SlideShare a Scribd company logo
Deep Feature Consistent Variational Autoencoder
PR12-101
09 Sep, 2018
Vision and Intelligence System Laboratory In PNU
Kang, MinGuk
1
X. Hou, L. Shen, K. Sun, and G. Qiu, “Deep feature consistent variational autoencoder,”
in Applications of Computer Vision (WACV), 2017 IEEE Winter Conference on. IEEE, 2017, pp. 1133–1141.
Picture: https://twitter.com/DmitryUlyanovML
1. Preliminaries
1. Variational Autoencoder (https://arxiv.org/abs/1312.6114)
N(0,1) ~ Z 𝑝 𝜃(𝑋|𝑍) X
Decoder
If we assume 𝑝 𝜃(𝑋|𝑍) to be Gaussian distribution,
This becomes Maximum likelihood Estimation problem that maximizes
p x = ‫׬‬ 𝑝 𝑥 𝑧; 𝜃 𝑝(𝑧)𝑑𝑧 .
𝜃∗ = 𝑎𝑟𝑔𝑚𝑎𝑥 𝜃 𝑝(𝑥; 𝜃)
2
1. Preliminaries
1. Variational Autoencoder
Tutorial on Variational Autoencoders : https://arxiv.org/pdf/1606.05908 3
1. Preliminaries
1. Variational Autoencoder
Tutorial on Variational Autoencoders : https://arxiv.org/pdf/1606.05908 4
Euclidean distance: d(a,b) < d(a,c)
Z 𝑝 𝜃(𝑋|𝑍) X
Decoder
reshape
(b)
1. Preliminaries
1. Variational Autoencoder
5
Picture: https://www.facebook.com/groups/TensorFlowKR/permalink/496009234073473/?hc_location=ufi
Download ppt: https://mega.nz/#!tBo3zAKR!yE6tZ0g-GyUyizDf7uglDk2_ahP-zj5trVZSLW3GAjw
1. Preliminaries
1. Variational Autoencoder
6
Picture: https://www.facebook.com/groups/TensorFlowKR/permalink/496009234073473/?hc_location=ufi
Download ppt: https://mega.nz/#!tBo3zAKR!yE6tZ0g-GyUyizDf7uglDk2_ahP-zj5trVZSLW3GAjw
1. Preliminaries
1. Variational Autoencoder
So, Diederik P Kingma introduced Variational Autoencoder.
Z 𝑝 𝜃(. ) X
Decoder
X 𝑞∅(. )
Encoder
𝜇
𝜎
𝑍 = 𝜇 + 𝜎𝜀
Where 𝜀 ~ N(0,1)
Reparameterization trick
𝑞∅ 𝑍 𝑋
Variational Inference
𝑝 𝜃(𝑋|𝑍)
7
1. Preliminaries
1. Variational Autoencoder
8
−𝐿 𝑎
𝜃, ∅; 𝑋 = න
𝑍
𝑞∅ 𝑍 𝑋 × log 𝑃 𝜃 𝑋|𝑍 − 𝐷 𝐾𝐿(𝑞∅(𝑍|𝑋)| 𝑃 𝜃 𝑍
= −
1
𝑀
σ𝑖=1
𝑀
σ 𝑗=1
𝐷
{𝑋𝑖,𝑗log 𝑃𝑖,𝑗 + 1 − 𝑋𝑖,𝑗 𝑙𝑜𝑔(1 − 𝑃𝑖,𝑗)} +
1
𝐿
σ𝑖=1
𝐷
[
1
2
σ 𝑗=1
𝐽
{1 − log 𝜎𝑖,𝑗
2
+ 𝜇𝑖,𝑗
2
+ 𝜎𝑖,𝑗
2
}]
Reconstruction loss Regularization loss
Reconstruction loss Regularization loss
1. Preliminaries
1. Variational Autoencoder
9
−𝐿 𝑎 𝜃, ∅; 𝑋 = −
1
𝑀
෍
𝑖=1
𝑀
෍
𝑗=1
𝐷
{𝑋𝑖,𝑗log 𝑃𝑖,𝑗 + 1 − 𝑋𝑖,𝑗 𝑙𝑜𝑔(1 − 𝑃𝑖,𝑗)} +
1
𝐿
෍
𝑖=1
𝐷
[
1
2
෍
𝑗=1
𝐽
{1 − log 𝜎𝑖,𝑗
2
+ 𝜇𝑖,𝑗
2
+ 𝜎𝑖,𝑗
2
}]
Reconstruction loss Regularization loss
1. Preliminaries
2. Relationship between activation map and image generation (https://arxiv.org/abs/1412.0035)
10
Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR). (2015)
Original Image
h_1 h_2 h_3 h_4
1. Preliminaries
2. Relationship between activation map and image generation (https://arxiv.org/abs/1412.0035)
11
Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR). (2015)
2. Deep Feature Consistent VAE
1. Terminology
12
1. Distortion: the dissimilarity between the reconstructed image ො𝑥 and the original image 𝑥.
2. Perceptual quality: the visual quality of ො𝑥, regardless of its similarity to 𝑥.
namely, it is the extent to which ො𝑥 looks like a valid natural image.
>
Blau, Y., Michaeli, T.: The perception-distortion tradeoff. In: CVPR. (2018)
※ Distortion measure : Mean Square Error, Cross Entropy Error
※ Perception measure : Divergence between 𝑝 𝑑𝑎𝑡𝑎 and 𝑝 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑
2. Deep Feature Consistent VAE
2. Motivation
13
1. VAE generates blurry images. Blau, Y., Michaeli, T.: The perception-distortion tradeoff. In: CVPR. (2018)
2. Deep Feature Consistent VAE
2. Motivation
14
Model generates average of training images
2. Deep Feature Consistent VAE
3. Perceptual Loss
15
𝐿 𝐷𝐹𝐶𝑉𝐴𝐸 = 𝐿 𝑘𝑙 + 𝐿 𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙, 𝑤ℎ𝑒𝑟𝑒 𝐿 𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙 = 𝐿 𝑟𝑒𝑐
𝑟𝑒𝑙𝑢1_1
+ 𝐿 𝑟𝑒𝑐
𝑟𝑒𝑙𝑢2_1
+ …
2. Deep Feature Consistent VAE
3. Perceptual Loss
16
Blau, Y., Michaeli, T.: The perception-distortion tradeoff. In: CVPR. (2018)
𝐿 𝐷𝐹𝐶𝑉𝐴𝐸 = 𝐿 𝑘𝑙 + 𝐿 𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙, 𝑤ℎ𝑒𝑟𝑒 𝐿 𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙 = 𝐿 𝑟𝑒𝑐
𝑟𝑒𝑙𝑢1_1
+ 𝐿 𝑟𝑒𝑐
𝑟𝑒𝑙𝑢2_1
+ …
2. Deep Feature Consistent VAE
3. Perceptual Loss
17
Use nearest neighbor method by a scale of 2
3. Results
1. Experiments(Generated fake face images from 100D latent vector z)
18
3. Results
2. Experiments(Generated fake face images from Input Images)
19
3. Results
3. Experiments(Vector arithmetic)
20
Smile latent vector = average latent vector of smile people - average latent vector of non smile people
Picture: http://clipartmag.com/smile-mouth-clipart
= -
3. Results
3. Experiments(Vector arithmetic)
21
3. Results
4. Experiments(Facial Attribute Prediction)
22
Z
Encoder
𝜇
𝜎
𝑍 = 𝜇 + 𝜎𝜀
Where 𝜀 ~ N(0,1)
Linear SVM
40
Dim
Binary classification
3. Results
4. Experiments(Facial Attribute Prediction)
23
4. Reference
24
1. Deep Feature Consistent Variational Autoencoder
2. Tutorial on Variational Autoencoders
3. The perception-distortion tradeoff.
4. Understanding deep image representations by inverting them.
5. Texture Synthesis Using Convolutional Neural Networks
6. Perceptual Losses for Real-Time Style Transfer and Super-Resolution
Thank you!

More Related Content

PDF
BTP Presentation
PPTX
How to calculate back propagation
PPTX
Face recogntion Using PCA Algorithm
PPTX
Non Deterministic and Deterministic Problems
PPTX
face recognition based on PCA
PDF
Clustering coefficients for correlation networks
PPT
Eigenface For Face Recognition
PDF
Prediction of Interpolants in Subsampled Radargram Slices
BTP Presentation
How to calculate back propagation
Face recogntion Using PCA Algorithm
Non Deterministic and Deterministic Problems
face recognition based on PCA
Clustering coefficients for correlation networks
Eigenface For Face Recognition
Prediction of Interpolants in Subsampled Radargram Slices

What's hot (20)

PDF
Ijcatr04041016
PPTX
Face Recognition
PDF
Lec14 eigenface and fisherface
PDF
Exponential lindley additive failure rate model
PDF
A sat encoding for solving games with energy objectives
PPTX
Face Recognition using PCA-Principal Component Analysis using MATLAB
PPTX
PosterPresentations.com-3 6x48-Template-V5 - 副本
PPTX
PCA Based Face Recognition System
PDF
Domain Invariant Representation Learning with Domain Density Transformations
PDF
[SIGGRAPH 2016] Automatic Image Colorization
PDF
International Journal of Engineering Research and Development
PDF
Salient KeypointSelection for Object Representation
PPTX
Graph plotting using GeoGebra
PDF
Lecture 2 Introduction to digital image
PPT
An Enhanced Model for Inpainting on Digital Images Using Dynamic Masking
PPT
Moshe Guttmann's slides on eigenface
PDF
An Introduction Linear Algebra for Neural Networks and Deep learning
PPTX
3D Graphics & Rendering in Computer Graphics
PDF
[SIGGRAPH 2017] Globally and Locally Consistent Image Completion
PPTX
Face recognition vaishali
Ijcatr04041016
Face Recognition
Lec14 eigenface and fisherface
Exponential lindley additive failure rate model
A sat encoding for solving games with energy objectives
Face Recognition using PCA-Principal Component Analysis using MATLAB
PosterPresentations.com-3 6x48-Template-V5 - 副本
PCA Based Face Recognition System
Domain Invariant Representation Learning with Domain Density Transformations
[SIGGRAPH 2016] Automatic Image Colorization
International Journal of Engineering Research and Development
Salient KeypointSelection for Object Representation
Graph plotting using GeoGebra
Lecture 2 Introduction to digital image
An Enhanced Model for Inpainting on Digital Images Using Dynamic Masking
Moshe Guttmann's slides on eigenface
An Introduction Linear Algebra for Neural Networks and Deep learning
3D Graphics & Rendering in Computer Graphics
[SIGGRAPH 2017] Globally and Locally Consistent Image Completion
Face recognition vaishali
Ad

Similar to Deep Feature Consistent VAE (20)

PDF
Deep learning for pose-invariant face detection in unconstrained environment
PDF
Fuzzy entropy based optimal
PDF
MULTIPLE IMAGE WATERMARKING BASED ON SVD : IMPROVING CAPACITY AND IMPERCEPTIB...
PDF
Multiple Image Watermarking based on SVD : Improving Capacity and Imperceptib...
PDF
MULTIPLE IMAGE WATERMARKING BASED ON SVD : IMPROVING CAPACITY AND IMPERCEPTIB...
PDF
APPLICATION OF IMAGE FUSION FOR ENHANCING THE QUALITY OF AN IMAGE
PDF
Projection methods for stochastic structural dynamics
PDF
Fuzzy Entropy Based Optimal Thresholding Technique for Image Enhancement
PDF
Sinusoidal Function for Population Size in Quantum Evolutionary Algorithm and...
PDF
V2 v posenet
PDF
MULTIFOCUS IMAGE FUSION USING MULTIRESOLUTION APPROACH WITH BILATERAL GRADIEN...
PDF
Face Recognition for Different Facial Expressions Using Principal Component a...
PDF
Multimodal Residual Networks for Visual QA
PDF
On Continuous Approximate Solution of Ordinary Differential Equations
PPTX
Scene Representation Networks(NIPS 2019)_OJung
PPTX
495Poster
PDF
Intoduction to Neural Network
PDF
Ijebea14 276
PDF
EPFL_presentation
PDF
Immunizing Image Classifiers Against Localized Adversary Attacks
Deep learning for pose-invariant face detection in unconstrained environment
Fuzzy entropy based optimal
MULTIPLE IMAGE WATERMARKING BASED ON SVD : IMPROVING CAPACITY AND IMPERCEPTIB...
Multiple Image Watermarking based on SVD : Improving Capacity and Imperceptib...
MULTIPLE IMAGE WATERMARKING BASED ON SVD : IMPROVING CAPACITY AND IMPERCEPTIB...
APPLICATION OF IMAGE FUSION FOR ENHANCING THE QUALITY OF AN IMAGE
Projection methods for stochastic structural dynamics
Fuzzy Entropy Based Optimal Thresholding Technique for Image Enhancement
Sinusoidal Function for Population Size in Quantum Evolutionary Algorithm and...
V2 v posenet
MULTIFOCUS IMAGE FUSION USING MULTIRESOLUTION APPROACH WITH BILATERAL GRADIEN...
Face Recognition for Different Facial Expressions Using Principal Component a...
Multimodal Residual Networks for Visual QA
On Continuous Approximate Solution of Ordinary Differential Equations
Scene Representation Networks(NIPS 2019)_OJung
495Poster
Intoduction to Neural Network
Ijebea14 276
EPFL_presentation
Immunizing Image Classifiers Against Localized Adversary Attacks
Ad

More from 강민국 강민국 (12)

PPTX
PR-190: A Baseline For Detecting Misclassified and Out-of-Distribution Examp...
PDF
Deeppermnet
PDF
[Pr12] deep anomaly detection using geometric transformations
PDF
[Pr12] self supervised gan
PDF
Anomaly detection
PPTX
[Probability for machine learning]
PPTX
Deep learning overview
PPTX
Generative adversarial network
PPTX
Variational AutoEncoder(VAE)
PPTX
Restricted boltzmann machine
PPTX
Backpropagation
PR-190: A Baseline For Detecting Misclassified and Out-of-Distribution Examp...
Deeppermnet
[Pr12] deep anomaly detection using geometric transformations
[Pr12] self supervised gan
Anomaly detection
[Probability for machine learning]
Deep learning overview
Generative adversarial network
Variational AutoEncoder(VAE)
Restricted boltzmann machine
Backpropagation

Recently uploaded (20)

PDF
Foundation of Data Science unit number two notes
PPTX
DISORDERS OF THE LIVER, GALLBLADDER AND PANCREASE (1).pptx
PPT
Reliability_Chapter_ presentation 1221.5784
PPTX
Microsoft-Fabric-Unifying-Analytics-for-the-Modern-Enterprise Solution.pptx
PDF
Galatica Smart Energy Infrastructure Startup Pitch Deck
PPTX
1_Introduction to advance data techniques.pptx
PPTX
IB Computer Science - Internal Assessment.pptx
PDF
168300704-gasification-ppt.pdfhghhhsjsjhsuxush
PPTX
iec ppt-1 pptx icmr ppt on rehabilitation.pptx
PPTX
The THESIS FINAL-DEFENSE-PRESENTATION.pptx
PPTX
Qualitative Qantitative and Mixed Methods.pptx
PPTX
oil_refinery_comprehensive_20250804084928 (1).pptx
PDF
Lecture1 pattern recognition............
PPTX
Supervised vs unsupervised machine learning algorithms
PPTX
Business Ppt On Nestle.pptx huunnnhhgfvu
PPTX
Introduction to machine learning and Linear Models
PPT
Quality review (1)_presentation of this 21
PDF
Mega Projects Data Mega Projects Data
PPTX
Business Acumen Training GuidePresentation.pptx
Foundation of Data Science unit number two notes
DISORDERS OF THE LIVER, GALLBLADDER AND PANCREASE (1).pptx
Reliability_Chapter_ presentation 1221.5784
Microsoft-Fabric-Unifying-Analytics-for-the-Modern-Enterprise Solution.pptx
Galatica Smart Energy Infrastructure Startup Pitch Deck
1_Introduction to advance data techniques.pptx
IB Computer Science - Internal Assessment.pptx
168300704-gasification-ppt.pdfhghhhsjsjhsuxush
iec ppt-1 pptx icmr ppt on rehabilitation.pptx
The THESIS FINAL-DEFENSE-PRESENTATION.pptx
Qualitative Qantitative and Mixed Methods.pptx
oil_refinery_comprehensive_20250804084928 (1).pptx
Lecture1 pattern recognition............
Supervised vs unsupervised machine learning algorithms
Business Ppt On Nestle.pptx huunnnhhgfvu
Introduction to machine learning and Linear Models
Quality review (1)_presentation of this 21
Mega Projects Data Mega Projects Data
Business Acumen Training GuidePresentation.pptx

Deep Feature Consistent VAE

  • 1. Deep Feature Consistent Variational Autoencoder PR12-101 09 Sep, 2018 Vision and Intelligence System Laboratory In PNU Kang, MinGuk 1 X. Hou, L. Shen, K. Sun, and G. Qiu, “Deep feature consistent variational autoencoder,” in Applications of Computer Vision (WACV), 2017 IEEE Winter Conference on. IEEE, 2017, pp. 1133–1141. Picture: https://twitter.com/DmitryUlyanovML
  • 2. 1. Preliminaries 1. Variational Autoencoder (https://arxiv.org/abs/1312.6114) N(0,1) ~ Z 𝑝 𝜃(𝑋|𝑍) X Decoder If we assume 𝑝 𝜃(𝑋|𝑍) to be Gaussian distribution, This becomes Maximum likelihood Estimation problem that maximizes p x = ‫׬‬ 𝑝 𝑥 𝑧; 𝜃 𝑝(𝑧)𝑑𝑧 . 𝜃∗ = 𝑎𝑟𝑔𝑚𝑎𝑥 𝜃 𝑝(𝑥; 𝜃) 2
  • 3. 1. Preliminaries 1. Variational Autoencoder Tutorial on Variational Autoencoders : https://arxiv.org/pdf/1606.05908 3
  • 4. 1. Preliminaries 1. Variational Autoencoder Tutorial on Variational Autoencoders : https://arxiv.org/pdf/1606.05908 4 Euclidean distance: d(a,b) < d(a,c) Z 𝑝 𝜃(𝑋|𝑍) X Decoder reshape (b)
  • 5. 1. Preliminaries 1. Variational Autoencoder 5 Picture: https://www.facebook.com/groups/TensorFlowKR/permalink/496009234073473/?hc_location=ufi Download ppt: https://mega.nz/#!tBo3zAKR!yE6tZ0g-GyUyizDf7uglDk2_ahP-zj5trVZSLW3GAjw
  • 6. 1. Preliminaries 1. Variational Autoencoder 6 Picture: https://www.facebook.com/groups/TensorFlowKR/permalink/496009234073473/?hc_location=ufi Download ppt: https://mega.nz/#!tBo3zAKR!yE6tZ0g-GyUyizDf7uglDk2_ahP-zj5trVZSLW3GAjw
  • 7. 1. Preliminaries 1. Variational Autoencoder So, Diederik P Kingma introduced Variational Autoencoder. Z 𝑝 𝜃(. ) X Decoder X 𝑞∅(. ) Encoder 𝜇 𝜎 𝑍 = 𝜇 + 𝜎𝜀 Where 𝜀 ~ N(0,1) Reparameterization trick 𝑞∅ 𝑍 𝑋 Variational Inference 𝑝 𝜃(𝑋|𝑍) 7
  • 8. 1. Preliminaries 1. Variational Autoencoder 8 −𝐿 𝑎 𝜃, ∅; 𝑋 = න 𝑍 𝑞∅ 𝑍 𝑋 × log 𝑃 𝜃 𝑋|𝑍 − 𝐷 𝐾𝐿(𝑞∅(𝑍|𝑋)| 𝑃 𝜃 𝑍 = − 1 𝑀 σ𝑖=1 𝑀 σ 𝑗=1 𝐷 {𝑋𝑖,𝑗log 𝑃𝑖,𝑗 + 1 − 𝑋𝑖,𝑗 𝑙𝑜𝑔(1 − 𝑃𝑖,𝑗)} + 1 𝐿 σ𝑖=1 𝐷 [ 1 2 σ 𝑗=1 𝐽 {1 − log 𝜎𝑖,𝑗 2 + 𝜇𝑖,𝑗 2 + 𝜎𝑖,𝑗 2 }] Reconstruction loss Regularization loss Reconstruction loss Regularization loss
  • 9. 1. Preliminaries 1. Variational Autoencoder 9 −𝐿 𝑎 𝜃, ∅; 𝑋 = − 1 𝑀 ෍ 𝑖=1 𝑀 ෍ 𝑗=1 𝐷 {𝑋𝑖,𝑗log 𝑃𝑖,𝑗 + 1 − 𝑋𝑖,𝑗 𝑙𝑜𝑔(1 − 𝑃𝑖,𝑗)} + 1 𝐿 ෍ 𝑖=1 𝐷 [ 1 2 ෍ 𝑗=1 𝐽 {1 − log 𝜎𝑖,𝑗 2 + 𝜇𝑖,𝑗 2 + 𝜎𝑖,𝑗 2 }] Reconstruction loss Regularization loss
  • 10. 1. Preliminaries 2. Relationship between activation map and image generation (https://arxiv.org/abs/1412.0035) 10 Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). (2015) Original Image h_1 h_2 h_3 h_4
  • 11. 1. Preliminaries 2. Relationship between activation map and image generation (https://arxiv.org/abs/1412.0035) 11 Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). (2015)
  • 12. 2. Deep Feature Consistent VAE 1. Terminology 12 1. Distortion: the dissimilarity between the reconstructed image ො𝑥 and the original image 𝑥. 2. Perceptual quality: the visual quality of ො𝑥, regardless of its similarity to 𝑥. namely, it is the extent to which ො𝑥 looks like a valid natural image. > Blau, Y., Michaeli, T.: The perception-distortion tradeoff. In: CVPR. (2018) ※ Distortion measure : Mean Square Error, Cross Entropy Error ※ Perception measure : Divergence between 𝑝 𝑑𝑎𝑡𝑎 and 𝑝 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑
  • 13. 2. Deep Feature Consistent VAE 2. Motivation 13 1. VAE generates blurry images. Blau, Y., Michaeli, T.: The perception-distortion tradeoff. In: CVPR. (2018)
  • 14. 2. Deep Feature Consistent VAE 2. Motivation 14 Model generates average of training images
  • 15. 2. Deep Feature Consistent VAE 3. Perceptual Loss 15 𝐿 𝐷𝐹𝐶𝑉𝐴𝐸 = 𝐿 𝑘𝑙 + 𝐿 𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙, 𝑤ℎ𝑒𝑟𝑒 𝐿 𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙 = 𝐿 𝑟𝑒𝑐 𝑟𝑒𝑙𝑢1_1 + 𝐿 𝑟𝑒𝑐 𝑟𝑒𝑙𝑢2_1 + …
  • 16. 2. Deep Feature Consistent VAE 3. Perceptual Loss 16 Blau, Y., Michaeli, T.: The perception-distortion tradeoff. In: CVPR. (2018) 𝐿 𝐷𝐹𝐶𝑉𝐴𝐸 = 𝐿 𝑘𝑙 + 𝐿 𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙, 𝑤ℎ𝑒𝑟𝑒 𝐿 𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙 = 𝐿 𝑟𝑒𝑐 𝑟𝑒𝑙𝑢1_1 + 𝐿 𝑟𝑒𝑐 𝑟𝑒𝑙𝑢2_1 + …
  • 17. 2. Deep Feature Consistent VAE 3. Perceptual Loss 17 Use nearest neighbor method by a scale of 2
  • 18. 3. Results 1. Experiments(Generated fake face images from 100D latent vector z) 18
  • 19. 3. Results 2. Experiments(Generated fake face images from Input Images) 19
  • 20. 3. Results 3. Experiments(Vector arithmetic) 20 Smile latent vector = average latent vector of smile people - average latent vector of non smile people Picture: http://clipartmag.com/smile-mouth-clipart = -
  • 22. 3. Results 4. Experiments(Facial Attribute Prediction) 22 Z Encoder 𝜇 𝜎 𝑍 = 𝜇 + 𝜎𝜀 Where 𝜀 ~ N(0,1) Linear SVM 40 Dim Binary classification
  • 23. 3. Results 4. Experiments(Facial Attribute Prediction) 23
  • 24. 4. Reference 24 1. Deep Feature Consistent Variational Autoencoder 2. Tutorial on Variational Autoencoders 3. The perception-distortion tradeoff. 4. Understanding deep image representations by inverting them. 5. Texture Synthesis Using Convolutional Neural Networks 6. Perceptual Losses for Real-Time Style Transfer and Super-Resolution