Presentation on:
Fiber Distributed Data Interface(FDDI)
Submitted to:
Mr.Sameer Gautam
Submitted by:
Laxmi Dotel
BIM 7th
semester
12/27/14 1
FDDI
Sequence of Presentation
1. Timeline for development of FDDI
2. Introduction
3. Transmission Media
4. FDDI Specifications/component of FDDI
5. Features of FDDI
4. FDDI basic principle
5. Cable Types
6. FDDI Devices
5. FDDI Frame Format
6. FDDI Architectural Model
7. FDDI - II
8. Benefits & limitations
9. APPLICATIONS
12/27/14 2
FDDI
12/27/14 3
Timeline for FDDI
• project initiated in October 1982 by James Hamstra at Sperry.
• two proposals for media access control (MAC) & physical (PHY) layers submitted in
June 1983
• FDDI MAC became an ANSI standard in late 1986
• FDDI PHY won ANSI standardization in 1988
• FDDI- ii proposal was made in early 1986
• first public demonstrations at advanced micro devices (AMD) in 1989
FDDI
Introduction:
FDDI is a standard developed by the American National Standards Institute
(ANSI) for transmitting data on optical fibers
 Supports transmission rates of up to 200 Mbps
Uses a dual ring
First ring used to carry data at 100 Mbps
Second ring used for primary backup in case first ring fails
If no backup is needed, second ring can also carry data, increasing the data
rate up to 200 Mbps
Supports up to 1000 nodes
Has a range of up to 200 km
FDDI uses three basic topologies Ring, Star, and Tree
12/27/14 4
FDDI
Transmission Media
FDDI uses optical fiber as the primary transmission medium, but it also can run over
copper cabling.
FDDI over copper is referred to as Copper-Distributed Data Interface (CDDI).
FDDI defines two types of optical fiber: single-mode and multimode.
Multimode:
Multimode fiber uses LED as the light-generating device.
Multimode fiber allows multiple modes of light to propagate through the fiber..
multimode fiber is generally used for connectivity within a building or a relatively
geographically contained environment.
Single-mode:
 single-mode fiber generally uses lasers.
Single-mode fiber allows only one mode of light to propagate through the fiber.
Therefore, single-mode fiber is capable of delivering considerably higher performance
connectivity over much larger distances, which is why it generally is used for connectivity
between buildings and within environments that are more geographically dispersed.
12/27/14 5
FDDI
12/27/14 6
FDDI
FDDI Specifications/component of FDDI
FDDI is defined by four separate specifications:
1. Media Access Control (MAC)---Defines how the medium is accessed, including
frame format, token handling, addressing, algorithm for calculating a cyclic redundancy
check value, error recovery mechanism
2. Physical Layer Protocol (PHY)---Defines data encoding/decoding procedures,
clocking requirement, framing and other function.
3. Physical Layer Medium (PMD)---Defines the characteristics of the transmission
medium, including the fiber-optic link, power levels, bit error rates, optical components,
and connectors.
4. Station Management (SMT)---Defines the FDDI station configuration, ring
configuration, and ring control features, including station insertion and removal,
initialization, fault isolation and recovery, scheduling, and collection of statistics.
12/27/14 7
FDDI
Features of FDDI
Dual Token Rings
Ring Characteristics
Ring Stations
Token-Ring Protocol
Fault tolerance
12/27/14 8
FDDI
12/27/14 9
FDDI Basic Principle
• Token circulates around a ring in network.
• A station first capture the token ,send packet of data to network.
• After transmission token is released.
• Every station on the network will receive the transmission and repeat it.
• The transmission will travel around the ring until it is received by the station which
originally sent it, which removes it from the ring.
• If a station does not receive its transmission back, it assumes that an error occured
somewhere.
• To solve this problem fault isolation techniques is used.
FDDI
Cable Types
There are four cable types which can be used with FDDI. They are:
Multimode Fiber Optic Cable
Fiber optic cable, usually with a core size of 62.5 microns. It allows distances up to 2000 meters
(6600 feet).
Single-mode Fiber Optic Cable
Fiber optic cable with a core size of 7 to 11 microns. It allows distances up to 10,000 meters
(33,000 feet).
Category 5 UTP
An unshielded copper cable, usually with eight wires. The wires are twisted together in pairs,
and the cable is rated at frequencies up to 100 MHz. It allows distances up to 100 meters
(330 feet).
IBM Type 1 STP
A heavy, shielded copper cable. It consists of four wires, twisted in to two pairs. Each pair is
covered with an individual shield, and an overall shield covers the entire cable. It allows
distances up to 100 meters (330 feet).
12/27/14 10
FDDI
FDDI Devices
1. stations
DAS: dual attach station (usually attaches directly to FDDI dual ring)
SAS: single attach station (attaches to the FDDI ring through a
concentrator)
2. concentrators
DAC: dual attach concentrator (usually attaches directly to the FDDI dual
ring)
SAC: single attach concentrator (attaches to the FDDI ring through another
concentrator)
3. optical bypass switch
12/27/14 11
FDDI
FDDI Frame Format
 The FDDI frame format is similar
to the format of a Token Ring
frame.
 FDDI frames can be as large as
4,500 bytes.
12/27/14 12
FDDI
The following descriptions summarize the FDDI data frame and token fields
illustrated in the above figure.
• Preamble (16 bits)- Gives a unique sequence that prepares each station for an
upcoming frame.
• Start delimiter (8 bits)- - Indicates the beginning of a frame by employing a
signaling pattern that differentiates it from the rest of the frame.
• Frame control (8 bits)- - Indicates the size of the address fields and whether
the frame contains asynchronous or synchronous data, among other control
information.
• Destination address (48bits)- - Contains a unicast (singular), multicast
(group), or broadcast (every station) address. As with Ethernet and Token
Ring addresses, FDDI destination addresses are 6 bytes long.
• Source address (48 bits)- - Identifies the single station that sent the frame. As
with Ethernet and Token Ring addresses, FDDI source addresses are 6 bytes
long.
12/27/14 13
FDDI
12/27/14 14
Data - Contains either information destined for an upper-layer protocol or
control information.
Frame check sequence (FCS) (32 bits)- - Is filed by the source station with a
calculated cyclic redundancy check value dependent on frame contents (as with
Token Ring and Ethernet). The destination address recalculates the value to
determine whether the frame was damaged in transit. If so, the frame is
discarded.
End delimiter (16 bits)- - Contains unique symbols; cannot be data symbols
that indicate the end of the frame.
Frame status (16 bits)- - Allows the source station to determine whether an
error occurred; identifies whether the frame was recognized and copied by a
receiving station.
FDDI
FDDI Architectural Model
12/27/14 15
FDDI
12/27/14 16
The physical layer defines the electrical, mechanical, and logical characteristics
for transmitting bits across the physical medium. Examples of physical media
include twisted pair, coaxial, and fiber optic cable. Dual ring FDDI specifies fiber
optic cable as the physical medium.
The data link layer specifies the way a node accesses the underlying physical
medium and how it formats data for transmission. FDDI specifies formatting data
into frames, using a special set of symbols and following a special set of rules. The
MAC sublayer within the data link layer specifies the physical address (MAC
address) used for uniquely identifying FDDI nodes
FDDI
FDDI-II
enhanced fddi that handles data, voice, and video
same features as basic FDDI (FDDI - I), including maximum number of
modes, 100 mbps data transfer bit rate, and the dual ring
defines the physical layer and the lower half of the data link layer similar to
FDDI-I .
FDDI supports only packet mode (synchronous and asynchronous) traffic,
fddi-ii supports both packet data as well as isochronous data traffic (in fddi
isochronous indicates a class of traffic for voice and video.
12/27/14 FDDI 17
12/27/14 18
FDDI Benefits
• high bandwidth (10 times more than ethernet).
• larger distances between fddi nodes because of very low attenuation.
• improved signal-to-noise ratio because of no interference from external radio
frequencies and electromagnetic noise
Limitation of FDDI
 high cost of optical components required for transmission/reception of signals
(especially for single mode fiber networks)
 more complex to implement.
FDDI
Application of FDDI
 backbones for factory automation
 backend data center applications
 campus lan interconnection
 workgroup and departmental lans
 integrated transport for multimedia applications
12/27/14 19
FDDI
References
12/27/14 20
http://www.maznets.com/tech/fddi.htm
http://en.wikipedia.org/wiki/Fiber_Distributed_Data_Interface
http://penta2.ufrgs.br/Liane/anuni/fddi.html
http://www.laynetworks.com/fddi.htm
FDDI

More Related Content

PPTX
Fddi seminar
PPT
FDDI AND TOKEN Ring
PDF
data-communication-module-4-final.pdf
PPTX
local and wide area network--IN dats communication1) ch 5$6.pptx
PPTX
PPTX
Computer Network
PPT
Dqdb & Fddi
PDF
WT - FDDI & ISDN
Fddi seminar
FDDI AND TOKEN Ring
data-communication-module-4-final.pdf
local and wide area network--IN dats communication1) ch 5$6.pptx
Computer Network
Dqdb & Fddi
WT - FDDI & ISDN

Similar to presentati2.pdf (20)

PDF
Fddi and isdn
PPT
Lan technologies
PPTX
Applications of ICT- Lecture#10 (LAN Technologies).pptx
PPT
Network architecture
PDF
Mn2521592162
PPTX
CN Unit 2.pptx lan tech xdjhfdoroyggfffg
PDF
Token_Ring.pdf
DOCX
Networking
PPT
PPT
goldman5gdoevrosps8evosyurobaibd80wkq8.ppt
PPT
Lan access control methods
PDF
3 Lan Kinerja Tinggi 1
PPTX
FDDI and SONET by Er.Anup-(IOE)
PPT
Ccna day1
PPT
PPT
C C N A Day1
PDF
Intern
PPT
2020 fddi token ring By Eng. & Educator Osama Ghandour
PPTX
LAN ARCHITECTURE in computer networking.ppt
Fddi and isdn
Lan technologies
Applications of ICT- Lecture#10 (LAN Technologies).pptx
Network architecture
Mn2521592162
CN Unit 2.pptx lan tech xdjhfdoroyggfffg
Token_Ring.pdf
Networking
goldman5gdoevrosps8evosyurobaibd80wkq8.ppt
Lan access control methods
3 Lan Kinerja Tinggi 1
FDDI and SONET by Er.Anup-(IOE)
Ccna day1
C C N A Day1
Intern
2020 fddi token ring By Eng. & Educator Osama Ghandour
LAN ARCHITECTURE in computer networking.ppt

Recently uploaded (20)

PPTX
A Complete Guide to Streamlining Business Processes
PDF
Optimise Shopper Experiences with a Strong Data Estate.pdf
PPTX
Lesson-01intheselfoflifeofthekennyrogersoftheunderstandoftheunderstanded
PDF
Introduction to the R Programming Language
PPTX
sac 451hinhgsgshssjsjsjheegdggeegegdggddgeg.pptx
PPTX
SET 1 Compulsory MNH machine learning intro
PPTX
Topic 5 Presentation 5 Lesson 5 Corporate Fin
PPTX
New ISO 27001_2022 standard and the changes
PPTX
DS-40-Pre-Engagement and Kickoff deck - v8.0.pptx
PDF
Microsoft Core Cloud Services powerpoint
PPTX
modul_python (1).pptx for professional and student
PDF
Data Engineering Interview Questions & Answers Data Modeling (3NF, Star, Vaul...
PPT
DU, AIS, Big Data and Data Analytics.ppt
PDF
[EN] Industrial Machine Downtime Prediction
PPTX
Introduction to Inferential Statistics.pptx
PPTX
STERILIZATION AND DISINFECTION-1.ppthhhbx
PDF
Introduction to Data Science and Data Analysis
PPTX
SAP 2 completion done . PRESENTATION.pptx
PDF
Votre score augmente si vous choisissez une catégorie et que vous rédigez une...
DOCX
Factor Analysis Word Document Presentation
A Complete Guide to Streamlining Business Processes
Optimise Shopper Experiences with a Strong Data Estate.pdf
Lesson-01intheselfoflifeofthekennyrogersoftheunderstandoftheunderstanded
Introduction to the R Programming Language
sac 451hinhgsgshssjsjsjheegdggeegegdggddgeg.pptx
SET 1 Compulsory MNH machine learning intro
Topic 5 Presentation 5 Lesson 5 Corporate Fin
New ISO 27001_2022 standard and the changes
DS-40-Pre-Engagement and Kickoff deck - v8.0.pptx
Microsoft Core Cloud Services powerpoint
modul_python (1).pptx for professional and student
Data Engineering Interview Questions & Answers Data Modeling (3NF, Star, Vaul...
DU, AIS, Big Data and Data Analytics.ppt
[EN] Industrial Machine Downtime Prediction
Introduction to Inferential Statistics.pptx
STERILIZATION AND DISINFECTION-1.ppthhhbx
Introduction to Data Science and Data Analysis
SAP 2 completion done . PRESENTATION.pptx
Votre score augmente si vous choisissez une catégorie et que vous rédigez une...
Factor Analysis Word Document Presentation

presentati2.pdf

  • 1. Presentation on: Fiber Distributed Data Interface(FDDI) Submitted to: Mr.Sameer Gautam Submitted by: Laxmi Dotel BIM 7th semester 12/27/14 1 FDDI
  • 2. Sequence of Presentation 1. Timeline for development of FDDI 2. Introduction 3. Transmission Media 4. FDDI Specifications/component of FDDI 5. Features of FDDI 4. FDDI basic principle 5. Cable Types 6. FDDI Devices 5. FDDI Frame Format 6. FDDI Architectural Model 7. FDDI - II 8. Benefits & limitations 9. APPLICATIONS 12/27/14 2 FDDI
  • 3. 12/27/14 3 Timeline for FDDI • project initiated in October 1982 by James Hamstra at Sperry. • two proposals for media access control (MAC) & physical (PHY) layers submitted in June 1983 • FDDI MAC became an ANSI standard in late 1986 • FDDI PHY won ANSI standardization in 1988 • FDDI- ii proposal was made in early 1986 • first public demonstrations at advanced micro devices (AMD) in 1989 FDDI
  • 4. Introduction: FDDI is a standard developed by the American National Standards Institute (ANSI) for transmitting data on optical fibers  Supports transmission rates of up to 200 Mbps Uses a dual ring First ring used to carry data at 100 Mbps Second ring used for primary backup in case first ring fails If no backup is needed, second ring can also carry data, increasing the data rate up to 200 Mbps Supports up to 1000 nodes Has a range of up to 200 km FDDI uses three basic topologies Ring, Star, and Tree 12/27/14 4 FDDI
  • 5. Transmission Media FDDI uses optical fiber as the primary transmission medium, but it also can run over copper cabling. FDDI over copper is referred to as Copper-Distributed Data Interface (CDDI). FDDI defines two types of optical fiber: single-mode and multimode. Multimode: Multimode fiber uses LED as the light-generating device. Multimode fiber allows multiple modes of light to propagate through the fiber.. multimode fiber is generally used for connectivity within a building or a relatively geographically contained environment. Single-mode:  single-mode fiber generally uses lasers. Single-mode fiber allows only one mode of light to propagate through the fiber. Therefore, single-mode fiber is capable of delivering considerably higher performance connectivity over much larger distances, which is why it generally is used for connectivity between buildings and within environments that are more geographically dispersed. 12/27/14 5 FDDI
  • 7. FDDI Specifications/component of FDDI FDDI is defined by four separate specifications: 1. Media Access Control (MAC)---Defines how the medium is accessed, including frame format, token handling, addressing, algorithm for calculating a cyclic redundancy check value, error recovery mechanism 2. Physical Layer Protocol (PHY)---Defines data encoding/decoding procedures, clocking requirement, framing and other function. 3. Physical Layer Medium (PMD)---Defines the characteristics of the transmission medium, including the fiber-optic link, power levels, bit error rates, optical components, and connectors. 4. Station Management (SMT)---Defines the FDDI station configuration, ring configuration, and ring control features, including station insertion and removal, initialization, fault isolation and recovery, scheduling, and collection of statistics. 12/27/14 7 FDDI
  • 8. Features of FDDI Dual Token Rings Ring Characteristics Ring Stations Token-Ring Protocol Fault tolerance 12/27/14 8 FDDI
  • 9. 12/27/14 9 FDDI Basic Principle • Token circulates around a ring in network. • A station first capture the token ,send packet of data to network. • After transmission token is released. • Every station on the network will receive the transmission and repeat it. • The transmission will travel around the ring until it is received by the station which originally sent it, which removes it from the ring. • If a station does not receive its transmission back, it assumes that an error occured somewhere. • To solve this problem fault isolation techniques is used. FDDI
  • 10. Cable Types There are four cable types which can be used with FDDI. They are: Multimode Fiber Optic Cable Fiber optic cable, usually with a core size of 62.5 microns. It allows distances up to 2000 meters (6600 feet). Single-mode Fiber Optic Cable Fiber optic cable with a core size of 7 to 11 microns. It allows distances up to 10,000 meters (33,000 feet). Category 5 UTP An unshielded copper cable, usually with eight wires. The wires are twisted together in pairs, and the cable is rated at frequencies up to 100 MHz. It allows distances up to 100 meters (330 feet). IBM Type 1 STP A heavy, shielded copper cable. It consists of four wires, twisted in to two pairs. Each pair is covered with an individual shield, and an overall shield covers the entire cable. It allows distances up to 100 meters (330 feet). 12/27/14 10 FDDI
  • 11. FDDI Devices 1. stations DAS: dual attach station (usually attaches directly to FDDI dual ring) SAS: single attach station (attaches to the FDDI ring through a concentrator) 2. concentrators DAC: dual attach concentrator (usually attaches directly to the FDDI dual ring) SAC: single attach concentrator (attaches to the FDDI ring through another concentrator) 3. optical bypass switch 12/27/14 11 FDDI
  • 12. FDDI Frame Format  The FDDI frame format is similar to the format of a Token Ring frame.  FDDI frames can be as large as 4,500 bytes. 12/27/14 12 FDDI
  • 13. The following descriptions summarize the FDDI data frame and token fields illustrated in the above figure. • Preamble (16 bits)- Gives a unique sequence that prepares each station for an upcoming frame. • Start delimiter (8 bits)- - Indicates the beginning of a frame by employing a signaling pattern that differentiates it from the rest of the frame. • Frame control (8 bits)- - Indicates the size of the address fields and whether the frame contains asynchronous or synchronous data, among other control information. • Destination address (48bits)- - Contains a unicast (singular), multicast (group), or broadcast (every station) address. As with Ethernet and Token Ring addresses, FDDI destination addresses are 6 bytes long. • Source address (48 bits)- - Identifies the single station that sent the frame. As with Ethernet and Token Ring addresses, FDDI source addresses are 6 bytes long. 12/27/14 13 FDDI
  • 14. 12/27/14 14 Data - Contains either information destined for an upper-layer protocol or control information. Frame check sequence (FCS) (32 bits)- - Is filed by the source station with a calculated cyclic redundancy check value dependent on frame contents (as with Token Ring and Ethernet). The destination address recalculates the value to determine whether the frame was damaged in transit. If so, the frame is discarded. End delimiter (16 bits)- - Contains unique symbols; cannot be data symbols that indicate the end of the frame. Frame status (16 bits)- - Allows the source station to determine whether an error occurred; identifies whether the frame was recognized and copied by a receiving station. FDDI
  • 16. 12/27/14 16 The physical layer defines the electrical, mechanical, and logical characteristics for transmitting bits across the physical medium. Examples of physical media include twisted pair, coaxial, and fiber optic cable. Dual ring FDDI specifies fiber optic cable as the physical medium. The data link layer specifies the way a node accesses the underlying physical medium and how it formats data for transmission. FDDI specifies formatting data into frames, using a special set of symbols and following a special set of rules. The MAC sublayer within the data link layer specifies the physical address (MAC address) used for uniquely identifying FDDI nodes FDDI
  • 17. FDDI-II enhanced fddi that handles data, voice, and video same features as basic FDDI (FDDI - I), including maximum number of modes, 100 mbps data transfer bit rate, and the dual ring defines the physical layer and the lower half of the data link layer similar to FDDI-I . FDDI supports only packet mode (synchronous and asynchronous) traffic, fddi-ii supports both packet data as well as isochronous data traffic (in fddi isochronous indicates a class of traffic for voice and video. 12/27/14 FDDI 17
  • 18. 12/27/14 18 FDDI Benefits • high bandwidth (10 times more than ethernet). • larger distances between fddi nodes because of very low attenuation. • improved signal-to-noise ratio because of no interference from external radio frequencies and electromagnetic noise Limitation of FDDI  high cost of optical components required for transmission/reception of signals (especially for single mode fiber networks)  more complex to implement. FDDI
  • 19. Application of FDDI  backbones for factory automation  backend data center applications  campus lan interconnection  workgroup and departmental lans  integrated transport for multimedia applications 12/27/14 19 FDDI