SlideShare a Scribd company logo
Deep Anomaly Detection Using Geometric Transformations
Kang, Min-Guk
Mingukkang1994@gmail.com
March, 17, 2019
1/21
PR-148
https://arxiv.org/abs/1805.10917
Contents
1. Methodology(Anomaly Detection)
2. Deep Anomaly Detection using Geometric Transformation
3. Experiments
2/21
3/21
Methodology
4/21
Anomaly Detection One-class classification
Multi-class classification
5/21
Anomaly Detection One-class classification
Multi-class classification
We want to find a dog image between cats.
6/21
Anomaly Detection One-class classification
Multi-class classification
Dog Cat Penguin
?????
7/21
Anomaly Detection One-class classification
Multi-class classification
A baseline for Detecting Misclassified and out-of-distribution examples in neural networks(2017, ICLR)
Training Confidence-calibrated Classifier for Detecting Out-of-Distribution Samples(2018, ICLR)
A Simple Unified Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks(2018, NIPS)
A loss framework for calibrated anomaly detection(2018, NIPS)
Deep Anomaly Detection with Outlier Exposure(2019, ICLR)
…
Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery(2017, IPMI)
Adversarially Learned One-class Classifier for Novelty Detection(2018, CVPR)
Deep One-class Classification(2018, ICML)
Deep Autoencoding Gaussian Mixture model for Unsupervised Anomaly Detection(2018, ICLR)
Generative Probabilistic Novelty Detection with Adversarial Autoencoder(2018, NIPS)
…
8/21
Anomaly Detection is widely divided three!
1. Statistical Model(Low density rejection Principle)
Neural
Networks
𝑍1
𝑍2
Scatter
9/21
2. Reconstruction based model
Neural
Networks
𝑍1
𝑍2
Neural
Networks
L1, L2 distance
Anomaly Detection is widely divided three!
10/21
2. Reconstruction based model
Neural
Networks
𝑍1
𝑍2
Neural
Networks
L1, L2 distance
Anomaly Detection is widely divided three!
11/21
3. Kernel based model(DSVDD)
Anomaly Detection is widely divided three!
Deep Anomaly Detection using Geometric Transformations
12/21
13/21
Neural
Networks
Create 72 different geometric transfored images
(Translation 9 x Flip 2 x Rotation 4 = 72)
…
Trans(Images)
…
Pred
…
gt
0
1
0
0
0
MSE(Pred, gt)
14/21
Neural
Networks
Create 72 different geometric transfored images
(Translation 9 x Flip 2 x Rotation 4 = 72)
…
…
Pred
0.612
0.005
0.001
Simple version:
Use the sum of maximum softmax probabilities
as an anomaly score!
15/21
Neural
Networks
Create 72 different geometric transfored images
(Translation 9 x Flip 2 x Rotation 4 = 72)
…
…
Pred
0.002
0.575
0.102
Simple version:
Use the sum of maximum softmax probabilities
as an anomaly score!
16/21
Neural
Networks
Create 72 different geometric transfored images
(Translation 9 x Flip 2 x Rotation 4 = 72)
…
…
Pred
Simple version:
Use the sum of maximum softmax probabilities
as an anomaly score!
0.002
0.005
0.710
17/21
Create 72 different geometric transfored images
(Translation 9 x Flip 2 x Rotation 4 = 72)
…
Softmax probability vectors
Complicated version:
fit a dirichlet probability distribution to softmax
probabilities of training image.
And use low density rejection principle!… … … …
Summation of column elements is 1.
Experiments
18/21
19/21https://www.cs.toronto.edu/~kriz/cifar.html
Normal samples(training data)
Test samples(test data)
:1000 *10 images
In this paper, pure version of anomaly detection was performed.
20/21
Thank you!
21/21

More Related Content

PPTX
ResNetの仕組み
PDF
[DL輪読会]Deep Anomaly Detection Using Geometric Transformations
PPTX
【DL輪読会】TrOCR: Transformer-based Optical Character Recognition with Pre-traine...
PPTX
Multi-agent Reinforcement Learning in Sequential Social Dilemmas
PDF
異常検知 - 何を探すかよく分かっていないものを見つける方法
PDF
強化学習の基礎的な考え方と問題の分類
PPTX
バンディット問題について
PDF
Deep learning を用いた画像から説明文の自動生成に関する研究の紹介
ResNetの仕組み
[DL輪読会]Deep Anomaly Detection Using Geometric Transformations
【DL輪読会】TrOCR: Transformer-based Optical Character Recognition with Pre-traine...
Multi-agent Reinforcement Learning in Sequential Social Dilemmas
異常検知 - 何を探すかよく分かっていないものを見つける方法
強化学習の基礎的な考え方と問題の分類
バンディット問題について
Deep learning を用いた画像から説明文の自動生成に関する研究の紹介

What's hot (20)

PDF
Variational AutoEncoder
PDF
Anomaly detection 系の論文を一言でまとめた
PDF
Contraction mapping
PPTX
クラシックな機械学習の入門  5. サポートベクターマシン
PDF
Image Segmentation with Deep Learning - Xavier Giro & Carles Ventura - ISSonD...
PDF
【輪読】Bayesian Optimization of Combinatorial Structures
PPTX
adversarial training.pptx
PDF
Self-organizing maps - Tutorial
PDF
【ECCV 2018】Exploring the Limits of Weakly Supervised Pretraining
PDF
Wasserstein GAN 수학 이해하기 I
PDF
[DL輪読会]Disentangling by Factorising
PDF
最新の異常検知手法(NIPS 2018)
PDF
第8章 ガウス過程回帰による異常検知
PDF
深層学習の判断根拠を理解するための 研究とその意義 @PRMU 2017熊本
PDF
Understanding Blackbox Predictions via Influence Functions
PDF
PRML 6.1章 カーネル法と双対表現
PDF
Deep Learning Lab 異常検知入門
PPTX
「機械学習:技術的負債の高利子クレジットカード」のまとめ
PDF
Generative Adversarial Networks (GAN) の学習方法進展・画像生成・教師なし画像変換
PDF
Fisher Vectorによる画像認識
Variational AutoEncoder
Anomaly detection 系の論文を一言でまとめた
Contraction mapping
クラシックな機械学習の入門  5. サポートベクターマシン
Image Segmentation with Deep Learning - Xavier Giro & Carles Ventura - ISSonD...
【輪読】Bayesian Optimization of Combinatorial Structures
adversarial training.pptx
Self-organizing maps - Tutorial
【ECCV 2018】Exploring the Limits of Weakly Supervised Pretraining
Wasserstein GAN 수학 이해하기 I
[DL輪読会]Disentangling by Factorising
最新の異常検知手法(NIPS 2018)
第8章 ガウス過程回帰による異常検知
深層学習の判断根拠を理解するための 研究とその意義 @PRMU 2017熊本
Understanding Blackbox Predictions via Influence Functions
PRML 6.1章 カーネル法と双対表現
Deep Learning Lab 異常検知入門
「機械学習:技術的負債の高利子クレジットカード」のまとめ
Generative Adversarial Networks (GAN) の学習方法進展・画像生成・教師なし画像変換
Fisher Vectorによる画像認識
Ad

Similar to [Pr12] deep anomaly detection using geometric transformations (20)

PPTX
Anomaly Detection Using Generative Adversarial Network(GAN)
PDF
2007.02500.pdf
PDF
Machine Learning Algorithm & Anomaly detection 2021
PDF
DutchMLSchool 2022 - History and Developments in ML
PDF
Anomaly Detection using Deep Auto-Encoders
PPTX
Anomaly detection, part 1
PDF
Anomaly detection using deep learning based model with feature attention
PDF
BSSML17 - Anomaly Detection
PDF
POSTER_Ewonye.pdf
PDF
Anomaly detection (Unsupervised Learning) in Machine Learning
PDF
PhdThesis_presentation
PDF
EMT machine learning 12th weeks : Anomaly detection
PDF
MLSEV Virtual. Anomaly Detection Examples
PDF
Mathematical bridges From Old to New
PDF
Anomaly Detection: A Survey
PDF
Cao nicolau-mc dermott-learning-neural-cybernetics-2018-preprint
PPTX
Anomaly Detection and Spark Implementation - Meetup Presentation.pptx
PDF
anomalydetection-191104083630.pdf
PDF
MLSEV Virtual. Searching for Anomalies
PPTX
Anomaly Detection Technique
Anomaly Detection Using Generative Adversarial Network(GAN)
2007.02500.pdf
Machine Learning Algorithm & Anomaly detection 2021
DutchMLSchool 2022 - History and Developments in ML
Anomaly Detection using Deep Auto-Encoders
Anomaly detection, part 1
Anomaly detection using deep learning based model with feature attention
BSSML17 - Anomaly Detection
POSTER_Ewonye.pdf
Anomaly detection (Unsupervised Learning) in Machine Learning
PhdThesis_presentation
EMT machine learning 12th weeks : Anomaly detection
MLSEV Virtual. Anomaly Detection Examples
Mathematical bridges From Old to New
Anomaly Detection: A Survey
Cao nicolau-mc dermott-learning-neural-cybernetics-2018-preprint
Anomaly Detection and Spark Implementation - Meetup Presentation.pptx
anomalydetection-191104083630.pdf
MLSEV Virtual. Searching for Anomalies
Anomaly Detection Technique
Ad

More from 강민국 강민국 (12)

PPTX
PR-190: A Baseline For Detecting Misclassified and Out-of-Distribution Examp...
PDF
Deeppermnet
PDF
[Pr12] self supervised gan
PDF
Anomaly detection
PDF
Deep Feature Consistent VAE
PPTX
[Probability for machine learning]
PPTX
Deep learning overview
PPTX
Generative adversarial network
PPTX
Variational AutoEncoder(VAE)
PPTX
Restricted boltzmann machine
PPTX
Backpropagation
PR-190: A Baseline For Detecting Misclassified and Out-of-Distribution Examp...
Deeppermnet
[Pr12] self supervised gan
Anomaly detection
Deep Feature Consistent VAE
[Probability for machine learning]
Deep learning overview
Generative adversarial network
Variational AutoEncoder(VAE)
Restricted boltzmann machine
Backpropagation

Recently uploaded (20)

PPTX
Acceptance and paychological effects of mandatory extra coach I classes.pptx
PDF
.pdf is not working space design for the following data for the following dat...
PDF
Recruitment and Placement PPT.pdfbjfibjdfbjfobj
PDF
“Getting Started with Data Analytics Using R – Concepts, Tools & Case Studies”
PPTX
AI Strategy room jwfjksfksfjsjsjsjsjfsjfsj
PDF
annual-report-2024-2025 original latest.
PPTX
mbdjdhjjodule 5-1 rhfhhfjtjjhafbrhfnfbbfnb
PPT
Quality review (1)_presentation of this 21
PDF
Galatica Smart Energy Infrastructure Startup Pitch Deck
PPTX
Qualitative Qantitative and Mixed Methods.pptx
PPTX
The THESIS FINAL-DEFENSE-PRESENTATION.pptx
PDF
168300704-gasification-ppt.pdfhghhhsjsjhsuxush
PDF
Mega Projects Data Mega Projects Data
PDF
Foundation of Data Science unit number two notes
PPTX
Introduction to machine learning and Linear Models
PPTX
Business Acumen Training GuidePresentation.pptx
PPTX
Microsoft-Fabric-Unifying-Analytics-for-the-Modern-Enterprise Solution.pptx
PPTX
01_intro xxxxxxxxxxfffffffffffaaaaaaaaaaafg
PPTX
Introduction to Firewall Analytics - Interfirewall and Transfirewall.pptx
PPT
Miokarditis (Inflamasi pada Otot Jantung)
Acceptance and paychological effects of mandatory extra coach I classes.pptx
.pdf is not working space design for the following data for the following dat...
Recruitment and Placement PPT.pdfbjfibjdfbjfobj
“Getting Started with Data Analytics Using R – Concepts, Tools & Case Studies”
AI Strategy room jwfjksfksfjsjsjsjsjfsjfsj
annual-report-2024-2025 original latest.
mbdjdhjjodule 5-1 rhfhhfjtjjhafbrhfnfbbfnb
Quality review (1)_presentation of this 21
Galatica Smart Energy Infrastructure Startup Pitch Deck
Qualitative Qantitative and Mixed Methods.pptx
The THESIS FINAL-DEFENSE-PRESENTATION.pptx
168300704-gasification-ppt.pdfhghhhsjsjhsuxush
Mega Projects Data Mega Projects Data
Foundation of Data Science unit number two notes
Introduction to machine learning and Linear Models
Business Acumen Training GuidePresentation.pptx
Microsoft-Fabric-Unifying-Analytics-for-the-Modern-Enterprise Solution.pptx
01_intro xxxxxxxxxxfffffffffffaaaaaaaaaaafg
Introduction to Firewall Analytics - Interfirewall and Transfirewall.pptx
Miokarditis (Inflamasi pada Otot Jantung)

[Pr12] deep anomaly detection using geometric transformations

  • 1. Deep Anomaly Detection Using Geometric Transformations Kang, Min-Guk Mingukkang1994@gmail.com March, 17, 2019 1/21 PR-148 https://arxiv.org/abs/1805.10917
  • 2. Contents 1. Methodology(Anomaly Detection) 2. Deep Anomaly Detection using Geometric Transformation 3. Experiments 2/21
  • 4. 4/21 Anomaly Detection One-class classification Multi-class classification
  • 5. 5/21 Anomaly Detection One-class classification Multi-class classification We want to find a dog image between cats.
  • 6. 6/21 Anomaly Detection One-class classification Multi-class classification Dog Cat Penguin ?????
  • 7. 7/21 Anomaly Detection One-class classification Multi-class classification A baseline for Detecting Misclassified and out-of-distribution examples in neural networks(2017, ICLR) Training Confidence-calibrated Classifier for Detecting Out-of-Distribution Samples(2018, ICLR) A Simple Unified Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks(2018, NIPS) A loss framework for calibrated anomaly detection(2018, NIPS) Deep Anomaly Detection with Outlier Exposure(2019, ICLR) … Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery(2017, IPMI) Adversarially Learned One-class Classifier for Novelty Detection(2018, CVPR) Deep One-class Classification(2018, ICML) Deep Autoencoding Gaussian Mixture model for Unsupervised Anomaly Detection(2018, ICLR) Generative Probabilistic Novelty Detection with Adversarial Autoencoder(2018, NIPS) …
  • 8. 8/21 Anomaly Detection is widely divided three! 1. Statistical Model(Low density rejection Principle) Neural Networks 𝑍1 𝑍2 Scatter
  • 9. 9/21 2. Reconstruction based model Neural Networks 𝑍1 𝑍2 Neural Networks L1, L2 distance Anomaly Detection is widely divided three!
  • 10. 10/21 2. Reconstruction based model Neural Networks 𝑍1 𝑍2 Neural Networks L1, L2 distance Anomaly Detection is widely divided three!
  • 11. 11/21 3. Kernel based model(DSVDD) Anomaly Detection is widely divided three!
  • 12. Deep Anomaly Detection using Geometric Transformations 12/21
  • 13. 13/21 Neural Networks Create 72 different geometric transfored images (Translation 9 x Flip 2 x Rotation 4 = 72) … Trans(Images) … Pred … gt 0 1 0 0 0 MSE(Pred, gt)
  • 14. 14/21 Neural Networks Create 72 different geometric transfored images (Translation 9 x Flip 2 x Rotation 4 = 72) … … Pred 0.612 0.005 0.001 Simple version: Use the sum of maximum softmax probabilities as an anomaly score!
  • 15. 15/21 Neural Networks Create 72 different geometric transfored images (Translation 9 x Flip 2 x Rotation 4 = 72) … … Pred 0.002 0.575 0.102 Simple version: Use the sum of maximum softmax probabilities as an anomaly score!
  • 16. 16/21 Neural Networks Create 72 different geometric transfored images (Translation 9 x Flip 2 x Rotation 4 = 72) … … Pred Simple version: Use the sum of maximum softmax probabilities as an anomaly score! 0.002 0.005 0.710
  • 17. 17/21 Create 72 different geometric transfored images (Translation 9 x Flip 2 x Rotation 4 = 72) … Softmax probability vectors Complicated version: fit a dirichlet probability distribution to softmax probabilities of training image. And use low density rejection principle!… … … … Summation of column elements is 1.
  • 19. 19/21https://www.cs.toronto.edu/~kriz/cifar.html Normal samples(training data) Test samples(test data) :1000 *10 images In this paper, pure version of anomaly detection was performed.
  • 20. 20/21