SlideShare a Scribd company logo
Predictive	
  Modeling	
  in	
  
Underwriting
BARRY	
  SENENSKY	
  FSA,	
  FCIA,	
  MAAA
14	
  Oct	
  2015
1
Agenda
1. Why	
  has	
  it	
  taken	
  so	
  long?
2. Predictive	
  Modeling	
  Approaches
3. Data	
  Sources
4. Building	
  the	
  Predictive	
  Model
5. Summary
2
Why	
  has	
  it	
  taken	
  so	
  long?
A	
  long	
  time	
  coming…
Predictive	
  Modeling	
  has	
  been	
  used	
  in	
  Industry	
  for	
  50+	
  
years
Predictive	
  Modeling	
  has	
  been	
  used	
  by	
  P&C	
  Insurers	
  for	
  
20+	
  years
Predictive	
  Modeling	
  has	
  been	
  used	
  for	
  scoring	
  Disability	
  
Claims	
  on	
  the	
  likelihood	
  of	
  recovery	
  for	
  over	
  10	
  years
So	
  why	
  not	
  Underwriting?
1. Life	
  Insurance	
  business	
  is	
  conservative/slow	
  to	
  change
2. Results	
  take	
  5-­‐10	
  years	
  to	
  become	
  apparent
4
So	
  why	
  now?
Availability	
  of	
  Data	
  and	
  CPU’s	
  to	
  process	
  the	
  data
Fits	
  well	
  with	
  Online	
  Insurance	
  Sales	
  where	
  
companies	
  are	
  looking	
  for	
  less	
  expensive,	
  less	
  
intrusive	
  and	
  quicker	
  ways	
  to	
  sell	
  insurance	
  policies
Just	
  makes	
  too	
  much	
  sense
5
Predictive	
  Modeling	
  
Approaches
6
Predictive	
  Modeling	
  Approaches
1. Replicate	
  Current	
  Underwriting	
  Decisions
2. Model	
  mortality	
  rates	
  directly	
  for	
  unique	
  
applicants
7
Data	
  Sources
8
1. Internal
2. Third	
  Party
3. Customer’s	
  own	
  	
  	
  
Internal	
  Data	
  Sources
1. Data	
  Collected	
  from	
  current	
  underwriting	
  practices
2. Application
• Provides	
  good	
  underwriting	
  information	
  
• May	
  have	
  material	
  inaccuracies	
  
3. Fluids	
  and	
  other	
  medical	
  tests/information
• Provides	
  good	
  underwriting	
  information	
  
• Slow	
  and	
  expensive	
  to	
  collect	
  
• Poor	
  customer	
  experience
9
Third	
  Party	
  Data	
  
Includes	
  data	
  about	
  an	
  individual	
  obtained	
  from	
  a	
  
third	
  party	
  including	
  data;	
  
• Purchased	
  from	
  data	
  aggregator	
  such	
  as	
  
LexisNexis
• Purchased	
  from	
  another	
  company	
  that	
  has	
  the	
  
individual	
  as	
  a	
  customer	
  such	
  as	
  a	
  pharmacy	
  or	
  
telecommunications	
  provider
• Scraped	
  off	
  the	
  web	
  such	
  as	
  from	
  Linked	
  in	
  or	
  
Facebook	
  
10
Third	
  Party	
  Data
Advantages
• Quick	
  to	
  obtain	
  
• Low	
  cost
• Physically	
  Non-­‐invasive	
  
Concerns	
  
• Reliability	
  and	
  completeness	
  of	
  data
• Customer	
  Privacy	
  
11
Customers’	
  Own	
  Data
• Includes	
  data	
  collected	
  from	
  EHR’s,	
  wearable	
  
devices	
  and	
  wellness	
  programs
• Early	
  indications	
  are	
  positive	
  for	
  Auto	
  Insurance	
  
• Skeptical	
  of	
  value	
  in	
  near	
  future	
  for	
  Life	
  Insurance	
  
Underwriting
12
Building	
  the	
  Predictive	
  
Model
Two	
  Possible	
  Approaches
1. Replicate	
  current	
  underwriting	
  decisions
2. Model	
  mortality	
  rates	
  directly	
  for	
  unique	
  
individuals
14
Replicate	
  Current	
  Underwriting	
  
Decisions	
  
Possible	
  Objectives
• Enhance	
  consistency	
  of	
  	
  decisions	
  between	
  underwriters
• Identify	
  predictive	
  data	
  fields
• Replace	
  existing	
  process	
  with	
  one	
  that	
  is	
  quicker	
  cheaper
Advantages
• Historical	
  experience	
  is	
  not	
  required
• Fairly	
  straightforward	
  to	
  develop
Issues
• Maintains	
  but	
  does	
  not	
  improve	
  underwriting	
  decisions
• Issue	
  of	
  how	
  to	
  keep	
  current	
  over	
  time
15
Modeling	
  Mortality	
  Rates	
  Directly
Objectives
• Identify	
  predictive	
  data	
  fields
• Replace	
  existing	
  process	
  with	
  one	
  that	
  is	
  quicker	
  and	
  
cheaper
• Predict	
  applicant	
  specific	
  mortality	
  rates
Advantages
• Should	
  improve	
  underwriting	
  decisions	
  and	
  profitability	
  
of	
  business
Issues
• Need	
  historical	
  experience	
  for	
  all	
  applicants	
  
• How	
  do	
  you	
  get	
  vital	
  status?	
  
• Many	
  modeling	
  issues
16
Modeling	
  Mortality	
  Rates	
  Directly-­‐
Modeling	
  Issues
• Build	
  a	
  model	
  from	
  scratch	
  or	
  start	
  with	
  a	
  standard	
  
table?	
  
• How	
  many	
  years	
  from	
  issue	
  do	
  we	
  model?	
  Then	
  
what?
• How	
  do	
  we	
  incorporate	
  mortality	
  improvement?	
  
17
Smaller	
  Company	
  Issues
• Accumulating	
  large	
  enough	
  data	
  sets	
  to	
  build	
  
credible	
  models
• Higher	
  unit	
  cost	
  of	
  building	
  infrastructure
18
Ongoing	
  Management
• Need	
  to	
  periodically	
  refresh	
  models
• Predictive	
  models	
  are	
  good	
  at	
  assessing	
  benefits	
  of	
  
questions	
  on	
  applications	
  and	
  medical	
  tests
19
Summary
20
Summary
• Predictive	
  Modeling	
  in	
  Underwriting	
  has	
  arrived	
  
• If	
  you	
  haven’t	
  done	
  so	
  yet;
ØNeed	
  to	
  decide	
  how	
  you	
  want	
  to	
  incorporate	
  into	
  your	
  
underwriting	
  process	
  
Øidentify	
  and	
  start	
  collecting	
  relevant	
  data	
  
21
22

More Related Content

PDF
Reinventing Insurance
PPTX
Combining Linear and Non Linear Modeling Techniques
PDF
"Benefits management: a core theme in management research and education?" con...
PDF
Bracing for disruption: Building agility in life sciences and healthcare
PDF
Your cognitive future insurances
PDF
Phone systems brisbane 11 smart questions a 27 year telecommunications vetera...
PDF
Predictive analytics 2025_br
Reinventing Insurance
Combining Linear and Non Linear Modeling Techniques
"Benefits management: a core theme in management research and education?" con...
Bracing for disruption: Building agility in life sciences and healthcare
Your cognitive future insurances
Phone systems brisbane 11 smart questions a 27 year telecommunications vetera...
Predictive analytics 2025_br

What's hot (14)

PDF
UCSF Life Sciences Week 1 digital health - Value Proposition
PDF
Inside Counsel White Paper
PDF
Developing an integrated technology for the enhancement of insurance penetration
PDF
Riding the crest of digital health in APAC
 
PDF
Cognitive computing insurance
PPTX
Accenture 2015 Global Risk Management Study: Insurance Report Key Findings an...
PPT
CRE Medical Final NSF I-Corps Presentation
PPSX
Spt Overview
PDF
CAA2018 Predictive Analytics
PDF
Changing the Distribution Dynamic Strategies for increasing the value of dist...
PDF
Shift AI 2020: How to identify and treat biases in ML Models | Navdeep Sharma...
PDF
Bid to Win workshop for Seedbed - October 2015
PDF
MD Backline
PPT
CIMIT Innovation Grand Rounds
UCSF Life Sciences Week 1 digital health - Value Proposition
Inside Counsel White Paper
Developing an integrated technology for the enhancement of insurance penetration
Riding the crest of digital health in APAC
 
Cognitive computing insurance
Accenture 2015 Global Risk Management Study: Insurance Report Key Findings an...
CRE Medical Final NSF I-Corps Presentation
Spt Overview
CAA2018 Predictive Analytics
Changing the Distribution Dynamic Strategies for increasing the value of dist...
Shift AI 2020: How to identify and treat biases in ML Models | Navdeep Sharma...
Bid to Win workshop for Seedbed - October 2015
MD Backline
CIMIT Innovation Grand Rounds
Ad

Viewers also liked (20)

PPTX
Group no 7 presentation.
PPTX
Commercial Insurance for Municipalities in NH
PPT
Zeller Edm Summit Agile Deployment Of Predictive Analytics
PPT
Art&Wd
PDF
5 P&C underwriting metrics to increase profitability
PPTX
Agile 2013 presentation, tom grant
PPTX
20160512 predictive and adaptive approach
PDF
Bio variance j_scheiber_bioit_repurposingworkshop2013_draft
PPTX
Olrac SPS Predictive Insurance Solutions
PDF
Feeling Lucky? Multi-armed Bandits for Ordering Judgements in Pooling-based E...
PDF
The Robos Are Coming - How AI will revolutionize Insurance 0117
PDF
How to use R in different professions: R for Car Insurance Product (Speaker: ...
PDF
Conductrics bandit basicsemetrics1016
PDF
Bayesian models in r
PPTX
Data Science Academy Student Demo day--Divyanka Sharma, Businesses in nyc
PDF
Multi-Armed Bandits:
 Intro, examples and tricks
PPTX
Data mining (DM) in the pharmaceutical industry
PDF
Pattern - an open source project for migrating predictive models from SAS, et...
PPTX
Uplift Modeling Workshop
PPT
Bajaj Allianz Business Plan
Group no 7 presentation.
Commercial Insurance for Municipalities in NH
Zeller Edm Summit Agile Deployment Of Predictive Analytics
Art&Wd
5 P&C underwriting metrics to increase profitability
Agile 2013 presentation, tom grant
20160512 predictive and adaptive approach
Bio variance j_scheiber_bioit_repurposingworkshop2013_draft
Olrac SPS Predictive Insurance Solutions
Feeling Lucky? Multi-armed Bandits for Ordering Judgements in Pooling-based E...
The Robos Are Coming - How AI will revolutionize Insurance 0117
How to use R in different professions: R for Car Insurance Product (Speaker: ...
Conductrics bandit basicsemetrics1016
Bayesian models in r
Data Science Academy Student Demo day--Divyanka Sharma, Businesses in nyc
Multi-Armed Bandits:
 Intro, examples and tricks
Data mining (DM) in the pharmaceutical industry
Pattern - an open source project for migrating predictive models from SAS, et...
Uplift Modeling Workshop
Bajaj Allianz Business Plan
Ad

Similar to Predictive Modeling in Underwriting (20)

PDF
IIS China 2014 - The New Insurance engagement Final
PPTX
SiriusDecisions Webinar: How to Evaluate Predictive Lead Scoring Vendors
PPTX
Making advanced analytics work for you
PDF
Inovaare Webinar - Evaluating your Compliance Program
PDF
Getting Paid in 2022: Adapting your Practice to Thrive Within the Healthcare ...
PDF
Customer churn prediction in banking
PPTX
Richard Marshall EARL 2019.pptx
PPT
Vcu Stm Transformation 02 15 10
PDF
INFOGRAPHIC: Fixing the Insurance Industry - how big data can transform custo...
PDF
Creating value through technology in healthcare
PPTX
Digital Disruption of Life Insurance
PDF
Don’t Miss Out on Money! How to Make Sure Your Credentialing is Done Correctly.
PDF
Using Blended Business Owner Data in Credit Decision Making
PDF
Healthcare Analytics Adoption Model
PPTX
Digital Transformation for Insurance and Underwriting Processes - Caroly Mart...
PPT
Principle #6 privacy of client data to post
PPT
Preparation is the Key to Meaningful Use Success
PDF
Single View of the Customer - Digital Insurance in India
PDF
FICO Nordics Forum 2024: Transforming Credit Decision Processes & Fraud Preve...
PPTX
CECL: Are you where you need to be?
IIS China 2014 - The New Insurance engagement Final
SiriusDecisions Webinar: How to Evaluate Predictive Lead Scoring Vendors
Making advanced analytics work for you
Inovaare Webinar - Evaluating your Compliance Program
Getting Paid in 2022: Adapting your Practice to Thrive Within the Healthcare ...
Customer churn prediction in banking
Richard Marshall EARL 2019.pptx
Vcu Stm Transformation 02 15 10
INFOGRAPHIC: Fixing the Insurance Industry - how big data can transform custo...
Creating value through technology in healthcare
Digital Disruption of Life Insurance
Don’t Miss Out on Money! How to Make Sure Your Credentialing is Done Correctly.
Using Blended Business Owner Data in Credit Decision Making
Healthcare Analytics Adoption Model
Digital Transformation for Insurance and Underwriting Processes - Caroly Mart...
Principle #6 privacy of client data to post
Preparation is the Key to Meaningful Use Success
Single View of the Customer - Digital Insurance in India
FICO Nordics Forum 2024: Transforming Credit Decision Processes & Fraud Preve...
CECL: Are you where you need to be?

More from Kevin Pledge (20)

PDF
Challenges and Opportunities by Steve Fretwell
PDF
Introduction to Online Distribution Conference by Alan Ryder
PDF
Digital Branding - acquisition through to transaction by Andrew Bergstrom
PDF
Teachers Life - an Online Case Study by Doug Baker
PDF
Online Insurance - Value of Partnerships
PDF
Online Insurance - Challenges and Opportunities
PDF
External Data in UW
PDF
The Experience of Online Distribution Elsewhere in the World
PPTX
Innovation
PDF
2015 SOA Annual Meeting - Beagle Street and Teachers Life
PDF
2015 SOA Annual Meeting - Engaging the Customer
PDF
3 Simple Lessons from Other Industries
PDF
American Fraternal Alliance Annual Meeting 2015
PPTX
2015 CIA Annual Meeting - Middle Market Gap
PPTX
Global Innovation - Distribution lesson from overseas
PPTX
ASNA 2015 - Innovation
PDF
SOA Annual Meeting 2014 - Entrepreneurial Start Ups
PDF
SOA Annual Meeting 2014 - EU Gender Neutral Pricing
PPT
Demystifying business intelligence
PPTX
Analytics for actuaries cia
Challenges and Opportunities by Steve Fretwell
Introduction to Online Distribution Conference by Alan Ryder
Digital Branding - acquisition through to transaction by Andrew Bergstrom
Teachers Life - an Online Case Study by Doug Baker
Online Insurance - Value of Partnerships
Online Insurance - Challenges and Opportunities
External Data in UW
The Experience of Online Distribution Elsewhere in the World
Innovation
2015 SOA Annual Meeting - Beagle Street and Teachers Life
2015 SOA Annual Meeting - Engaging the Customer
3 Simple Lessons from Other Industries
American Fraternal Alliance Annual Meeting 2015
2015 CIA Annual Meeting - Middle Market Gap
Global Innovation - Distribution lesson from overseas
ASNA 2015 - Innovation
SOA Annual Meeting 2014 - Entrepreneurial Start Ups
SOA Annual Meeting 2014 - EU Gender Neutral Pricing
Demystifying business intelligence
Analytics for actuaries cia

Recently uploaded (20)

PPTX
Belch_12e_PPT_Ch18_Accessible_university.pptx
PPTX
DMT - Profile Brief About Business .pptx
PDF
NEW - FEES STRUCTURES (01-july-2024).pdf
PDF
Laughter Yoga Basic Learning Workshop Manual
PDF
Nidhal Samdaie CV - International Business Consultant
PDF
Solara Labs: Empowering Health through Innovative Nutraceutical Solutions
PDF
Comments on Crystal Cloud and Energy Star.pdf
PDF
Nante Industrial Plug Factory: Engineering Quality for Modern Power Applications
PPT
Chapter four Project-Preparation material
PPTX
Probability Distribution, binomial distribution, poisson distribution
PDF
Stem Cell Market Report | Trends, Growth & Forecast 2025-2034
PPTX
ICG2025_ICG 6th steering committee 30-8-24.pptx
PDF
Cours de Système d'information about ERP.pdf
PDF
NISM Series V-A MFD Workbook v December 2024.khhhjtgvwevoypdnew one must use ...
PDF
Keppel_Proposed Divestment of M1 Limited
PDF
Power and position in leadershipDOC-20250808-WA0011..pdf
PPT
Lecture 3344;;,,(,(((((((((((((((((((((((
PDF
How to Get Funding for Your Trucking Business
PPTX
CkgxkgxydkydyldylydlydyldlyddolydyoyyU2.pptx
PDF
BsN 7th Sem Course GridNNNNNNNN CCN.pdf
Belch_12e_PPT_Ch18_Accessible_university.pptx
DMT - Profile Brief About Business .pptx
NEW - FEES STRUCTURES (01-july-2024).pdf
Laughter Yoga Basic Learning Workshop Manual
Nidhal Samdaie CV - International Business Consultant
Solara Labs: Empowering Health through Innovative Nutraceutical Solutions
Comments on Crystal Cloud and Energy Star.pdf
Nante Industrial Plug Factory: Engineering Quality for Modern Power Applications
Chapter four Project-Preparation material
Probability Distribution, binomial distribution, poisson distribution
Stem Cell Market Report | Trends, Growth & Forecast 2025-2034
ICG2025_ICG 6th steering committee 30-8-24.pptx
Cours de Système d'information about ERP.pdf
NISM Series V-A MFD Workbook v December 2024.khhhjtgvwevoypdnew one must use ...
Keppel_Proposed Divestment of M1 Limited
Power and position in leadershipDOC-20250808-WA0011..pdf
Lecture 3344;;,,(,(((((((((((((((((((((((
How to Get Funding for Your Trucking Business
CkgxkgxydkydyldylydlydyldlyddolydyoyyU2.pptx
BsN 7th Sem Course GridNNNNNNNN CCN.pdf

Predictive Modeling in Underwriting

  • 1. Predictive  Modeling  in   Underwriting BARRY  SENENSKY  FSA,  FCIA,  MAAA 14  Oct  2015 1
  • 2. Agenda 1. Why  has  it  taken  so  long? 2. Predictive  Modeling  Approaches 3. Data  Sources 4. Building  the  Predictive  Model 5. Summary 2
  • 3. Why  has  it  taken  so  long?
  • 4. A  long  time  coming… Predictive  Modeling  has  been  used  in  Industry  for  50+   years Predictive  Modeling  has  been  used  by  P&C  Insurers  for   20+  years Predictive  Modeling  has  been  used  for  scoring  Disability   Claims  on  the  likelihood  of  recovery  for  over  10  years So  why  not  Underwriting? 1. Life  Insurance  business  is  conservative/slow  to  change 2. Results  take  5-­‐10  years  to  become  apparent 4
  • 5. So  why  now? Availability  of  Data  and  CPU’s  to  process  the  data Fits  well  with  Online  Insurance  Sales  where   companies  are  looking  for  less  expensive,  less   intrusive  and  quicker  ways  to  sell  insurance  policies Just  makes  too  much  sense 5
  • 7. Predictive  Modeling  Approaches 1. Replicate  Current  Underwriting  Decisions 2. Model  mortality  rates  directly  for  unique   applicants 7
  • 8. Data  Sources 8 1. Internal 2. Third  Party 3. Customer’s  own      
  • 9. Internal  Data  Sources 1. Data  Collected  from  current  underwriting  practices 2. Application • Provides  good  underwriting  information   • May  have  material  inaccuracies   3. Fluids  and  other  medical  tests/information • Provides  good  underwriting  information   • Slow  and  expensive  to  collect   • Poor  customer  experience 9
  • 10. Third  Party  Data   Includes  data  about  an  individual  obtained  from  a   third  party  including  data;   • Purchased  from  data  aggregator  such  as   LexisNexis • Purchased  from  another  company  that  has  the   individual  as  a  customer  such  as  a  pharmacy  or   telecommunications  provider • Scraped  off  the  web  such  as  from  Linked  in  or   Facebook   10
  • 11. Third  Party  Data Advantages • Quick  to  obtain   • Low  cost • Physically  Non-­‐invasive   Concerns   • Reliability  and  completeness  of  data • Customer  Privacy   11
  • 12. Customers’  Own  Data • Includes  data  collected  from  EHR’s,  wearable   devices  and  wellness  programs • Early  indications  are  positive  for  Auto  Insurance   • Skeptical  of  value  in  near  future  for  Life  Insurance   Underwriting 12
  • 14. Two  Possible  Approaches 1. Replicate  current  underwriting  decisions 2. Model  mortality  rates  directly  for  unique   individuals 14
  • 15. Replicate  Current  Underwriting   Decisions   Possible  Objectives • Enhance  consistency  of    decisions  between  underwriters • Identify  predictive  data  fields • Replace  existing  process  with  one  that  is  quicker  cheaper Advantages • Historical  experience  is  not  required • Fairly  straightforward  to  develop Issues • Maintains  but  does  not  improve  underwriting  decisions • Issue  of  how  to  keep  current  over  time 15
  • 16. Modeling  Mortality  Rates  Directly Objectives • Identify  predictive  data  fields • Replace  existing  process  with  one  that  is  quicker  and   cheaper • Predict  applicant  specific  mortality  rates Advantages • Should  improve  underwriting  decisions  and  profitability   of  business Issues • Need  historical  experience  for  all  applicants   • How  do  you  get  vital  status?   • Many  modeling  issues 16
  • 17. Modeling  Mortality  Rates  Directly-­‐ Modeling  Issues • Build  a  model  from  scratch  or  start  with  a  standard   table?   • How  many  years  from  issue  do  we  model?  Then   what? • How  do  we  incorporate  mortality  improvement?   17
  • 18. Smaller  Company  Issues • Accumulating  large  enough  data  sets  to  build   credible  models • Higher  unit  cost  of  building  infrastructure 18
  • 19. Ongoing  Management • Need  to  periodically  refresh  models • Predictive  models  are  good  at  assessing  benefits  of   questions  on  applications  and  medical  tests 19
  • 21. Summary • Predictive  Modeling  in  Underwriting  has  arrived   • If  you  haven’t  done  so  yet; ØNeed  to  decide  how  you  want  to  incorporate  into  your   underwriting  process   Øidentify  and  start  collecting  relevant  data   21
  • 22. 22