NumPy & SciPy

What’s now?
Ralf Gommers

PyData NYC 2019
NumPy 1.17 - the most significant release in years
◎New random number generators

(a complete overhaul of numpy.random)
◎New Fourier transform implementations

(a complete overhaul of numpy.fft)
◎The __array_function__ protocol became
enabled by default.
2
Vastly improved random number generators
Multiple new generators, faster & higher
statistical quality. Plus:
• Parallel/distributed capabilities (3 methods)
• Extensible infrastructure - plug in your own
bit-generator
• Can be used from Numba, and (in 1.18)
from Cython or C
3
Vastly improved random number generators
4
Vastly improved random number generators
5
The NumPy array protocols - goals
6
Separate NumPy API from NumPy “execution engine”
Allow other libraries (Dask, CuPy, PyTorch, …) to reuse
the NumPy API
Bigger picture: avoid or reduce ecosystem
fragmentation (we don’t want to see a reimplementation of SciPy for
PyTorch, SciPy for Tensorflow, etc.)
The NumPy array protocols - goals
7
The NumPy array protocols - goals
8
Array protocols — using the NumPy API with GPUs
9
Array protocols — using the NumPy API with distributed
arrays via Dask
10
Fourier transforms - faster & more accurate
All FFT functions in NumPy and SciPy reimplemented.
11
scipy.fft — first new SciPy submodule in a decade
• API changes for consistency with NumPy
• Based on PyPocketfft (modern C++, close
to performance of FFTW)
• Bluestein algorithm: accurate & fast also
for prime-length arrays
• Context managers for backend selection
and multi-threading support
12
scipy.fft — first new SciPy submodule in a decade
13
More robust new global optimizers
optimize.shgo, optimize.dual_annealing
14
Thanks!
Any questions?
15

More Related Content

PDF
Standardizing on a single N-dimensional array API for Python
PDF
Python array API standardization - current state and benefits
PDF
Python NumPy Tutorial | NumPy Array | Edureka
PDF
Plotting data with python and pylab
PDF
The Joy of SciPy
PPTX
Data Analysis in Python-NumPy
PDF
The evolution of array computing in Python
PPTX
Basic of python for data analysis
Standardizing on a single N-dimensional array API for Python
Python array API standardization - current state and benefits
Python NumPy Tutorial | NumPy Array | Edureka
Plotting data with python and pylab
The Joy of SciPy
Data Analysis in Python-NumPy
The evolution of array computing in Python
Basic of python for data analysis

What's hot (19)

PDF
Buzzwords Numba Presentation
PPTX
Intellectual technologies
PPTX
PYTHON-Chapter 4-Plotting and Data Science PyLab - MAULIK BORSANIYA
PDF
High Performance Python - Marc Garcia
PPT
An adaptive algorithm for detection of duplicate records
PDF
Scipy, numpy and friends
PPTX
Stack Data structure
PDF
Accelerate Your Python* Code through Profiling, Tuning, and Compilation Part ...
PDF
Get Your Hands Dirty with Intel® Distribution for Python*
PDF
TENSORFLOW: ARCHITECTURE AND USE CASE - NASA SPACE APPS CHALLENGE by Gema Par...
PDF
Numba: Flexible analytics written in Python with machine-code speeds and avo...
PPT
Python advanced 3.the python std lib by example –data structures
PPT
Python advanced 3.the python std lib by example – algorithm
PPT
Feltman collections
KEY
PPTX
Essential NumPy
PDF
Numba: Array-oriented Python Compiler for NumPy
PDF
Numba Overview
PPTX
Python pandas Library
Buzzwords Numba Presentation
Intellectual technologies
PYTHON-Chapter 4-Plotting and Data Science PyLab - MAULIK BORSANIYA
High Performance Python - Marc Garcia
An adaptive algorithm for detection of duplicate records
Scipy, numpy and friends
Stack Data structure
Accelerate Your Python* Code through Profiling, Tuning, and Compilation Part ...
Get Your Hands Dirty with Intel® Distribution for Python*
TENSORFLOW: ARCHITECTURE AND USE CASE - NASA SPACE APPS CHALLENGE by Gema Par...
Numba: Flexible analytics written in Python with machine-code speeds and avo...
Python advanced 3.the python std lib by example –data structures
Python advanced 3.the python std lib by example – algorithm
Feltman collections
Essential NumPy
Numba: Array-oriented Python Compiler for NumPy
Numba Overview
Python pandas Library
Ad

Similar to PyData NYC whatsnew NumPy-SciPy 2019 (20)

PDF
Scientific Python
PDF
Travis Oliphant "Python for Speed, Scale, and Science"
PPTX
Introduction-to-NumPy-in-Python (1).pptx
PDF
Array computing and the evolution of SciPy, NumPy, and PyData
PDF
The road ahead for scientific computing with Python
PPT
Python crash course libraries numpy-1, panda.ppt
PDF
Keynote at Converge 2019
PDF
SciPy Latin America 2019
PDF
London level39
PDF
Migrating from matlab to python
PDF
PyCon Estonia 2019
PPTX
Scaling Python to CPUs and GPUs
PPTX
Session 2
PPTX
Introduction to numpy.pptx
PDF
PyData Boston 2013
PPTX
L 5 Numpy final learning and Coding
PPTX
lec08-numpy.pptx
PPT
Introduction to Numpy Foundation Study GuideStudyGuide
PDF
ePOM - Intro to Ocean Data Science - Scientific Computing
PDF
Python as number crunching code glue
Scientific Python
Travis Oliphant "Python for Speed, Scale, and Science"
Introduction-to-NumPy-in-Python (1).pptx
Array computing and the evolution of SciPy, NumPy, and PyData
The road ahead for scientific computing with Python
Python crash course libraries numpy-1, panda.ppt
Keynote at Converge 2019
SciPy Latin America 2019
London level39
Migrating from matlab to python
PyCon Estonia 2019
Scaling Python to CPUs and GPUs
Session 2
Introduction to numpy.pptx
PyData Boston 2013
L 5 Numpy final learning and Coding
lec08-numpy.pptx
Introduction to Numpy Foundation Study GuideStudyGuide
ePOM - Intro to Ocean Data Science - Scientific Computing
Python as number crunching code glue
Ad

More from Ralf Gommers (9)

PDF
Reliable from-source builds (Qshare 28 Nov 2023).pdf
PDF
Parallelism in a NumPy-based program
PDF
Building SciPy kernels with Pythran
PDF
Strengthening NumPy's foundations - growing beyond code
PDF
Inside NumPy: preparing for the next decade
PDF
__array_function__ conceptual design & related concepts
PDF
NumPy Roadmap presentation at NumFOCUS Forum
PDF
NumFOCUS_Summit2018_Roadmaps_session
PDF
SciPy 1.0 and Beyond - a Story of Community and Code
Reliable from-source builds (Qshare 28 Nov 2023).pdf
Parallelism in a NumPy-based program
Building SciPy kernels with Pythran
Strengthening NumPy's foundations - growing beyond code
Inside NumPy: preparing for the next decade
__array_function__ conceptual design & related concepts
NumPy Roadmap presentation at NumFOCUS Forum
NumFOCUS_Summit2018_Roadmaps_session
SciPy 1.0 and Beyond - a Story of Community and Code

Recently uploaded (20)

PDF
AI/ML Infra Meetup | Beyond S3's Basics: Architecting for AI-Native Data Access
PPTX
Matchmaking for JVMs: How to Pick the Perfect GC Partner
PPTX
Cybersecurity-and-Fraud-Protecting-Your-Digital-Life.pptx
PDF
How AI/LLM recommend to you ? GDG meetup 16 Aug by Fariman Guliev
PDF
DNT Brochure 2025 – ISV Solutions @ D365
PDF
Wondershare Recoverit Full Crack New Version (Latest 2025)
PDF
Type Class Derivation in Scala 3 - Jose Luis Pintado Barbero
PPTX
CNN LeNet5 Architecture: Neural Networks
PDF
Top 10 Software Development Trends to Watch in 2025 🚀.pdf
PDF
Introduction to Ragic - #1 No Code Tool For Digitalizing Your Business Proces...
PDF
E-Commerce Website Development Companyin india
PDF
BoxLang Dynamic AWS Lambda - Japan Edition
PDF
Microsoft Office 365 Crack Download Free
PPTX
Airline CRS | Airline CRS Systems | CRS System
DOC
UTEP毕业证学历认证,宾夕法尼亚克拉里恩大学毕业证未毕业
PPTX
Tech Workshop Escape Room Tech Workshop
PDF
Visual explanation of Dijkstra's Algorithm using Python
DOCX
How to Use SharePoint as an ISO-Compliant Document Management System
PPTX
Computer Software - Technology and Livelihood Education
PPTX
WiFi Honeypot Detecscfddssdffsedfseztor.pptx
AI/ML Infra Meetup | Beyond S3's Basics: Architecting for AI-Native Data Access
Matchmaking for JVMs: How to Pick the Perfect GC Partner
Cybersecurity-and-Fraud-Protecting-Your-Digital-Life.pptx
How AI/LLM recommend to you ? GDG meetup 16 Aug by Fariman Guliev
DNT Brochure 2025 – ISV Solutions @ D365
Wondershare Recoverit Full Crack New Version (Latest 2025)
Type Class Derivation in Scala 3 - Jose Luis Pintado Barbero
CNN LeNet5 Architecture: Neural Networks
Top 10 Software Development Trends to Watch in 2025 🚀.pdf
Introduction to Ragic - #1 No Code Tool For Digitalizing Your Business Proces...
E-Commerce Website Development Companyin india
BoxLang Dynamic AWS Lambda - Japan Edition
Microsoft Office 365 Crack Download Free
Airline CRS | Airline CRS Systems | CRS System
UTEP毕业证学历认证,宾夕法尼亚克拉里恩大学毕业证未毕业
Tech Workshop Escape Room Tech Workshop
Visual explanation of Dijkstra's Algorithm using Python
How to Use SharePoint as an ISO-Compliant Document Management System
Computer Software - Technology and Livelihood Education
WiFi Honeypot Detecscfddssdffsedfseztor.pptx

PyData NYC whatsnew NumPy-SciPy 2019

  • 1. NumPy & SciPy
 What’s now? Ralf Gommers
 PyData NYC 2019
  • 2. NumPy 1.17 - the most significant release in years ◎New random number generators
 (a complete overhaul of numpy.random) ◎New Fourier transform implementations
 (a complete overhaul of numpy.fft) ◎The __array_function__ protocol became enabled by default. 2
  • 3. Vastly improved random number generators Multiple new generators, faster & higher statistical quality. Plus: • Parallel/distributed capabilities (3 methods) • Extensible infrastructure - plug in your own bit-generator • Can be used from Numba, and (in 1.18) from Cython or C 3
  • 4. Vastly improved random number generators 4
  • 5. Vastly improved random number generators 5
  • 6. The NumPy array protocols - goals 6 Separate NumPy API from NumPy “execution engine” Allow other libraries (Dask, CuPy, PyTorch, …) to reuse the NumPy API Bigger picture: avoid or reduce ecosystem fragmentation (we don’t want to see a reimplementation of SciPy for PyTorch, SciPy for Tensorflow, etc.)
  • 7. The NumPy array protocols - goals 7
  • 8. The NumPy array protocols - goals 8
  • 9. Array protocols — using the NumPy API with GPUs 9
  • 10. Array protocols — using the NumPy API with distributed arrays via Dask 10
  • 11. Fourier transforms - faster & more accurate All FFT functions in NumPy and SciPy reimplemented. 11
  • 12. scipy.fft — first new SciPy submodule in a decade • API changes for consistency with NumPy • Based on PyPocketfft (modern C++, close to performance of FFTW) • Bluestein algorithm: accurate & fast also for prime-length arrays • Context managers for backend selection and multi-threading support 12
  • 13. scipy.fft — first new SciPy submodule in a decade 13
  • 14. More robust new global optimizers optimize.shgo, optimize.dual_annealing 14