Inflight  Engine  Shutdown  Abnormality  Detection
Using  One  Class  Support  Vector  Machines  
Team  Members: Lin  Han
Shuowei Li
Xiyu Peng
Client:               NASA
Advisor:          Dr.  David  Matteson
Date:                   05/01/2015
Inflight  Engine  Shutdown  (IFESD)
Data  Description
• 35*6000  Flights
• 200  Variables  (14  selected)[1][2]
• Length  Varies  (2,000-­‐50,000)
• One  Single  Flight
• Data  Source:  https://c3.nasa.gov/dashlink/projects/85/
…… ……
[1]. Mack,  D.L.C.,  et  al.  (2011).  Using  Augmented  Naive  Bayesian  classifers to  Improve  Engine  Fault  Models.  
[2]. Mack,  D.L.C.,  et  al.  (2011).  Deriving  Bayesian  Classifiers  from  Flight  Data  to  Enhance  Air-­‐ craft  Diagnosis  Models.  
Data  Type
• Abnormal  Flight  (n=5)• Ground  Test• Normal  Flight
Var_x
Abnormal  
happens A  reaction  
window   wRandomly  
choose   the  end
Flight  start
Flight  end
Var_x
Normal Abnormal
Length  =  𝑙 Length  =  𝑙
Data  Transformation
Normal Abnormal
FF_1 FF_2 FF_3 N_1
……
FF_1 FF_2 FF_3 N_1
……
14  subsets,  from  the  
same  location  of  14  
variables  in  one  dataset
14  subsets,  from  the  
same  location  of  14  
variables  in  one  dataset
Data  Transformation
Normal Abnormal
…… ……
𝑋
Data  Transformation  (Vectorization)
min
&,(
      
1
2
ω
-
+ 𝐶 0 𝜉2
3
245
𝑆𝑢𝑏𝑗𝑒𝑐𝑡  𝑡𝑜:
𝑦2 𝝎 𝑻
𝒙2 + 𝑏 ≥ 1 − 𝜉2  𝑎𝑛𝑑  𝜉2 ≥ 0  
for  all  i = 1, … , n
Tricks
• Tuning  Parameter  Cost  C
• Kernel  Map  Function  
Support  Vector  Machines  (SVM)
Margin
Support  Vector
y  =  1
y  =  -­‐1
Two  Class  SVM
……Train
Data
Matrix
Response:  (0,  0,        …,  0,      1,      1,      1,    1)
Train  Data:
600  Normal  +  4  Abnormal
Test  Data:
100  Normal  +  1  Abnormal
C  = 2P-
~25R
Kernel:  laplacedot
• Worse  performance  with  more  data.
• Two-­‐Class  is  not  ideal  for  our  data,  and  we  propose  another  
way.
Two-­‐Class  Result
All  normals are  alike;  
each  abnormal  is    
different  in  its  own  way.
Normal  
Flights
Abnormal  
Flights
One-­‐class  SVM
Happy  families  are  all  alike;  every  unhappy  
family  is  unhappy  in  its  own  way.
-­‐-­‐-­‐-­‐ Leo  Tolstoy
min
&,(,S
      
1
2
ω
-
+
1
𝑣𝑛
0 𝜉2 − 𝜌
3
245
        𝑆𝑢𝑏𝑗𝑒𝑐𝑡  𝑡𝑜: 𝜔 ∗ 𝜙 𝑥2 ≥ 𝜌 − 𝜉2  𝑎𝑛𝑑  𝜉2 ≥ 0  for  all  i = 1, … , n
• Tuning  Parameter  𝜈
• upper  bound  on  the  training  error
• lower  bound  on  the  fraction  of  data  points  to  become  Support  Vectors
One  Class  SVM  for  Novelty  Detection
Package:
Kernel:
Num train  datasets:
𝜈:
𝑙:
𝑤:
Test  datasets:  100  normal  flights,   5  abnormal   flights
Model  selection
Tasks
√ kernlab
laplacedot√
𝑙𝑜𝑔5](𝜈)
√ 800
√ 10P5.-
√ 500
• Tuning  Parameters
§ Number  of  training  datasets  =  800
§ Length  =  500
§ 𝜈 =  10P5.-
• Other  Model  Parameters
§ Kernel  Hyperparameter 𝜎 =    5.959 ∗ 10Pd
§ Number  of  support  vectors  =  53
§ Objective  Function  Value  :  1104.189
§ Performance
§ Training  Error  rate  =  6.34%
§ 10-­‐fold  cross  validation  error  rate:  7.18%
§ Normal  flight  test  error  rate  =  3.6%
§ Abnormal  flight  test  error  rate  =  0%
Best  Model
Package:
Kernel:
Num train  datasets:
𝜈:
𝑙:
𝑤:
Tasks
√ kernlab
laplacedot√
√ 800
√ 10P5.-
√ 500
• The  reaction  window   𝑤:  ending   point  of  truncated  data  to  abnormality
Abnormal  Prediction
Prediction  =  Abnormal
𝑙
Package:
Kernel:
Num train  datasets:
𝜈:
𝑙:
𝑤:
Tasks
√ kernlab
laplacedot√
√ 800
√ 10P5.-
√ 500
Abnormal  Prediction
Further  look  into  historical  flight  data
• One-­‐class  SVM  fits  our  situation  better.
• The  cause  of  abnormality  might  be  accumulated  from  previous  flights.
• This  research  can  be  furthered  by  comparing  different  algorithms.
• Recommend  client  to  take  longer  historical  data  into  consideration.  
Summary
Ackownledgements
We  would  like  to  thank:
• Cornell  University,  Department  of  Statistical  Science  for  providing  this  
research  opportunity
• The  National  Aeronautics  and  Space  Administration
• Our  mentor,  Dr.  David  Matteson,  for  his  support  during  the  
completion  of  this  project

More Related Content

PDF
Imitation Learning for Autonomous Driving in TORCS
PDF
Response Summarizer: An Automatic Summarization System of Call Center Convers...
PPTX
Grid search (parameter tuning)
PPTX
decision tree regression
PDF
DQN with Differentiable Memory Architectures
PDF
Financial Modeling with Apache Spark: Calculating Value at Risk
PDF
Estimating Value at Risk with Spark
PDF
Optimizing the Grafana Platform for Flux
Imitation Learning for Autonomous Driving in TORCS
Response Summarizer: An Automatic Summarization System of Call Center Convers...
Grid search (parameter tuning)
decision tree regression
DQN with Differentiable Memory Architectures
Financial Modeling with Apache Spark: Calculating Value at Risk
Estimating Value at Risk with Spark
Optimizing the Grafana Platform for Flux

Viewers also liked (15)

DOCX
Gracious city 5
PDF
Modulo rural
PPTX
Richardecosystem
PDF
Pubers
PDF
PPTX
Lokale politiek en social media; D66 de Kempen
PPT
Organos de los sentidos
PPTX
Contaminación
PPTX
Genética mendeliana
PPTX
III. La célula como unidad de vida (1)
PPTX
Keteladanan rasulullah saw periode mekah Part 2
PPTX
Estructuras químicas y biológicas involucradas en la reproducción celular
PPTX
Tipos de fuerzas vectoriales y sus diagramas de cuerpo libre. Presentación di...
Gracious city 5
Modulo rural
Richardecosystem
Pubers
Lokale politiek en social media; D66 de Kempen
Organos de los sentidos
Contaminación
Genética mendeliana
III. La célula como unidad de vida (1)
Keteladanan rasulullah saw periode mekah Part 2
Estructuras químicas y biológicas involucradas en la reproducción celular
Tipos de fuerzas vectoriales y sus diagramas de cuerpo libre. Presentación di...
Ad

Similar to presentation-final (20)

DOCX
Math for anomaly detection
PDF
Outlier detection method introduction
PDF
course slides of Support-Vector-Machine.pdf
PPT
PPTX
Strengthening support vector classifiers based on fuzzy logic and evolutionar...
PPT
SVM (2).ppt
PDF
Anomaly Detection using Deep Auto-Encoders
PPT
PPT
PDF
IRJET - Airplane Crash Analysis and Prediction using Machine Learning
PPT
Introduction to Support Vector Machine 221 CMU.ppt
PPTX
Statistical Machine Learning unit4 lecture notes
PDF
A Hierarchical Feature Set optimization for effective code change based Defec...
PDF
MLSEV Virtual. Searching for Anomalies
PDF
C3.5.1
PPTX
Tariku Bokila SVMA Presentation.pptx ddd
PPTX
Support vector machine_new SVM presentation.pptx
PPTX
Anomaly detection with machine learning at scale
PPT
Jörg Stelzer
PDF
Ijarcet vol-2-issue-7-2363-2368
Math for anomaly detection
Outlier detection method introduction
course slides of Support-Vector-Machine.pdf
Strengthening support vector classifiers based on fuzzy logic and evolutionar...
SVM (2).ppt
Anomaly Detection using Deep Auto-Encoders
PPT
IRJET - Airplane Crash Analysis and Prediction using Machine Learning
Introduction to Support Vector Machine 221 CMU.ppt
Statistical Machine Learning unit4 lecture notes
A Hierarchical Feature Set optimization for effective code change based Defec...
MLSEV Virtual. Searching for Anomalies
C3.5.1
Tariku Bokila SVMA Presentation.pptx ddd
Support vector machine_new SVM presentation.pptx
Anomaly detection with machine learning at scale
Jörg Stelzer
Ijarcet vol-2-issue-7-2363-2368
Ad

presentation-final

  • 1. Inflight  Engine  Shutdown  Abnormality  Detection Using  One  Class  Support  Vector  Machines   Team  Members: Lin  Han Shuowei Li Xiyu Peng Client:               NASA Advisor:         Dr.  David  Matteson Date:                   05/01/2015
  • 3. Data  Description • 35*6000  Flights • 200  Variables  (14  selected)[1][2] • Length  Varies  (2,000-­‐50,000) • One  Single  Flight • Data  Source:  https://c3.nasa.gov/dashlink/projects/85/ …… …… [1]. Mack,  D.L.C.,  et  al.  (2011).  Using  Augmented  Naive  Bayesian  classifers to  Improve  Engine  Fault  Models.   [2]. Mack,  D.L.C.,  et  al.  (2011).  Deriving  Bayesian  Classifiers  from  Flight  Data  to  Enhance  Air-­‐ craft  Diagnosis  Models.  
  • 4. Data  Type • Abnormal  Flight  (n=5)• Ground  Test• Normal  Flight
  • 5. Var_x Abnormal   happens A  reaction   window   wRandomly   choose   the  end Flight  start Flight  end Var_x Normal Abnormal Length  =  𝑙 Length  =  𝑙 Data  Transformation
  • 6. Normal Abnormal FF_1 FF_2 FF_3 N_1 …… FF_1 FF_2 FF_3 N_1 …… 14  subsets,  from  the   same  location  of  14   variables  in  one  dataset 14  subsets,  from  the   same  location  of  14   variables  in  one  dataset Data  Transformation
  • 7. Normal Abnormal …… …… 𝑋 Data  Transformation  (Vectorization)
  • 8. min &,(       1 2 ω - + 𝐶 0 𝜉2 3 245 𝑆𝑢𝑏𝑗𝑒𝑐𝑡  𝑡𝑜: 𝑦2 𝝎 𝑻 𝒙2 + 𝑏 ≥ 1 − 𝜉2  𝑎𝑛𝑑  𝜉2 ≥ 0   for  all  i = 1, … , n Tricks • Tuning  Parameter  Cost  C • Kernel  Map  Function   Support  Vector  Machines  (SVM) Margin Support  Vector y  =  1 y  =  -­‐1
  • 9. Two  Class  SVM ……Train Data Matrix Response:  (0,  0,        …,  0,      1,      1,      1,    1) Train  Data: 600  Normal  +  4  Abnormal Test  Data: 100  Normal  +  1  Abnormal C  = 2P- ~25R Kernel:  laplacedot
  • 10. • Worse  performance  with  more  data. • Two-­‐Class  is  not  ideal  for  our  data,  and  we  propose  another   way. Two-­‐Class  Result
  • 11. All  normals are  alike;   each  abnormal  is     different  in  its  own  way. Normal   Flights Abnormal   Flights One-­‐class  SVM Happy  families  are  all  alike;  every  unhappy   family  is  unhappy  in  its  own  way. -­‐-­‐-­‐-­‐ Leo  Tolstoy
  • 12. min &,(,S       1 2 ω - + 1 𝑣𝑛 0 𝜉2 − 𝜌 3 245        𝑆𝑢𝑏𝑗𝑒𝑐𝑡  𝑡𝑜: 𝜔 ∗ 𝜙 𝑥2 ≥ 𝜌 − 𝜉2  𝑎𝑛𝑑  𝜉2 ≥ 0  for  all  i = 1, … , n • Tuning  Parameter  𝜈 • upper  bound  on  the  training  error • lower  bound  on  the  fraction  of  data  points  to  become  Support  Vectors One  Class  SVM  for  Novelty  Detection
  • 13. Package: Kernel: Num train  datasets: 𝜈: 𝑙: 𝑤: Test  datasets:  100  normal  flights,   5  abnormal   flights Model  selection Tasks √ kernlab laplacedot√ 𝑙𝑜𝑔5](𝜈) √ 800 √ 10P5.- √ 500
  • 14. • Tuning  Parameters § Number  of  training  datasets  =  800 § Length  =  500 § 𝜈 =  10P5.- • Other  Model  Parameters § Kernel  Hyperparameter 𝜎 =    5.959 ∗ 10Pd § Number  of  support  vectors  =  53 § Objective  Function  Value  :  1104.189 § Performance § Training  Error  rate  =  6.34% § 10-­‐fold  cross  validation  error  rate:  7.18% § Normal  flight  test  error  rate  =  3.6% § Abnormal  flight  test  error  rate  =  0% Best  Model Package: Kernel: Num train  datasets: 𝜈: 𝑙: 𝑤: Tasks √ kernlab laplacedot√ √ 800 √ 10P5.- √ 500
  • 15. • The  reaction  window   𝑤:  ending   point  of  truncated  data  to  abnormality Abnormal  Prediction Prediction  =  Abnormal 𝑙 Package: Kernel: Num train  datasets: 𝜈: 𝑙: 𝑤: Tasks √ kernlab laplacedot√ √ 800 √ 10P5.- √ 500
  • 16. Abnormal  Prediction Further  look  into  historical  flight  data
  • 17. • One-­‐class  SVM  fits  our  situation  better. • The  cause  of  abnormality  might  be  accumulated  from  previous  flights. • This  research  can  be  furthered  by  comparing  different  algorithms. • Recommend  client  to  take  longer  historical  data  into  consideration.   Summary
  • 18. Ackownledgements We  would  like  to  thank: • Cornell  University,  Department  of  Statistical  Science  for  providing  this   research  opportunity • The  National  Aeronautics  and  Space  Administration • Our  mentor,  Dr.  David  Matteson,  for  his  support  during  the   completion  of  this  project