SlideShare a Scribd company logo
Prolog Programming
2
Prolog ProgrammingProlog Programming
 DATA STRUCTURES IN PROLOG
 PROGRAMMING TECHNIQUES
 CONTROL IN PROLOG
 CUTS
3
DATA STRUCTURES IN
PROLOG
 Lists in Prolog
List notation is a way of writing terms
 Terms as Data
Term correspond with list
4
Lists in Prolog
 The simplest way of writing a list is to
enumerate its elements.
The list consisting of the 3 atoms a, b and c can be
written as
[a, b, c]
The list that doesn’t have elements called empty
list denoted as [ ]
5
Lists in Prolog
 We can also specify an initial sequence of
elements and a trailing list, separated by |
The list [a, b, c] can also be written as
[a, b, c | [ ] ]
[a, b | [c] ]
[a | [b, c] ]
6
Lists : Head & Tail
 A special case of this notation is a list with
head H and tail T, written as [H|T]
 The head is the first element of a list, and
 The tail is the list consisting of the remaining
elements.
The list [a, b, c] can also be separated as
• Head:The first element is a
• Tail:The list of remaining elements = [b, c]
7
Lists : Unification
 Unification can be used to extract the
components of a list, so explicit operators for
extracting the head and tail are not needed.
The solution of the query
 Bind variable H to the head and variable T to
the tail of list [a, b, c].
?- [H | T] = [a, b, c].
H = a
T = [b, c]
8
Lists : Specified terms
 The query (partially specified terms)
 The term [ a | T ] is a partial specification of a
list with head a and unknown tail denoted by
variable T.
 Similarly, [ H, b, c] is a partial specification of a
list with unknown head H and tail [b, c].
 These two specification to unify H = a, T =[b,c]
?- [a | T] = [H, b, c].
T = [b, c]
H = a
9
Lists in Prolog
 Example 2 The append relation on lists is
defined by the following rules:
Append([ ], Y, Y).
Append([H | X], Y, [H | Z]) :- append(X,Y,Z).
In words,
The result of appending the empty list [ ] and a list Y is Y.
If the result of appending X and Y is Z, then
the result of appending [H | X] and Y is [H | Z]
10
Lists : Compute Arguments
 The rules for append can be used to compute
any one of the arguments from the other two:
 Inconsistent arguments are rejected
?- append([a, b], [c, d], Z).
Z = [a, b, c, d]
?- append([a, b], Y, [a, b, c, d]).
Y = [c, d]
?- append(X, [c, d], [a, b, c, d]).
X = [a, b]
?- append(X, [d, c], [a, b, c, d]).
no
11
Terms as Data
 The Dot operator or functor ‘.’ corresponds to
make list with H and T.
 [H | T ] is syntactic sugar for the term .(H,T)
 Lists are terms. The term for the list [a, b, c] is
.(H,T)
.(a, .(b, .(c, [])))
12
Terms as Data
 following terms can be drawn a tree
 There is a one-to-one correspondence
between trees and terms
.(a, .(b, .(c, [])))
∙
∙
∙
a
b
c []
13
Terms : Binary Tree
 Binary trees can be written as terms
 An atom leaf for a leaf
 A functor nonleaf with 2 arguments
leaf
nonleaf(leaf,leaf)
nonleaf(nonleaf(leaf,leaf), nonleaf(leaf,leaf))
nonleaf(nonleaf(leaf,leaf),leaf)
nonleaf(leaf,nonleaf(leaf,leaf))
14
List : tree
 Example 3 A binary search tree is either
empty, or it consists of a node with two binary
search trees as subtrees.
 Each node holds an integer.
 Smaller elements appear in the left subtree of
a node and larger elements appear in the right
subtree.
 Let a term node(K,S,T) represent a tree
K
S T
15
Binary search trees
15
2 16
10
129
0
3
19
10
2 12
9
153
0 16
3
16
Binary search trees
 The rules define a relation member to test
whether an integer appear at some node in a
tree. The two arguments of member are an
integer and a tree.
member(K,_,_).
member(K, node(N,S,_)) :- K < N, member(K, S).
member(K, node(N,_,T)) :- K > N, member(K, T).
17
PROGRAMMING TECHNIQUES
 The strengths of Prolog namely, backtracking
and unification.
 Backtracking allows a solution to be found if
one exists
 Unification allows variables to be used as
placeholders for data to be filled in later.
 Careful use of the techniques in this section
can lead to efficient programs. The programs
rely on left-to-right evaluation of subgoals.
18
Guess and Verify
 A guess-and-verify query has the form
Where guess(S) and verify(S) are subgoals.
 Prolog respond to a query by generating
solutions to guess(S) until a solution satisfying
verify(S) is found. Such queries are also called
generate-and-test queries.
Is there an S such that
guess(S) and verify(S)?
19
Guess and Verify
 Similarly, a guess-and-verify rule has the
following form:
 Example
Conslusion(…) if guess(…,S,…) and verify(…,S,…)
overlap(X, Y) :- member(M, X), member(M, Y).
Two lists X and Y overlap if there is some M that is a
member of both X and Y. The first goal member(M, X)
guesses an M from list X, and the second goal member(M,
Y) verifies that M also appears in list Y.
20
 The rules for member are
member(M, [M |_]).
Member(M, [_ |T]) :- member(M, T).
The first rule says that M is a member of a list with head
M. The second rule says that M is a member of a list if M
is a member of its tail T.
21
Consider query
 These query
 The first goal in this query generates
solutions and the second goal tests to see
whether they are acceptable.
?- overlap([a,b,c,d],[1,2,c,d]).
yes
?- member(M,[a,b,c,d]),member(M,[1,2,c,d]).
22
Consider query
 The solutions generated by the first goal are
 Test the second goal
?- member(M,[a,b,c,d]).
M = a;
M = b;
M = c;
M = d;
no
?- member(a,[1,2,c,d]).
no
?- member(b,[1,2,c,d]).
no
?- member(c,[1,2,c,d]).
yes
23
Hint
 Since computation in Prolog proceeds from
left to right, the order of the subgoals in a
guess-and-verify query can affect efficiency.
 Choose the subgoal with fewer solutions as
the guess goal.
 Example of the effect of goal order
?- X = [1,2,3], member(a,X).
no
?- member(a,X), X = [1,2,3]).
[infinite computation]
24
Variables as Placeholders in Terms
 Variables have been used in rules and
queries but not in terms representing objects.
 Terms containing varibales can be used to
simulate modifiable data structures;
 The variables serve as placeholders for
subterms to be filled in later.
25
Represent Binary Trees in Terms
 The terms leaf and nonleaf(leaf,leaf)
are completely specified.
leaf
nonleaf(leaf,leaf)
26
Partially specified list
 The example list [a, b | X] has
 Its first element : a
 Its second element : b
 Do not yet know what X represents
 “Open list” if its ending in a variable, referred
“end marker variable”
 “Close list” if it is not open.
27
How prolog know variable
 Prolog used machine-generated variables,
written with a leading underscore (“_”)
followed by an integer.
?- L = [a, b | X].
L = [a, |_G172]
X = _G172
Yes
28
 Prolog generates fresh variables each time it
responds to a query or applies a rule.
 An open list can be modified by unifying its
end marker
?- L = [a, b | X], X = [c,Y].
L = [a,b,c |_G236]
X = [c,_G236]
Y = _G236
Yes
29
 Extending an open list by unifying its end
marker.
a b
L X
_172
a b
L X
_236
c
(a) Before X is bound. (b) After X = [c | Y].
30
 Unification of an end-marker variable is akin
to an assignment to that variable.
 List L changes from
[a, b | _172]  [a, b, c | _236]
when _172 unifies with [c | _236]
 Advantage of working with open lists is that
the end of a list can be accessed quickly.
31
Open list implement queues
when a queue is created, where L is an open list with
end marker E
When element a enters queue Q, we get queue R.
When element a leaves queue Q, we get queue R.
q(L,E)
enter(a,Q,R)
leave(a,Q,R)
32
Open list implement queue
?- setup(Q).
?- setup(Q), enter(a,Q,R).
?- setup(Q), enter(a,Q,R), leave(S,R,T).
?- setup(Q), enter(a,Q,R), enter(b,R,S),
leave(X,S,T),leave(Y,T,U), wrapup(q([],[])).
setup(q(X,X)).
enter(A, q(X,Y), q(X,Z)) :- Y = [A | Z].
leave(A, q(X,Z), q(Y,Z)) :- Y = [A | Y].
wrapup(q([],[])).
33
Test queue
?-setup(Q),enter(a,Q,R),enter(b,R,S),leave(X,S,T),
leave(Y,T,U),wrapup(U).
Q = q([a, b], [a, b])
R = q([a, b], [b])
S = q([a, b], [])
X = a
T = q([b], [])
Y = b
U = q([], [])
Yes
?-
34
Operations on a queue
Q
_1
R
_2
a
a
T
_3
b
Q
Q R
setup(Q)
enter(a,Q,R)
enter(b,R,S)
35
Operations on a queue
a
T
_3
b
X
leave(X,S,T)
a
T
_3
b
Y
leave(Y,T,U)
36
Internal Prolog
 A queue q(L,E) consists of open list L with
end marker E.
 The arrows from Q therefore go to the empty
open list _1 with end marker _1.
setup(q(X,X)).
?-setup(Q).
Q = q(_1,_1)
yes
37
Second goal
 To enter A into a queue q(X,Y),
bind Y to a list [A|Z],
where Z is a fresh end marker,
and return q(X,Z).
enter(A,q(X,Y),q(X,Z)):- Y = [A|Z].
?-setup(Q),enter(a,Q,R).
Q = q([a|_2], [a|_2])
R = q([a|_2], _2)
Unifies _1 with [a|_2],where _2 is a fresh end marker
38
 When an element leaves a queue q(L,E), the
resulting queue has the tail of L in place of L.
Note in the diagram to the right of
leave(X,S,T) that the open list for queue T is
the tail of the open list for S.
 The final goal wrapup(U) checks that the
enter and leave operations leave U in an
initial state q(L,E), where L is an empty
openlist with end marker E.
39
Difference Lists
 Difference List are a technique for coping with
such changes.
 Difference List consists of a list and its suffix.
 We write this difference list as
dl(L,E).
40
Contents of Difference List
 The contents of the difference list consist of
the elements that are in L but not in E.
 Examples of difference lists with contents
[a,b] are
dl([a,b],[]).
Dl([a,b,c],[c]).
Dl([a,b|E],E).
Dl([a,b,c|F],[c|F]).
41
CONTROL IN PROLOG
 In the informal equation
 “Logic” refers to the rules and queries in a
logic program and
 “control” refers to how a language computes
a response to a query.
algorithm = logic + control
42
CONTROL IN PROLOG
 Control in Prolog is characterized by two
decisions
 Goal order : Choose the leftmost subgoal.
 Rule order : Select the first applicable rule.
 The response to a query is affected both by
goal order within the query and by rule order
with in the database of facts and rules.
43
CONTROL IN PROLOG
start with a query as the current goal;
while the current goal is nonempty do
choose the leftmost subgoal;
if a rule applies to the subgoal then
select the first applicable rule;
form a new current goal
else
backtrack
end if
end while;
succeed
44
Example
 A sublist S of Z can be specified in the
following seemingly equivalent ways:
 preffix X of Z and suffix S of X.
 suffix S of X and prefix X of Z.
appen1([],Y,Y).
appen1([H|X],Y,[H|Z]):- appen1(X,Y,Z).
Prefix(X,Z) :- appen1(X,Y,Z).
Suffix(Y,Z) :- appen1(X,Y,Z).
appen2([H|X],Y,[H|Z]):- appen2(X,Y,Z).
appen2([],Y,Y).
45
Queries
 The corresponding queries usually produce
the same responses.
 Rule order can also make a difference.
?-prefix(X,[a,b,c]),suffix([e],X).
no
?-suffix([e],X),prefix(X,[a,b,c]).
[infinite computation]
46
Queries
?- appen1(X,[c],Z).
X = []
Z = [c] ;
X = [_G230]
Z = [_G230, c] ;
X = [_G230, _G236]
Z = [_G230, _G236, c] ;
?- appen2(X,[c],Z).
 New Solutions are produced on demand for
47
Unification an Substitutions
 Unification is central to control in Prolog
 Substitution is a function from variables to
terms
48
Applying a Rule to a Goal
 A rule applies to a
subgoal G if its head A unifies with G
 Variables in the rule are renamed before
unification to keep them distinct from
variables in the subgoal.
A :- B1, B2, …, Bn
49
A computation that succeeds without backtracking
GOAL
Suffix([a],L),prefix(L,[a,b,c]).
suffix([a],L) if append(_1,[a],L).
Append(_1,[a],L),prefix(L,[a,b,c]).
{_1[],L[a]} append([],[a],[a]).
Prefix([a],[a,b,c]).
prefix([a],[a,b,c]) if append([a],_2,[a,b,c])
append([a],_2,[a,b,c]).
prefix([a],[a,b,c]) if append([],_2,[b,c])
Append([],_2,[b,c]).
{_2[b,c]} append([],[b,c],[b,c])
yes
50
Prolog Search Trees
51
Goal Order Changes Solutions
52
Cuts
 A cut prunes or “cuts out” and unexplored
part of a Prolog search tree.
 Cuts can therefore be used to make a
computation more efficient by eliminating
futile searching and backtracking.
 Cuts can also be used to implement a form of
negation
53
Cuts
 A cut, written as !, appears as a condition
within a rule. When rule
is applied, the cut tells control to backtrack
past Cj-1,…,C1,B, without considering any
remaining rules for them.
B :- C1,…, Cj-1, !,Cj+1,…,Ck
54
A cut as the First Condition
 Consider rules of the form
 If the goal C fails, then control backtracks
past B without considering any remaining
rules for B. Thus the cut has the effect of
making B fail if C fails.
B :- !, C.
55
Example
b :- c.
b :- d.
b :- e.
b,G
c,G e,G
X
d,G!,d,G
d,G
b :- c.
b :- !,d.
b :- e.
56
Example
 ?-a(X).
a(1) :- b;
a(2) :- e;
b :- c.
b :- d.
a(1) :- b;
a(2) :- e;
b :- !,c.
b :- d.
a(X)
b e
c d Yes
X=2Yes
X=1
backtrack
a(X)
b e
!c d Yes
X=2
backtrack
c
57
The Effect of Cut
 As mentioned earlier, when a rule
is applied during a computation
 The cut tells control to backtrack past Cj-
1,..C1,B without considering any remaining
rules for them.
 The effect of inserting a cut in the middle of a
guess-and-verify rule.
B :- C1,…, Cj-1, !,Cj+1,…,Ck
58
The Effect of Cut
 The right side of a guess-and-verify rule has
the form guess(S), verify(S), where guess(S)
generates potential solutions until one
satisfying verify(S) is found.
 The effect of insering a cut between them, as
is to eliminate all but the first guess.
Conclusion(S) :- guess(S), !, verify(S)
59
a(X) :- b(X).
a(X) :- f(X).
b(X) :- g(X),v(X).
b(X) :- X = 4, v(X).
g(1).
g(2).
g(3).
v(X).
f(5)
a(X) :- b(X).
a(X) :- f(X).
b(X) :- g(X),!,v(X).
b(X) :- X = 4, v(X).
g(1).
g(2).
g(3).
v(X).
f(5)
(a) (b)
60
a(Z)
b(Z) f(5)
g(Z),v(Z) v(4)
v(1) v(2) v(3)
a(Z)
b(Z) f(5)
g(Z),!,v(Z) v(4)
!v(X)
v(1)
v(2) v(3)
(a) (b)
61
Negation as Failure
 The not operator in Prolog is implemented by
the rules
not(X) :- X, !, fail.
not(_).

More Related Content

PDF
Discrete Mathematics with Applications 4th Edition Susanna Solutions Manual
PPT
Functions And Relations
PPT
1.4 review on log exp-functions
PDF
Discrete Mathematics and Its Applications 7th Edition Rose Solutions Manual
PPTX
Discrete Math Chapter 2: Basic Structures: Sets, Functions, Sequences, Sums, ...
PPTX
Relation and function_xii
PPT
1. set theory
PPTX
Relations & functions.pps
Discrete Mathematics with Applications 4th Edition Susanna Solutions Manual
Functions And Relations
1.4 review on log exp-functions
Discrete Mathematics and Its Applications 7th Edition Rose Solutions Manual
Discrete Math Chapter 2: Basic Structures: Sets, Functions, Sequences, Sums, ...
Relation and function_xii
1. set theory
Relations & functions.pps

What's hot (16)

PPT
Functions And Relations
PPT
Relations and functions
PPTX
SETS [Algebra]
PPTX
Set operations
PPTX
9 the basic language of functions x
PPTX
05 tat math class xi_r&f-1_for website
PPTX
Sets, functions and groups
PPT
Mkk1013 chapter 2.1
PPT
Prolog programming
PPTX
2.2 Set Operations
PPTX
5 algebra of functions
DOCX
PDF
Chapter 1 Functions Relations V3
PPTX
Relations and functions
PPTX
Introduction of set
PPTX
27 calculation with log and exp x
Functions And Relations
Relations and functions
SETS [Algebra]
Set operations
9 the basic language of functions x
05 tat math class xi_r&f-1_for website
Sets, functions and groups
Mkk1013 chapter 2.1
Prolog programming
2.2 Set Operations
5 algebra of functions
Chapter 1 Functions Relations V3
Relations and functions
Introduction of set
27 calculation with log and exp x
Ad

Similar to Prolog programming (20)

PPT
PROLOGPROLOGPROLOGPROLOGPROLOGPROLOGPROLOGPROLOGPROLOG
DOCX
AI Lab Manual.docx
PDF
10 logic+programming+with+prolog
PPTX
Prolog 7-Languages
PPTX
Introduction to Prolog
DOCX
Prolog_Programminvfygugy7gtugbugtg_Notes.docx
PPT
Chaps 1-3-ai-prolog
PDF
"That scripting language called Prolog"
PPTX
PROLOG: Recursion And Lists In Prolog
PPTX
PROLOG: Recursion And Lists In Prolog
DOCX
COMM 166 Final Research Proposal GuidelinesThe proposal should.docx
PPTX
UOS-BSIT-3811-Artificial-Intelligence-Introduction-to-prolog-PDF.pptx
DOCX
COMM 166 Final Research Proposal GuidelinesThe proposal should.docx
DOCX
COMM 166 Final Research Proposal GuidelinesThe proposal should.docx
PPTX
PROLOG: Introduction To Prolog
PDF
Prolog,Prolog Programming IN AI.pdf
PPTX
Introduction on Prolog - Programming in Logic
PDF
PROLOG in artificial intelligence(Basic of pprolog)).pdf
PPTX
Introduction to Prolog
PPTX
Artificial Intelligence and Expert System
PROLOGPROLOGPROLOGPROLOGPROLOGPROLOGPROLOGPROLOGPROLOG
AI Lab Manual.docx
10 logic+programming+with+prolog
Prolog 7-Languages
Introduction to Prolog
Prolog_Programminvfygugy7gtugbugtg_Notes.docx
Chaps 1-3-ai-prolog
"That scripting language called Prolog"
PROLOG: Recursion And Lists In Prolog
PROLOG: Recursion And Lists In Prolog
COMM 166 Final Research Proposal GuidelinesThe proposal should.docx
UOS-BSIT-3811-Artificial-Intelligence-Introduction-to-prolog-PDF.pptx
COMM 166 Final Research Proposal GuidelinesThe proposal should.docx
COMM 166 Final Research Proposal GuidelinesThe proposal should.docx
PROLOG: Introduction To Prolog
Prolog,Prolog Programming IN AI.pdf
Introduction on Prolog - Programming in Logic
PROLOG in artificial intelligence(Basic of pprolog)).pdf
Introduction to Prolog
Artificial Intelligence and Expert System
Ad

More from Tony Nguyen (20)

PPTX
Object oriented analysis
PPTX
Directory based cache coherence
PPTX
Business analytics and data mining
PPTX
Big picture of data mining
PPTX
Data mining and knowledge discovery
PPTX
Cache recap
PPTX
How analysis services caching works
PPTX
Hardware managed cache
PPT
Abstract data types
PPTX
Optimizing shared caches in chip multiprocessors
PPT
Abstract class
PPTX
Abstraction file
PPTX
Object model
PPTX
Concurrency with java
PPTX
Data structures and algorithms
PPTX
Inheritance
PPTX
Object oriented programming-with_java
PPTX
Cobol, lisp, and python
PPTX
Extending burp with python
PPTX
Api crash
Object oriented analysis
Directory based cache coherence
Business analytics and data mining
Big picture of data mining
Data mining and knowledge discovery
Cache recap
How analysis services caching works
Hardware managed cache
Abstract data types
Optimizing shared caches in chip multiprocessors
Abstract class
Abstraction file
Object model
Concurrency with java
Data structures and algorithms
Inheritance
Object oriented programming-with_java
Cobol, lisp, and python
Extending burp with python
Api crash

Recently uploaded (20)

PDF
MIND Revenue Release Quarter 2 2025 Press Release
PDF
Mobile App Security Testing_ A Comprehensive Guide.pdf
PDF
The Rise and Fall of 3GPP – Time for a Sabbatical?
PPTX
Spectroscopy.pptx food analysis technology
PDF
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
PDF
Diabetes mellitus diagnosis method based random forest with bat algorithm
PDF
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
PPTX
MYSQL Presentation for SQL database connectivity
PPTX
Programs and apps: productivity, graphics, security and other tools
PDF
KodekX | Application Modernization Development
PDF
NewMind AI Weekly Chronicles - August'25 Week I
DOCX
The AUB Centre for AI in Media Proposal.docx
PPTX
Big Data Technologies - Introduction.pptx
PPTX
Digital-Transformation-Roadmap-for-Companies.pptx
PDF
Empathic Computing: Creating Shared Understanding
PDF
Network Security Unit 5.pdf for BCA BBA.
PDF
Encapsulation theory and applications.pdf
PDF
Review of recent advances in non-invasive hemoglobin estimation
PDF
How UI/UX Design Impacts User Retention in Mobile Apps.pdf
PDF
Encapsulation_ Review paper, used for researhc scholars
MIND Revenue Release Quarter 2 2025 Press Release
Mobile App Security Testing_ A Comprehensive Guide.pdf
The Rise and Fall of 3GPP – Time for a Sabbatical?
Spectroscopy.pptx food analysis technology
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
Diabetes mellitus diagnosis method based random forest with bat algorithm
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
MYSQL Presentation for SQL database connectivity
Programs and apps: productivity, graphics, security and other tools
KodekX | Application Modernization Development
NewMind AI Weekly Chronicles - August'25 Week I
The AUB Centre for AI in Media Proposal.docx
Big Data Technologies - Introduction.pptx
Digital-Transformation-Roadmap-for-Companies.pptx
Empathic Computing: Creating Shared Understanding
Network Security Unit 5.pdf for BCA BBA.
Encapsulation theory and applications.pdf
Review of recent advances in non-invasive hemoglobin estimation
How UI/UX Design Impacts User Retention in Mobile Apps.pdf
Encapsulation_ Review paper, used for researhc scholars

Prolog programming

  • 2. 2 Prolog ProgrammingProlog Programming  DATA STRUCTURES IN PROLOG  PROGRAMMING TECHNIQUES  CONTROL IN PROLOG  CUTS
  • 3. 3 DATA STRUCTURES IN PROLOG  Lists in Prolog List notation is a way of writing terms  Terms as Data Term correspond with list
  • 4. 4 Lists in Prolog  The simplest way of writing a list is to enumerate its elements. The list consisting of the 3 atoms a, b and c can be written as [a, b, c] The list that doesn’t have elements called empty list denoted as [ ]
  • 5. 5 Lists in Prolog  We can also specify an initial sequence of elements and a trailing list, separated by | The list [a, b, c] can also be written as [a, b, c | [ ] ] [a, b | [c] ] [a | [b, c] ]
  • 6. 6 Lists : Head & Tail  A special case of this notation is a list with head H and tail T, written as [H|T]  The head is the first element of a list, and  The tail is the list consisting of the remaining elements. The list [a, b, c] can also be separated as • Head:The first element is a • Tail:The list of remaining elements = [b, c]
  • 7. 7 Lists : Unification  Unification can be used to extract the components of a list, so explicit operators for extracting the head and tail are not needed. The solution of the query  Bind variable H to the head and variable T to the tail of list [a, b, c]. ?- [H | T] = [a, b, c]. H = a T = [b, c]
  • 8. 8 Lists : Specified terms  The query (partially specified terms)  The term [ a | T ] is a partial specification of a list with head a and unknown tail denoted by variable T.  Similarly, [ H, b, c] is a partial specification of a list with unknown head H and tail [b, c].  These two specification to unify H = a, T =[b,c] ?- [a | T] = [H, b, c]. T = [b, c] H = a
  • 9. 9 Lists in Prolog  Example 2 The append relation on lists is defined by the following rules: Append([ ], Y, Y). Append([H | X], Y, [H | Z]) :- append(X,Y,Z). In words, The result of appending the empty list [ ] and a list Y is Y. If the result of appending X and Y is Z, then the result of appending [H | X] and Y is [H | Z]
  • 10. 10 Lists : Compute Arguments  The rules for append can be used to compute any one of the arguments from the other two:  Inconsistent arguments are rejected ?- append([a, b], [c, d], Z). Z = [a, b, c, d] ?- append([a, b], Y, [a, b, c, d]). Y = [c, d] ?- append(X, [c, d], [a, b, c, d]). X = [a, b] ?- append(X, [d, c], [a, b, c, d]). no
  • 11. 11 Terms as Data  The Dot operator or functor ‘.’ corresponds to make list with H and T.  [H | T ] is syntactic sugar for the term .(H,T)  Lists are terms. The term for the list [a, b, c] is .(H,T) .(a, .(b, .(c, [])))
  • 12. 12 Terms as Data  following terms can be drawn a tree  There is a one-to-one correspondence between trees and terms .(a, .(b, .(c, []))) ∙ ∙ ∙ a b c []
  • 13. 13 Terms : Binary Tree  Binary trees can be written as terms  An atom leaf for a leaf  A functor nonleaf with 2 arguments leaf nonleaf(leaf,leaf) nonleaf(nonleaf(leaf,leaf), nonleaf(leaf,leaf)) nonleaf(nonleaf(leaf,leaf),leaf) nonleaf(leaf,nonleaf(leaf,leaf))
  • 14. 14 List : tree  Example 3 A binary search tree is either empty, or it consists of a node with two binary search trees as subtrees.  Each node holds an integer.  Smaller elements appear in the left subtree of a node and larger elements appear in the right subtree.  Let a term node(K,S,T) represent a tree K S T
  • 15. 15 Binary search trees 15 2 16 10 129 0 3 19 10 2 12 9 153 0 16 3
  • 16. 16 Binary search trees  The rules define a relation member to test whether an integer appear at some node in a tree. The two arguments of member are an integer and a tree. member(K,_,_). member(K, node(N,S,_)) :- K < N, member(K, S). member(K, node(N,_,T)) :- K > N, member(K, T).
  • 17. 17 PROGRAMMING TECHNIQUES  The strengths of Prolog namely, backtracking and unification.  Backtracking allows a solution to be found if one exists  Unification allows variables to be used as placeholders for data to be filled in later.  Careful use of the techniques in this section can lead to efficient programs. The programs rely on left-to-right evaluation of subgoals.
  • 18. 18 Guess and Verify  A guess-and-verify query has the form Where guess(S) and verify(S) are subgoals.  Prolog respond to a query by generating solutions to guess(S) until a solution satisfying verify(S) is found. Such queries are also called generate-and-test queries. Is there an S such that guess(S) and verify(S)?
  • 19. 19 Guess and Verify  Similarly, a guess-and-verify rule has the following form:  Example Conslusion(…) if guess(…,S,…) and verify(…,S,…) overlap(X, Y) :- member(M, X), member(M, Y). Two lists X and Y overlap if there is some M that is a member of both X and Y. The first goal member(M, X) guesses an M from list X, and the second goal member(M, Y) verifies that M also appears in list Y.
  • 20. 20  The rules for member are member(M, [M |_]). Member(M, [_ |T]) :- member(M, T). The first rule says that M is a member of a list with head M. The second rule says that M is a member of a list if M is a member of its tail T.
  • 21. 21 Consider query  These query  The first goal in this query generates solutions and the second goal tests to see whether they are acceptable. ?- overlap([a,b,c,d],[1,2,c,d]). yes ?- member(M,[a,b,c,d]),member(M,[1,2,c,d]).
  • 22. 22 Consider query  The solutions generated by the first goal are  Test the second goal ?- member(M,[a,b,c,d]). M = a; M = b; M = c; M = d; no ?- member(a,[1,2,c,d]). no ?- member(b,[1,2,c,d]). no ?- member(c,[1,2,c,d]). yes
  • 23. 23 Hint  Since computation in Prolog proceeds from left to right, the order of the subgoals in a guess-and-verify query can affect efficiency.  Choose the subgoal with fewer solutions as the guess goal.  Example of the effect of goal order ?- X = [1,2,3], member(a,X). no ?- member(a,X), X = [1,2,3]). [infinite computation]
  • 24. 24 Variables as Placeholders in Terms  Variables have been used in rules and queries but not in terms representing objects.  Terms containing varibales can be used to simulate modifiable data structures;  The variables serve as placeholders for subterms to be filled in later.
  • 25. 25 Represent Binary Trees in Terms  The terms leaf and nonleaf(leaf,leaf) are completely specified. leaf nonleaf(leaf,leaf)
  • 26. 26 Partially specified list  The example list [a, b | X] has  Its first element : a  Its second element : b  Do not yet know what X represents  “Open list” if its ending in a variable, referred “end marker variable”  “Close list” if it is not open.
  • 27. 27 How prolog know variable  Prolog used machine-generated variables, written with a leading underscore (“_”) followed by an integer. ?- L = [a, b | X]. L = [a, |_G172] X = _G172 Yes
  • 28. 28  Prolog generates fresh variables each time it responds to a query or applies a rule.  An open list can be modified by unifying its end marker ?- L = [a, b | X], X = [c,Y]. L = [a,b,c |_G236] X = [c,_G236] Y = _G236 Yes
  • 29. 29  Extending an open list by unifying its end marker. a b L X _172 a b L X _236 c (a) Before X is bound. (b) After X = [c | Y].
  • 30. 30  Unification of an end-marker variable is akin to an assignment to that variable.  List L changes from [a, b | _172]  [a, b, c | _236] when _172 unifies with [c | _236]  Advantage of working with open lists is that the end of a list can be accessed quickly.
  • 31. 31 Open list implement queues when a queue is created, where L is an open list with end marker E When element a enters queue Q, we get queue R. When element a leaves queue Q, we get queue R. q(L,E) enter(a,Q,R) leave(a,Q,R)
  • 32. 32 Open list implement queue ?- setup(Q). ?- setup(Q), enter(a,Q,R). ?- setup(Q), enter(a,Q,R), leave(S,R,T). ?- setup(Q), enter(a,Q,R), enter(b,R,S), leave(X,S,T),leave(Y,T,U), wrapup(q([],[])). setup(q(X,X)). enter(A, q(X,Y), q(X,Z)) :- Y = [A | Z]. leave(A, q(X,Z), q(Y,Z)) :- Y = [A | Y]. wrapup(q([],[])).
  • 33. 33 Test queue ?-setup(Q),enter(a,Q,R),enter(b,R,S),leave(X,S,T), leave(Y,T,U),wrapup(U). Q = q([a, b], [a, b]) R = q([a, b], [b]) S = q([a, b], []) X = a T = q([b], []) Y = b U = q([], []) Yes ?-
  • 34. 34 Operations on a queue Q _1 R _2 a a T _3 b Q Q R setup(Q) enter(a,Q,R) enter(b,R,S)
  • 35. 35 Operations on a queue a T _3 b X leave(X,S,T) a T _3 b Y leave(Y,T,U)
  • 36. 36 Internal Prolog  A queue q(L,E) consists of open list L with end marker E.  The arrows from Q therefore go to the empty open list _1 with end marker _1. setup(q(X,X)). ?-setup(Q). Q = q(_1,_1) yes
  • 37. 37 Second goal  To enter A into a queue q(X,Y), bind Y to a list [A|Z], where Z is a fresh end marker, and return q(X,Z). enter(A,q(X,Y),q(X,Z)):- Y = [A|Z]. ?-setup(Q),enter(a,Q,R). Q = q([a|_2], [a|_2]) R = q([a|_2], _2) Unifies _1 with [a|_2],where _2 is a fresh end marker
  • 38. 38  When an element leaves a queue q(L,E), the resulting queue has the tail of L in place of L. Note in the diagram to the right of leave(X,S,T) that the open list for queue T is the tail of the open list for S.  The final goal wrapup(U) checks that the enter and leave operations leave U in an initial state q(L,E), where L is an empty openlist with end marker E.
  • 39. 39 Difference Lists  Difference List are a technique for coping with such changes.  Difference List consists of a list and its suffix.  We write this difference list as dl(L,E).
  • 40. 40 Contents of Difference List  The contents of the difference list consist of the elements that are in L but not in E.  Examples of difference lists with contents [a,b] are dl([a,b],[]). Dl([a,b,c],[c]). Dl([a,b|E],E). Dl([a,b,c|F],[c|F]).
  • 41. 41 CONTROL IN PROLOG  In the informal equation  “Logic” refers to the rules and queries in a logic program and  “control” refers to how a language computes a response to a query. algorithm = logic + control
  • 42. 42 CONTROL IN PROLOG  Control in Prolog is characterized by two decisions  Goal order : Choose the leftmost subgoal.  Rule order : Select the first applicable rule.  The response to a query is affected both by goal order within the query and by rule order with in the database of facts and rules.
  • 43. 43 CONTROL IN PROLOG start with a query as the current goal; while the current goal is nonempty do choose the leftmost subgoal; if a rule applies to the subgoal then select the first applicable rule; form a new current goal else backtrack end if end while; succeed
  • 44. 44 Example  A sublist S of Z can be specified in the following seemingly equivalent ways:  preffix X of Z and suffix S of X.  suffix S of X and prefix X of Z. appen1([],Y,Y). appen1([H|X],Y,[H|Z]):- appen1(X,Y,Z). Prefix(X,Z) :- appen1(X,Y,Z). Suffix(Y,Z) :- appen1(X,Y,Z). appen2([H|X],Y,[H|Z]):- appen2(X,Y,Z). appen2([],Y,Y).
  • 45. 45 Queries  The corresponding queries usually produce the same responses.  Rule order can also make a difference. ?-prefix(X,[a,b,c]),suffix([e],X). no ?-suffix([e],X),prefix(X,[a,b,c]). [infinite computation]
  • 46. 46 Queries ?- appen1(X,[c],Z). X = [] Z = [c] ; X = [_G230] Z = [_G230, c] ; X = [_G230, _G236] Z = [_G230, _G236, c] ; ?- appen2(X,[c],Z).  New Solutions are produced on demand for
  • 47. 47 Unification an Substitutions  Unification is central to control in Prolog  Substitution is a function from variables to terms
  • 48. 48 Applying a Rule to a Goal  A rule applies to a subgoal G if its head A unifies with G  Variables in the rule are renamed before unification to keep them distinct from variables in the subgoal. A :- B1, B2, …, Bn
  • 49. 49 A computation that succeeds without backtracking GOAL Suffix([a],L),prefix(L,[a,b,c]). suffix([a],L) if append(_1,[a],L). Append(_1,[a],L),prefix(L,[a,b,c]). {_1[],L[a]} append([],[a],[a]). Prefix([a],[a,b,c]). prefix([a],[a,b,c]) if append([a],_2,[a,b,c]) append([a],_2,[a,b,c]). prefix([a],[a,b,c]) if append([],_2,[b,c]) Append([],_2,[b,c]). {_2[b,c]} append([],[b,c],[b,c]) yes
  • 52. 52 Cuts  A cut prunes or “cuts out” and unexplored part of a Prolog search tree.  Cuts can therefore be used to make a computation more efficient by eliminating futile searching and backtracking.  Cuts can also be used to implement a form of negation
  • 53. 53 Cuts  A cut, written as !, appears as a condition within a rule. When rule is applied, the cut tells control to backtrack past Cj-1,…,C1,B, without considering any remaining rules for them. B :- C1,…, Cj-1, !,Cj+1,…,Ck
  • 54. 54 A cut as the First Condition  Consider rules of the form  If the goal C fails, then control backtracks past B without considering any remaining rules for B. Thus the cut has the effect of making B fail if C fails. B :- !, C.
  • 55. 55 Example b :- c. b :- d. b :- e. b,G c,G e,G X d,G!,d,G d,G b :- c. b :- !,d. b :- e.
  • 56. 56 Example  ?-a(X). a(1) :- b; a(2) :- e; b :- c. b :- d. a(1) :- b; a(2) :- e; b :- !,c. b :- d. a(X) b e c d Yes X=2Yes X=1 backtrack a(X) b e !c d Yes X=2 backtrack c
  • 57. 57 The Effect of Cut  As mentioned earlier, when a rule is applied during a computation  The cut tells control to backtrack past Cj- 1,..C1,B without considering any remaining rules for them.  The effect of inserting a cut in the middle of a guess-and-verify rule. B :- C1,…, Cj-1, !,Cj+1,…,Ck
  • 58. 58 The Effect of Cut  The right side of a guess-and-verify rule has the form guess(S), verify(S), where guess(S) generates potential solutions until one satisfying verify(S) is found.  The effect of insering a cut between them, as is to eliminate all but the first guess. Conclusion(S) :- guess(S), !, verify(S)
  • 59. 59 a(X) :- b(X). a(X) :- f(X). b(X) :- g(X),v(X). b(X) :- X = 4, v(X). g(1). g(2). g(3). v(X). f(5) a(X) :- b(X). a(X) :- f(X). b(X) :- g(X),!,v(X). b(X) :- X = 4, v(X). g(1). g(2). g(3). v(X). f(5) (a) (b)
  • 60. 60 a(Z) b(Z) f(5) g(Z),v(Z) v(4) v(1) v(2) v(3) a(Z) b(Z) f(5) g(Z),!,v(Z) v(4) !v(X) v(1) v(2) v(3) (a) (b)
  • 61. 61 Negation as Failure  The not operator in Prolog is implemented by the rules not(X) :- X, !, fail. not(_).