Science Training ...
Linear Regression (Machine Learning)
CHAPTER 4.1.pdf
11. Linear Models
 
12. Linear models
Linear models
 
Regression Analysis.pptx
Regression Analysis Techniques.pptx
Chapter12-Regression-PolynomialRegression.pdf
Ad

More from Akhilesh Joshi (17)

PPTX
PCA and LDA in machine learning
PPTX
random forest regression
PPTX
multiple linear regression
PPTX
R square vs adjusted r square
PPTX
PPTX
Grid search (parameter tuning)
PPTX
svm classification
PPTX
knn classification
PPTX
logistic regression with python and R
PPTX
Data preprocessing for Machine Learning with R and Python
PPTX
Design patterns
PPTX
Bastion Host : Amazon Web Services
PDF
Design patterns in MapReduce
PPT
Google knowledge graph
DOCX
Machine learning (domingo's paper)
DOC
SoLoMo - Future of Marketing
PPTX
Webcrawler
PCA and LDA in machine learning
random forest regression
multiple linear regression
R square vs adjusted r square
Grid search (parameter tuning)
svm classification
knn classification
logistic regression with python and R
Data preprocessing for Machine Learning with R and Python
Design patterns
Bastion Host : Amazon Web Services
Design patterns in MapReduce
Google knowledge graph
Machine learning (domingo's paper)
SoLoMo - Future of Marketing
Webcrawler

Recently uploaded (20)

PPTX
ALIMENTARY AND BILIARY CONDITIONS 3-1.pptx
PPTX
CEE 2 REPORT G7.pptxbdbshjdgsgjgsjfiuhsd
PPTX
STUDY DESIGN details- Lt Col Maksud (21).pptx
PPTX
Global journeys: estimating international migration
PPT
Quality review (1)_presentation of this 21
PPT
Miokarditis (Inflamasi pada Otot Jantung)
PDF
Launch Your Data Science Career in Kochi – 2025
PPT
Reliability_Chapter_ presentation 1221.5784
PDF
“Getting Started with Data Analytics Using R – Concepts, Tools & Case Studies”
PPTX
DISORDERS OF THE LIVER, GALLBLADDER AND PANCREASE (1).pptx
PPTX
iec ppt-1 pptx icmr ppt on rehabilitation.pptx
PDF
Fluorescence-microscope_Botany_detailed content
PPTX
Introduction to Firewall Analytics - Interfirewall and Transfirewall.pptx
PPTX
Acceptance and paychological effects of mandatory extra coach I classes.pptx
PPTX
climate analysis of Dhaka ,Banglades.pptx
PPTX
05. PRACTICAL GUIDE TO MICROSOFT EXCEL.pptx
PPTX
Supervised vs unsupervised machine learning algorithms
PPTX
mbdjdhjjodule 5-1 rhfhhfjtjjhafbrhfnfbbfnb
PDF
TRAFFIC-MANAGEMENT-AND-ACCIDENT-INVESTIGATION-WITH-DRIVING-PDF-FILE.pdf
ALIMENTARY AND BILIARY CONDITIONS 3-1.pptx
CEE 2 REPORT G7.pptxbdbshjdgsgjgsjfiuhsd
STUDY DESIGN details- Lt Col Maksud (21).pptx
Global journeys: estimating international migration
Quality review (1)_presentation of this 21
Miokarditis (Inflamasi pada Otot Jantung)
Launch Your Data Science Career in Kochi – 2025
Reliability_Chapter_ presentation 1221.5784
“Getting Started with Data Analytics Using R – Concepts, Tools & Case Studies”
DISORDERS OF THE LIVER, GALLBLADDER AND PANCREASE (1).pptx
iec ppt-1 pptx icmr ppt on rehabilitation.pptx
Fluorescence-microscope_Botany_detailed content
Introduction to Firewall Analytics - Interfirewall and Transfirewall.pptx
Acceptance and paychological effects of mandatory extra coach I classes.pptx
climate analysis of Dhaka ,Banglades.pptx
05. PRACTICAL GUIDE TO MICROSOFT EXCEL.pptx
Supervised vs unsupervised machine learning algorithms
mbdjdhjjodule 5-1 rhfhhfjtjjhafbrhfnfbbfnb
TRAFFIC-MANAGEMENT-AND-ACCIDENT-INVESTIGATION-WITH-DRIVING-PDF-FILE.pdf

polynomial linear regression

  • 4. IMPORTING THE LIBRARIES import numpy as np import matplotlib.pyplot as plt import pandas as pd
  • 5. IMPORTING THE DATASET dataset = pd.read_csv('Position_Salaries.csv') X = dataset.iloc[:, 1:2].values y = dataset.iloc[:, 2].values NOTE : X = dataset.iloc[:, 1:2].values can be rewritten as X = dataset.iloc[: , 1].values (see whats the problem)
  • 6. FITTING LINEAR REGRESSION TO THE DATASET from sklearn.linear_model import LinearRegression lin_reg = LinearRegression() lin_reg.fit(X, y)
  • 7. FITTING POLYNOMIAL REGRESSION TO THE DATASET from sklearn.preprocessing import PolynomialFeatures poly_reg = PolynomialFeatures(degree = 4) X_poly = poly_reg.fit_transform(X) poly_reg.fit(X_poly, y) lin_reg_2 = LinearRegression() lin_reg_2.fit(X_poly, y)
  • 8. VISUALISING THE LINEAR REGRESSION RESULTS plt.scatter(X, y, color = 'red') plt.plot(X, lin_reg.predict(X), color = 'blue') plt.title('Truth or Bluff (Linear Regression)') plt.xlabel('Position level') plt.ylabel('Salary') plt.show()
  • 9. VISUALIZING THE POLYNOMIAL REGRESSION RESULTS plt.scatter(X, y, color = 'red') plt.plot(X, lin_reg_2.predict(poly_reg.fit_transform(X)), color = 'blue') plt.title('Truth or Bluff (Polynomial Regression)') plt.xlabel('Position level') plt.ylabel('Salary') plt.show()
  • 10. VISUALIZING THE POLYNOMIAL REGRESSION RESULTS (FOR HIGHER RESOLUTION AND SMOOTHER CURVE) X_grid = np.arange(min(X), max(X), 0.1) X_grid = X_grid.reshape((len(X_grid), 1)) plt.scatter(X, y, color = 'red') plt.plot(X_grid, lin_reg_2.predict(poly_reg.fit_transform(X_grid)), color = 'blue') plt.title('Truth or Bluff (Polynomial Regression)') plt.xlabel('Position level') plt.ylabel('Salary') plt.show()
  • 12. PREDICTING A NEW RESULT WITH LINEAR REGRESSION lin_reg.predict(6.5)
  • 13. PREDICTING A NEW RESULT WITH POLYNOMIAL REGRESSION lin_reg_2.predict(poly_reg.fit_transform(6.5))
  • 14. R
  • 15. READ DATASET library(readr) dataset <- read_csv("D:/machine learning AZ/Machine Learning A-Z Template Folder/Part 2 - Regression/Section 6 - Polynomial Regression/Polynomial_Regression/Position_Salaries.csv") dataset = dataset[2:3]
  • 16. FITTING LINEAR REGRESSION TO THE DATASET lin_reg = lm(formula = Salary ~ ., data = dataset)
  • 17. FITTING POLYNOMIAL REGRESSION TO THE DATASET dataset$Level2 = dataset$Level^2 dataset$Level3 = dataset$Level^3 dataset$Level4 = dataset$Level^4 poly_reg = lm(formula = Salary ~ ., data = dataset)
  • 18. VISUALISING THE LINEAR REGRESSION RESULTS # install.packages('ggplot2') library(ggplot2) ggplot() + geom_point(aes(x = dataset$Level, y = dataset$Salary), colour = 'red') + geom_line(aes(x = dataset$Level, y = predict(lin_reg, newdata = dataset)), colour = 'blue') + ggtitle('Truth or Bluff (Linear Regression)') + xlab('Level') + ylab('Salary')
  • 19. VISUALIZING THE POLYNOMIAL REGRESSION RESULTS # install.packages('ggplot2') library(ggplot2) ggplot() + geom_point(aes(x = dataset$Level, y = dataset$Salary), colour = 'red') + geom_line(aes(x = dataset$Level, y = predict(poly_reg, newdata = dataset)), colour = 'blue') + ggtitle('Truth or Bluff (Polynomial Regression)') + xlab('Level') + ylab('Salary')
  • 20. SMOOTHER CURVE # install.packages('ggplot2') library(ggplot2) x_grid = seq(min(dataset$Level), max(dataset$Level), 0.1) ggplot() + geom_point(aes(x = dataset$Level, y = dataset$Salary), colour = 'red') + geom_line(aes(x = x_grid, y = predict(poly_reg, newdata = data.frame(Level = x_grid, Level2 = x_grid^2, Level3 = x_grid^3, Level4 = x_grid^4))), colour = 'blue') + ggtitle('Truth or Bluff (Polynomial Regression)') + xlab('Level') + ylab('Salary')
  • 21. PREDICTIONS # Predicting a new result with Linear Regression predict(lin_reg, data.frame(Level = 6.5)) # Predicting a new result with Polynomial Regression predict(poly_reg, data.frame(Level = 6.5, Level2 = 6.5^2, Level3 = 6.5^3, Level4 = 6.5^4))