SlideShare a Scribd company logo
Strengthening support vector classifiers based on fuzzy logic and evolutionary methods_Presentation
1. Introduction
2. Problem definition
3. Background
4. The proposed methods
5. Conclusion and future work
3/20
[1]. B. Razavi, Design of integrated circuits for optical communications, McGraw-Hill, 2003.
Introduction
4/20
[1]. C. Aggarwal, Outlier analysis, Springer, 2013.
[2]. V. Chandola, A. Banerjee, V. Kumar, Anomaly Detection: A Survey, ACM, 2009
[3]. J. Guo, W. Huang, B. M. Williams, Real time traffic flow outlier detection using short-term traffic conditional variance
prediction, Transportation Research, Vol 50, 2015
[4]. J. A. Jablonski, T. J. Bihl, Principal Component Reconstruction Error for Hyperspectral Anomaly Detection, IEEE
Geoscience and Remote Sensing Letters, 2015
[5]. A. E. Lazzaretti, H. V. Neto, V. H. Ferreira, An Accurate Approach for Automatic Segmentation of Power Distribution
Voltage Waveforms, IEEE Transactions on Power Delivery, 2015
[6]. Z. Gao, C. Cecati, S. X. Ding, A Survey of Fault Diagnosis and Fault-Tolerant Techniques Part II: Fault Diagnosis with
Knowledge-Based and Hybrid/Active Approaches, IEEE Transactions on Industrial Electronics, 2015
Data cleaning[1]
Intrusion Detection Systems[2]
Traffic management[3]
Image processing[4]
Distributed system[5]
Fault diagnosis[6]
Problem definition
5/20
SVM inability[1]
[1]. R. Akbani1, S. Kwek1, N. Japkowicz, Applying Support Vector Machines
to Imbalanced Datasets, Springer, 2004
Wrong dicisoin of K-NNOne-Class Classifiers
[1]. M. A. F. Pimentel et al., A review of novelty detection, Signal
Processing, Vol 99, 2014
[2]. D. M. J. TAX, One-class classification, Doctoral thesis, TD
University
Support Vector Data Description (SVDD)
Samples
Center of SVDD
Support vector samples
Hyper sphere boundary
[1]. D. M. J. TAX, R. P. W. DUIN, Support Vector Data Description,
Machine Learning, 2004
Problem definition
6/20
SVDD improvements
Data structureKernel issue
Density
Kernel reduction
SVDD-neg
QP dividinghybrid Marginal Maximization
Special kernels
Hyper sphere boundary
Non-stationary data
Distance Fuzziness
Multi hyper sphereHyper ellipse
SV prioritization
Background
7/20
[1]. Y. Forghani, H. Sadoghi Yazdi, S. Effati, An extension to fuzzy support vector data description-FSVDD, Pattern Analysis
and Applications, vol. 15, no. 3, pp. 237-247, 2012.
SVDD improvements
Data structureKernel issue
Density
Kernel reduction
SVDD-neg
QP dividinghybrid Marginal Maximization
Special kernels
Hyper sphere boundary
Non-stationary data
Distance Fuzziness
Multi hyper sphereHyper ellipse
SV prioritization
Background
8/20
[1]. M. GhasemiGol & et al., A New Support Vector Data Description with Fuzzy Constraints, in In Intelligent Systems,
Modelling and Simulation (ISMS), International Conference on. IEEE, pp. 10- 14, 2010.
[2]. Y. Allahyari, H. Sadoghi-Yazdi, Quasi Support Vector Data Description (QSVDD), International Journal of Signal
Processing, Image Processing and Pattern Recognition, vol. 5, no. 3, September, 2012.
[3]. B. Liu & et al., SVDD-based outlier detection on uncertain data, Knowledge and information systems, vol. 34, no. 3, pp. 597-
618, 2012.
SVDD improvements
Data structureKernel issue
Density
Kernel reduction
SVDD-neg
QP dividinghybrid Marginal Maximization
Special kernels
Hyper sphere boundary
Non-stationary data
Distance Fuzziness
Multi hyper sphereHyper ellipse
SV prioritization
Background
9/20
[1]. L. K. Young & et al., Improving support vector data description using local density degree, Pattern Recognition, vol. 38, no.
10, p. 1768 – 1771, 2005
[2]. L. K. Young & et al., Density-Induced Support Vector Data Description, IEEE Transactions on Neural Networks, vol. 18, no.
1, JANUARY 2007.
[3]. B. M. EL & et al., Support Vector Domain Description with a new confidence coefficient, in Intelligent Systems: Theories
and Applications (SITA-14), 2014 9th International Conference on. IEEE, 2014, pp. 1- 8.
[4]. C. Myungraee, K. J. Seok, B. J. Geol, Density weighted support vector data description, Expert Systems with Applications,
vol. 41, no. 7, pp. 3343-3350, 2014.
SVDD improvements
Data structureKernel issue
Density
Kernel reduction
SVDD-neg
QP dividinghybrid Marginal Maximization
Special kernels
Hyper sphere boundary
Non-stationary data
Distance Fuzziness
Multi hyper sphereHyper ellipse
SV prioritization
Background
10/20
, ,
(s ) ( )
( )
2
R Rc F c F
F i iF
i
s
VD s
 
 
 
Rough set[1]
[1]. Z. Pawlak, Rough sets, vol. 11, no. 5, pp. 341-356, 1982
Boundary area
Lower approximation set
Outer of decision boundary
Decision boundary
Fuzzy Rough set
[1]. D. Dubois, H. Prade, Rough fuzzy sets and fuzzy rough sets*, vol. 17,
no. 2-3, pp. 191-209, 1990
[2]. A. M. Radzikowska, E. E. Kerre, A comparative study of fuzzy rough
sets, Fuzzy Sets and Systems, vol. 126, no. 2, pp. 137-155, 2002
, , : ( , ) (max(0,1 ( , )))A a
x y X a A R x y T x y     
2
, : ( , ) ( ( ) ( ))a
x y X x y a x a y   
0 ( ) ( )
, : ( , )
1
a
if a x a y
x y X x y
else

 
   

, ,
(s ) inf ( ( , ), ( ))Rc F j i j
F i c i j F j
s DS s s
R s s s
  
 
 
,
,
(s ) ( ( , ), ( ))
Rc F
j i j
i c i j F jF
s DS s s
sup R s s s

  
 

Fuzzy rough lower and upper approximation membership
[1]. N. Verbiest, C. Cornelis, F. Herrera, FRPS: a fuzzy rough
prototype selection method, vol. 46, no. 10, pp. 2770-2782, 2013
, min
,
(s ) ( ( , ), ( ))Rc F
j i j
F i c i j F j
s DS s s
OWA R s s s
  
 

,
max
,
(s ) ( ( , ), ( ))
Rc F
j i j
i c i j F jF
s DS s s
OWA R s s s

  
 

An example
4 5 6 7 8
2
2.5
3
3.5
4
4.5
Feature 1 from iris
Feature2fromiris
Validation degree
0.8
0.85
0.9
0.95
The proposed methods
11/20
1
2
, ,
1
2 2
min ( , , ) ( )
1,...,
.
0 1,...,
i
L
i i i
R c
i
i i
i
OF R C R P VD s
s C R i L
s t
i L

 



 
     

  

Primary
problem
2 22 2
1 1 1
( , , , , ) ( ) ( )
L L L
i i i i i i i i i i
i i i
PP R C R P VD s R s C       
  
         
Samples
Center of SVDD
Support vector samples
Hyper sphere boundary
The proposed methods
12/20
3
L L L
R 0
i i i
i 1 i 1 i 1
PP
0 2R 2R 0 2R(1 ) 0 1
R

  

            

  
4 L
i
i 1
L L L
i i i i i
i 1 i 1 i 1
L
i iL L L1
i 1
i i i i iL
i 1 i 1 i 1
i
i 1
PP
0 ( 2s C 2 s 2 C
C
s
C 2 s C C s
  
 

  


                

 
         

  

  

5 i i
L L L L
i i i i i i
i 1 i 1 i 1 i 1i
0, 0
i i i i
PP
0 P.VD(s ) (P.VD(s )
P P.VD(s )
   
   

              

       
   
The proposed methods
13/20
6
1 1, 1
1
max ( . ) ( . )
0 ( ) 1,2,...,
.
1 1,2,...,
L L
i i i i j i j
i i j
i i
L
i
i
DP s s s s
VD s P i L
s t
i L
  


  

  
   


  

 

Quadratic
programming
7 ,s ,
[ (s . ) 2 ( . ) |SV | ( . )]/ |SV |
k i k i j
k k i i k i j i j
s SV s DS SV s s DS
R s s s s s  
   
     
8
2
,
(s . ) 2 ( . ) ( . )]
i i j
new new new i new i i j i j
s DS s s DS
s C s s s s s  
 
    
The proposed methods
14/20
-1 0 1 2 3 4 5 6 7 8 9 10
-2
-1
0
1
2
3
4
5
6
Iris(A1,A2),(A3,A4)
Feature 1
Feature2
Target
Outlier
2
,C,
1
2 2
min
.
0 1,...,
i
L
i
R
i
i i
i
i
F R P
s C R
s t
i L

 



 
    

  

The proposed methods
15/20
Initialization Loudness L, Maximum Number of Iteration MNI, and Pulse rates P1
Creation N bates with location xi in intervals of variables, x=( )
Solution=SVDD Accuracy (xi), i=1,…,N
Best=Max(Solution)
I=1
While (MNI<I)
For(i=1:N)
Adapt xi based on pulse frequency fi and velocity Vi
If (Random Number > P I
i)
xi = x Best + η*x Random, η=0.001
End if
xi =Check Boundary of Variable(xi)
New solution=SVDD Accuracy (xi)
If(New solution>=Best solution & Random Number > LI
i)
Solution i =New solution;
LI+1
i=ω*LI
i
PI+1
i =Sinusoidal map (PI
i)
End if
End for
I=I+1
Best=Max(Solution)
x Best solution= x Best
End While
Return SVDD(x Best solution)
i
[1]. A. H. Gandomi , X. S. Yang, Chaotic bat algorithm, Journal of Computational Science, vol. 5, no. 2, pp. 224-232, 2014
The proposed methods
16/20
Efficient
data structure
Not the end
Conclusions and Future work
17/20Conclusions and Future work
1. Sadeghi, R. & Hamidzadeh, J. (2015). Fuzzy rough support vector data
description. submitted in Pattern Recognition.
2. Sadeghi, R. & Hamidzadeh, J. (2015). Support Vector Data Description
based on Chaotic Bat Algorithm. submitted in Neurocomputing.
18/20Conclusions and Future work
Strengthening support vector classifiers based on fuzzy logic and evolutionary methods_Presentation
[1]. B. Razavi, Design of integrated circuits for optical communications, McGraw-Hill, 2003.
[1]. C. Aggarwal, Outlier analysis, Springer, 2013.
Extreme value
{3, 2 , 3, 2, 3, 87, 2, 2, 3, 3, 3, 84, 91, 86, 91, 81}
Probabilistic and statistical
Linear
Information theoretic
ABABABABABABABAB
ABABCBABABABABAB
[1]. V. Chandola, A. Banerjee, V. Kumar, Anomaly Detection: A Survey, ACM, 2009
[1]. Type of Outliers
Proximity-based [1]
High-Dimensional [2]
[1]. M. Ankerst, M. M. Breunig, H. P. Kriegel, J. Sander, OPTICS: Ordering Points To Identify the Clustering Structure, ACM,
1999
[2]. Y. Yuan, Q. Wang, Fast hyperspectral anomaly detection via high-order 2-D crossing filter, IEEE TRA., 2015
Supervised
BN, DT, HMM, SVM, SVD,SVDD, SVDD+, ANN
[1]. M. Moghtadaei, M. R. HashemiGolpayegani, R. Malekzadeh, A variable structure fuzzy neural network model of squamous
dysplasia and esophageal squamous cell carcinoma based on a global chaotic optimization algorithm, elsevier, 2013
[2]. X. Z. Wang, L. C. Dong, J. H. Yan, Maximum Ambiguity-Based Sample Selection in Fuzzy Decision Tree Induction, IEEE
TRA., 2012
FNN [1] MABS [2]
TAX thesis, pp. 80
TAX thesis, pp. 82
Strengthening support vector classifiers based on fuzzy logic and evolutionary methods_Presentation

More Related Content

PDF
Heuristic Algorithm for Finding Sensitivity Analysis in Interval Solid Transp...
PDF
Fuzzy Logic and Biometrics Traits Evaluation_AJOCICT
PDF
50120130406014
PDF
Fuzzy Logic based watermarking using non – blind HVS technique
PDF
On solving fuzzy delay differential equationusing bezier curves
PDF
RESEARCH ON WIND ENERGY INVESTMENT DECISION MAKING: A CASE STUDY IN JILIN
PDF
Paper id 71201927
PDF
On Fuzzy Soft Multi Set and Its Application in Information Systems
Heuristic Algorithm for Finding Sensitivity Analysis in Interval Solid Transp...
Fuzzy Logic and Biometrics Traits Evaluation_AJOCICT
50120130406014
Fuzzy Logic based watermarking using non – blind HVS technique
On solving fuzzy delay differential equationusing bezier curves
RESEARCH ON WIND ENERGY INVESTMENT DECISION MAKING: A CASE STUDY IN JILIN
Paper id 71201927
On Fuzzy Soft Multi Set and Its Application in Information Systems

What's hot (16)

PDF
Hp3313171323
PPT
Dicom standard-of-china 2011-03
PDF
CSC446: Pattern Recognition (LN5)
PDF
An adaptive-model-for-blind-image-restoration-using-bayesian-approach
PDF
Using HDDT to avoid instances propagation in unbalanced and evolving data str...
PDF
Me gate-15-paper-02 new2
PDF
In gate-2016-paper
PDF
A Study of Closure of An Operator
PDF
Reliability Based Optimum Design of a Gear Box
PDF
CSC446: Pattern Recognition (LN7)
PDF
Ssbse12a.ppt
PDF
CSC446: Pattern Recognition (LN4)
PDF
An application of gd
PDF
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETERO TRANSISTORS A THREE S...
PDF
The Cortisol Awakening Response Using Modified Proposed Method of Forecasting...
PDF
Fuzzy entropy based optimal
Hp3313171323
Dicom standard-of-china 2011-03
CSC446: Pattern Recognition (LN5)
An adaptive-model-for-blind-image-restoration-using-bayesian-approach
Using HDDT to avoid instances propagation in unbalanced and evolving data str...
Me gate-15-paper-02 new2
In gate-2016-paper
A Study of Closure of An Operator
Reliability Based Optimum Design of a Gear Box
CSC446: Pattern Recognition (LN7)
Ssbse12a.ppt
CSC446: Pattern Recognition (LN4)
An application of gd
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETERO TRANSISTORS A THREE S...
The Cortisol Awakening Response Using Modified Proposed Method of Forecasting...
Fuzzy entropy based optimal
Ad

Similar to Strengthening support vector classifiers based on fuzzy logic and evolutionary methods_Presentation (20)

PDF
A Fuzzy Interactive BI-objective Model for SVM to Identify the Best Compromis...
PDF
A FUZZY INTERACTIVE BI-OBJECTIVE MODEL FOR SVM TO IDENTIFY THE BEST COMPROMIS...
PPT
SVM (2).ppt
PPT
PPTX
super vector machines algorithms using deep
PPT
Introduction to Support Vector Machine 221 CMU.ppt
PDF
Epsrcws08 campbell kbm_01
PDF
Choosing allowability boundaries for describing objects in subject areas
PDF
A Novel Feature Selection with Annealing For Computer Vision And Big Data Lea...
PPT
Jörg Stelzer
PDF
Adaptive and online one class support vector machine-based outlier detection
PDF
Detecting outliers and anomalies in data streams
PPT
support-vector-machines.ppt
PDF
OPTIMAL CHOICE: NEW MACHINE LEARNING PROBLEM AND ITS SOLUTION
PDF
Fault detection of imbalanced data using incremental clustering
PPTX
Support Vector Machine Classifiers
PPTX
SVMs.pptx support vector machines machine learning
PDF
1607.01152.pdf
PPT
support-vector-machines_Machine_learning.ppt
PDF
Outlier detection method introduction
A Fuzzy Interactive BI-objective Model for SVM to Identify the Best Compromis...
A FUZZY INTERACTIVE BI-OBJECTIVE MODEL FOR SVM TO IDENTIFY THE BEST COMPROMIS...
SVM (2).ppt
super vector machines algorithms using deep
Introduction to Support Vector Machine 221 CMU.ppt
Epsrcws08 campbell kbm_01
Choosing allowability boundaries for describing objects in subject areas
A Novel Feature Selection with Annealing For Computer Vision And Big Data Lea...
Jörg Stelzer
Adaptive and online one class support vector machine-based outlier detection
Detecting outliers and anomalies in data streams
support-vector-machines.ppt
OPTIMAL CHOICE: NEW MACHINE LEARNING PROBLEM AND ITS SOLUTION
Fault detection of imbalanced data using incremental clustering
Support Vector Machine Classifiers
SVMs.pptx support vector machines machine learning
1607.01152.pdf
support-vector-machines_Machine_learning.ppt
Outlier detection method introduction
Ad

More from Reza Sadeghi (17)

PPTX
Predicting Subjective Sleep Quality Using Objective Measurements in Older Adults
PPTX
Sleep quality prediction in caregivers using physiological signals
PPTX
A review on early hospital mortality prediction using vital signals
PPTX
A review on Analyzing Multiple Medical Corpora Using Word Embedding
PPTX
Chase presentation
PPTX
Early hospital mortality prediction using vital signals
PPTX
Early hospital mortality prediction of intensive care unit patients using an ...
PPTX
A review on Exploiting experts’ knowledge for structure learning of bayesian ...
PPTX
Signal processing of heart signals
PDF
Strengthening support vector classifiers based on fuzzy logic and evolutionar...
PPTX
A review on typing on flat glass
PPTX
Protégé
PPTX
Web navigation based on markov and anthology
PPTX
Modeling, Simulation and Analysis of Fuzzy Systems in Mat lab
PPTX
Oracle log miner
PDF
Invitation for master thesis defence
PPTX
Secure routing for wireless NANs
Predicting Subjective Sleep Quality Using Objective Measurements in Older Adults
Sleep quality prediction in caregivers using physiological signals
A review on early hospital mortality prediction using vital signals
A review on Analyzing Multiple Medical Corpora Using Word Embedding
Chase presentation
Early hospital mortality prediction using vital signals
Early hospital mortality prediction of intensive care unit patients using an ...
A review on Exploiting experts’ knowledge for structure learning of bayesian ...
Signal processing of heart signals
Strengthening support vector classifiers based on fuzzy logic and evolutionar...
A review on typing on flat glass
Protégé
Web navigation based on markov and anthology
Modeling, Simulation and Analysis of Fuzzy Systems in Mat lab
Oracle log miner
Invitation for master thesis defence
Secure routing for wireless NANs

Recently uploaded (20)

PDF
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
PDF
Computing-Curriculum for Schools in Ghana
PDF
RMMM.pdf make it easy to upload and study
PDF
Pre independence Education in Inndia.pdf
PDF
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
PDF
Microbial disease of the cardiovascular and lymphatic systems
PPTX
GDM (1) (1).pptx small presentation for students
PDF
Classroom Observation Tools for Teachers
PDF
FourierSeries-QuestionsWithAnswers(Part-A).pdf
PPTX
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
PDF
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
PPTX
Microbial diseases, their pathogenesis and prophylaxis
PDF
01-Introduction-to-Information-Management.pdf
PPTX
Pharmacology of Heart Failure /Pharmacotherapy of CHF
PPTX
PPH.pptx obstetrics and gynecology in nursing
PDF
O7-L3 Supply Chain Operations - ICLT Program
PPTX
Cell Types and Its function , kingdom of life
PDF
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
PPTX
Lesson notes of climatology university.
PPTX
human mycosis Human fungal infections are called human mycosis..pptx
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
Computing-Curriculum for Schools in Ghana
RMMM.pdf make it easy to upload and study
Pre independence Education in Inndia.pdf
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
Microbial disease of the cardiovascular and lymphatic systems
GDM (1) (1).pptx small presentation for students
Classroom Observation Tools for Teachers
FourierSeries-QuestionsWithAnswers(Part-A).pdf
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
Microbial diseases, their pathogenesis and prophylaxis
01-Introduction-to-Information-Management.pdf
Pharmacology of Heart Failure /Pharmacotherapy of CHF
PPH.pptx obstetrics and gynecology in nursing
O7-L3 Supply Chain Operations - ICLT Program
Cell Types and Its function , kingdom of life
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
Lesson notes of climatology university.
human mycosis Human fungal infections are called human mycosis..pptx

Strengthening support vector classifiers based on fuzzy logic and evolutionary methods_Presentation

  • 2. 1. Introduction 2. Problem definition 3. Background 4. The proposed methods 5. Conclusion and future work
  • 3. 3/20 [1]. B. Razavi, Design of integrated circuits for optical communications, McGraw-Hill, 2003. Introduction
  • 4. 4/20 [1]. C. Aggarwal, Outlier analysis, Springer, 2013. [2]. V. Chandola, A. Banerjee, V. Kumar, Anomaly Detection: A Survey, ACM, 2009 [3]. J. Guo, W. Huang, B. M. Williams, Real time traffic flow outlier detection using short-term traffic conditional variance prediction, Transportation Research, Vol 50, 2015 [4]. J. A. Jablonski, T. J. Bihl, Principal Component Reconstruction Error for Hyperspectral Anomaly Detection, IEEE Geoscience and Remote Sensing Letters, 2015 [5]. A. E. Lazzaretti, H. V. Neto, V. H. Ferreira, An Accurate Approach for Automatic Segmentation of Power Distribution Voltage Waveforms, IEEE Transactions on Power Delivery, 2015 [6]. Z. Gao, C. Cecati, S. X. Ding, A Survey of Fault Diagnosis and Fault-Tolerant Techniques Part II: Fault Diagnosis with Knowledge-Based and Hybrid/Active Approaches, IEEE Transactions on Industrial Electronics, 2015 Data cleaning[1] Intrusion Detection Systems[2] Traffic management[3] Image processing[4] Distributed system[5] Fault diagnosis[6] Problem definition
  • 5. 5/20 SVM inability[1] [1]. R. Akbani1, S. Kwek1, N. Japkowicz, Applying Support Vector Machines to Imbalanced Datasets, Springer, 2004 Wrong dicisoin of K-NNOne-Class Classifiers [1]. M. A. F. Pimentel et al., A review of novelty detection, Signal Processing, Vol 99, 2014 [2]. D. M. J. TAX, One-class classification, Doctoral thesis, TD University Support Vector Data Description (SVDD) Samples Center of SVDD Support vector samples Hyper sphere boundary [1]. D. M. J. TAX, R. P. W. DUIN, Support Vector Data Description, Machine Learning, 2004 Problem definition
  • 6. 6/20 SVDD improvements Data structureKernel issue Density Kernel reduction SVDD-neg QP dividinghybrid Marginal Maximization Special kernels Hyper sphere boundary Non-stationary data Distance Fuzziness Multi hyper sphereHyper ellipse SV prioritization Background
  • 7. 7/20 [1]. Y. Forghani, H. Sadoghi Yazdi, S. Effati, An extension to fuzzy support vector data description-FSVDD, Pattern Analysis and Applications, vol. 15, no. 3, pp. 237-247, 2012. SVDD improvements Data structureKernel issue Density Kernel reduction SVDD-neg QP dividinghybrid Marginal Maximization Special kernels Hyper sphere boundary Non-stationary data Distance Fuzziness Multi hyper sphereHyper ellipse SV prioritization Background
  • 8. 8/20 [1]. M. GhasemiGol & et al., A New Support Vector Data Description with Fuzzy Constraints, in In Intelligent Systems, Modelling and Simulation (ISMS), International Conference on. IEEE, pp. 10- 14, 2010. [2]. Y. Allahyari, H. Sadoghi-Yazdi, Quasi Support Vector Data Description (QSVDD), International Journal of Signal Processing, Image Processing and Pattern Recognition, vol. 5, no. 3, September, 2012. [3]. B. Liu & et al., SVDD-based outlier detection on uncertain data, Knowledge and information systems, vol. 34, no. 3, pp. 597- 618, 2012. SVDD improvements Data structureKernel issue Density Kernel reduction SVDD-neg QP dividinghybrid Marginal Maximization Special kernels Hyper sphere boundary Non-stationary data Distance Fuzziness Multi hyper sphereHyper ellipse SV prioritization Background
  • 9. 9/20 [1]. L. K. Young & et al., Improving support vector data description using local density degree, Pattern Recognition, vol. 38, no. 10, p. 1768 – 1771, 2005 [2]. L. K. Young & et al., Density-Induced Support Vector Data Description, IEEE Transactions on Neural Networks, vol. 18, no. 1, JANUARY 2007. [3]. B. M. EL & et al., Support Vector Domain Description with a new confidence coefficient, in Intelligent Systems: Theories and Applications (SITA-14), 2014 9th International Conference on. IEEE, 2014, pp. 1- 8. [4]. C. Myungraee, K. J. Seok, B. J. Geol, Density weighted support vector data description, Expert Systems with Applications, vol. 41, no. 7, pp. 3343-3350, 2014. SVDD improvements Data structureKernel issue Density Kernel reduction SVDD-neg QP dividinghybrid Marginal Maximization Special kernels Hyper sphere boundary Non-stationary data Distance Fuzziness Multi hyper sphereHyper ellipse SV prioritization Background
  • 10. 10/20 , , (s ) ( ) ( ) 2 R Rc F c F F i iF i s VD s       Rough set[1] [1]. Z. Pawlak, Rough sets, vol. 11, no. 5, pp. 341-356, 1982 Boundary area Lower approximation set Outer of decision boundary Decision boundary Fuzzy Rough set [1]. D. Dubois, H. Prade, Rough fuzzy sets and fuzzy rough sets*, vol. 17, no. 2-3, pp. 191-209, 1990 [2]. A. M. Radzikowska, E. E. Kerre, A comparative study of fuzzy rough sets, Fuzzy Sets and Systems, vol. 126, no. 2, pp. 137-155, 2002 , , : ( , ) (max(0,1 ( , )))A a x y X a A R x y T x y      2 , : ( , ) ( ( ) ( ))a x y X x y a x a y    0 ( ) ( ) , : ( , ) 1 a if a x a y x y X x y else         , , (s ) inf ( ( , ), ( ))Rc F j i j F i c i j F j s DS s s R s s s        , , (s ) ( ( , ), ( )) Rc F j i j i c i j F jF s DS s s sup R s s s        Fuzzy rough lower and upper approximation membership [1]. N. Verbiest, C. Cornelis, F. Herrera, FRPS: a fuzzy rough prototype selection method, vol. 46, no. 10, pp. 2770-2782, 2013 , min , (s ) ( ( , ), ( ))Rc F j i j F i c i j F j s DS s s OWA R s s s       , max , (s ) ( ( , ), ( )) Rc F j i j i c i j F jF s DS s s OWA R s s s        An example 4 5 6 7 8 2 2.5 3 3.5 4 4.5 Feature 1 from iris Feature2fromiris Validation degree 0.8 0.85 0.9 0.95 The proposed methods
  • 11. 11/20 1 2 , , 1 2 2 min ( , , ) ( ) 1,..., . 0 1,..., i L i i i R c i i i i OF R C R P VD s s C R i L s t i L                    Primary problem 2 22 2 1 1 1 ( , , , , ) ( ) ( ) L L L i i i i i i i i i i i i i PP R C R P VD s R s C                     Samples Center of SVDD Support vector samples Hyper sphere boundary The proposed methods
  • 12. 12/20 3 L L L R 0 i i i i 1 i 1 i 1 PP 0 2R 2R 0 2R(1 ) 0 1 R                       4 L i i 1 L L L i i i i i i 1 i 1 i 1 L i iL L L1 i 1 i i i i iL i 1 i 1 i 1 i i 1 PP 0 ( 2s C 2 s 2 C C s C 2 s C C s                                                   5 i i L L L L i i i i i i i 1 i 1 i 1 i 1i 0, 0 i i i i PP 0 P.VD(s ) (P.VD(s ) P P.VD(s )                                      The proposed methods
  • 13. 13/20 6 1 1, 1 1 max ( . ) ( . ) 0 ( ) 1,2,..., . 1 1,2,..., L L i i i i j i j i i j i i L i i DP s s s s VD s P i L s t i L                          Quadratic programming 7 ,s , [ (s . ) 2 ( . ) |SV | ( . )]/ |SV | k i k i j k k i i k i j i j s SV s DS SV s s DS R s s s s s             8 2 , (s . ) 2 ( . ) ( . )] i i j new new new i new i i j i j s DS s s DS s C s s s s s          The proposed methods
  • 14. 14/20 -1 0 1 2 3 4 5 6 7 8 9 10 -2 -1 0 1 2 3 4 5 6 Iris(A1,A2),(A3,A4) Feature 1 Feature2 Target Outlier 2 ,C, 1 2 2 min . 0 1,..., i L i R i i i i i F R P s C R s t i L                   The proposed methods
  • 15. 15/20 Initialization Loudness L, Maximum Number of Iteration MNI, and Pulse rates P1 Creation N bates with location xi in intervals of variables, x=( ) Solution=SVDD Accuracy (xi), i=1,…,N Best=Max(Solution) I=1 While (MNI<I) For(i=1:N) Adapt xi based on pulse frequency fi and velocity Vi If (Random Number > P I i) xi = x Best + η*x Random, η=0.001 End if xi =Check Boundary of Variable(xi) New solution=SVDD Accuracy (xi) If(New solution>=Best solution & Random Number > LI i) Solution i =New solution; LI+1 i=ω*LI i PI+1 i =Sinusoidal map (PI i) End if End for I=I+1 Best=Max(Solution) x Best solution= x Best End While Return SVDD(x Best solution) i [1]. A. H. Gandomi , X. S. Yang, Chaotic bat algorithm, Journal of Computational Science, vol. 5, no. 2, pp. 224-232, 2014 The proposed methods
  • 16. 16/20 Efficient data structure Not the end Conclusions and Future work
  • 18. 1. Sadeghi, R. & Hamidzadeh, J. (2015). Fuzzy rough support vector data description. submitted in Pattern Recognition. 2. Sadeghi, R. & Hamidzadeh, J. (2015). Support Vector Data Description based on Chaotic Bat Algorithm. submitted in Neurocomputing. 18/20Conclusions and Future work
  • 20. [1]. B. Razavi, Design of integrated circuits for optical communications, McGraw-Hill, 2003.
  • 21. [1]. C. Aggarwal, Outlier analysis, Springer, 2013.
  • 22. Extreme value {3, 2 , 3, 2, 3, 87, 2, 2, 3, 3, 3, 84, 91, 86, 91, 81} Probabilistic and statistical Linear Information theoretic ABABABABABABABAB ABABCBABABABABAB [1]. V. Chandola, A. Banerjee, V. Kumar, Anomaly Detection: A Survey, ACM, 2009 [1]. Type of Outliers
  • 23. Proximity-based [1] High-Dimensional [2] [1]. M. Ankerst, M. M. Breunig, H. P. Kriegel, J. Sander, OPTICS: Ordering Points To Identify the Clustering Structure, ACM, 1999 [2]. Y. Yuan, Q. Wang, Fast hyperspectral anomaly detection via high-order 2-D crossing filter, IEEE TRA., 2015
  • 24. Supervised BN, DT, HMM, SVM, SVD,SVDD, SVDD+, ANN [1]. M. Moghtadaei, M. R. HashemiGolpayegani, R. Malekzadeh, A variable structure fuzzy neural network model of squamous dysplasia and esophageal squamous cell carcinoma based on a global chaotic optimization algorithm, elsevier, 2013 [2]. X. Z. Wang, L. C. Dong, J. H. Yan, Maximum Ambiguity-Based Sample Selection in Fuzzy Decision Tree Induction, IEEE TRA., 2012 FNN [1] MABS [2]