Journal of Natural Sciences Research                                                                                  www.iiste.org
ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online)
Vol.2, No.4, 2012




 Quantum Mechanical Behaviour, Quantum Tunneling, Higgs
   Boson , Distorted Space And Time, Schrödinger’s Wave
 Function, Neuron DNA, Particles (Hypothetical signature Less
                Particles) And Consciousness
     A “Syncopated Syncretism And Atrophied Asseveration”
                            Model
                          *1
                           Dr K N Prasanna Kumar, 2Prof B S Kiranagi And 3Prof C S Bagewadi

            *1
                 Dr K N Prasanna Kumar, Post doctoral researcher, Dr KNP Kumar has three PhD’s, one each in Mathematics,
        Economics and Political science and a D.Litt. in Political Science, Department of studies in Mathematics, Kuvempu
                   University, Shimoga, Karnataka, India Correspondence Mail id : drknpkumar@gmail.com


        2
         Prof B S Kiranagi, UGC Emeritus Professor (Department of studies in Mathematics), Manasagangotri, University
                                                       of Mysore, Karnataka, India

             3
                 Prof C S Bagewadi, Chairman , Department of studies in Mathematics and Computer science, Jnanasahyadri
                                  Kuvempu university, Shankarghatta, Shimoga district, Karnataka, India



Abstract:

We give a holistic model for the systems mentioned in the foregoing. Most important implication is that
Higgs Boson is the one, which warps space and time. Concept of Neuron DNA and signature less particles
are introduced.

Key Words:

Quantum Information, Space warp, Quantum Tunneling, Environmental decoherence, Schrödinger’s wave
function, Gravitational lensing, Black holes, Higgs Boson, Consciousness

Introduction:

We take in to consideration the following to build the 36 story model which consummates and consolidates
the parameters and processes involved:

1.  Quantum Information
2.  Quantum Mechanical behaviour
3.  Quantum Tunneling
4.  Non adiabatic multi photon process in the strong vibronic coupling limit
5.  Environmental Decoherence(Green House Effects for example)
6.  Schrodinger’s wave function
7.  Gravitational lensing
8.  Black holes
9.  Faster than Light Particles (Neuron DNA- Mind, a signature less particles. How do you classify that?
    Total energy =Existing matter-Energy attributable to signature less particles. Einstein did not take in
    consideration psychic energy which is taken to be holistically conservational ,but individually and
    collectively non conservative)
10. Consciousness( Total awareness- use ASDCII and Information field capacity to find the total storage-
    Please refer Gesellshaft-Gememshaft paper on the subject matter)
11. Higgs Boson

                                                                    83
Journal of Natural Sciences Research                                                       www.iiste.org
ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online)
Vol.2, No.4, 2012


12. Distorted Space and Time

Notation :

Quantum Mechanical Behaviour And Quantum Information
Module Numbered One

   : Category One Of Quantum Mechanical Behaviour

   : Category Two Of Quantum Mechanical Behaviour

   : Category Three Of Quantum Mechanical Behaviour

   : Category One Of Quantum Information

   : Category Two Of Quantum Information

   :Category Three Of Quantum Information

Non Adiabatic Multi Phonon Process In The Strong Vibronic Coupling And Quantum Tunneling

Module Numbered Two:

   : Category One Of Non Adiabatic Multi Phonon Process

   : Category Two Of Non Adiabatic Multi phonon Process

   : Category Three Of Non Adiabatic Multi Phonon Process

   :Category One Of Quantum Tunneling(There Are Lot Of Tunnels)

   : Category Two Of Quantum Tunneling

   : Category Three Of Quantum Tunneling

Environmental Decoherence (For Example Green House Effects) And Collapse of Schrodinger’s Wave
Function:

Module Numbered Three:

   : Category One Of Collapse Of Schrodinger’s Wave Function(There Are Lot Of Potentialities)

   :Category Two Of Collapse Of Schrodinger’s Wave Function

   : Category Three Of Collapse Of Schrodinger’s Wave Function

   : Category One Of Environmental Decoherence

   :Category Two Of Environmental Decoherence

   : Category Three Of Environmental Decoherence

Gravitational Lensing And Black holes

Module Numbered Four:

   : Category One Of Black holes

   : Category Two Of Black holes




                                                   84
Journal of Natural Sciences Research                                                                                                                              www.iiste.org
ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online)
Vol.2, No.4, 2012


    : Category Three Ofblack Holes

    :Category One Of gravitational Lensing

    :Category Two Of Gravitational Lensing

    : Category Three Of Gravitational Lensing

Faster Than Light Particles(Hypothetical Particles Of Neuron DNA-Mind) And Consciousness(Total
Awareness With Visual Images: Calculated Based On Ascii And Information Field Capacity)

Module Numbered Five:

    : Category One Of Faster Than Light Particles(Signatureless Neuron Dna)

    : Category Two Of Faster Than Light(Signatureless neuron Dna)

    :Category Three Of Faster Thank Light Neuron Dna Particles Without Signature

     :Category One Of Consciousness(Just Total Knowledge That Is Stored Like In Computer-See
Gratification Deprivation Model For Details)

    :Category Two Of Consciousness

    :Category Three Of Consciousness

Distorted Space And Time (St Warp) And Higgs Boson

Module Numbered Six:

    : Category One Of Higgs Boson

    : Category Two Of Higgs Boson

    : Category Three Of Higgs Boson

    : Category One Of Distorted Space And Time

    : Category Two Of Distorted Space And Time

    : Category Three Of Distorted Space And Time



(   )(   )
             (   )(   )
                          (   )(   )
                                       (   )(   )
                                                        (   )(    )
                                                                          (   )( ) (                )(    )
                                                                                                                  (       )(   )
                                                                                                                                       (        )(    )


(   )(   )
             (   )(   )
                          (   )( ) : (     )(   )
                                                        (   )(    )
                                                                          (   )(    )
                                                                                                (        )(       )
                                                                                                                      (        )(      )
                                                                                                                                            (        )(       )


(   )(   )
             (   )(   )
                          (   )(   )
                                       (   )(   )
                                                        (   )(    )
                                                                          (   )(    )
                                                                                            (       )(    )
                                                                                                                  (       )(    )
                                                                                                                                        (       )( ) ,
(   )(   )
             (   )(   )
                          (   )(   )
                                       (   )(   )
                                                        (   )(    )
                                                                          (   )(    )
                                                                                            (        )(       )
                                                                                                                  (       )(       )
                                                                                                                                        (       )(        )


are Accentuation coefficients
(   )(   )
             (   )(   )
                          (   )(   )
                                       (   )(   )
                                                        (   )(    )
                                                                          (   )(   )
                                                                                            (       )(    )
                                                                                                                  (       )(    )
                                                                                                                                        (       )(    )


(   )(   )
             (   )(   )
                          (   )(   )
                                       (   )(       )
                                                        (    )(       )
                                                                          (    )(       )
                                                                                            (        )(       )
                                                                                                                      (    )(       )
                                                                                                                                           (     )(       )


(   )(   )
             (   )(   )
                          (   )(   )
                                       (   )(   )
                                                        (   )(    )
                                                                          (   )(    )
                                                                                            (       )(    )
                                                                                                                  (       )(    )
                                                                                                                                        (       )(    )




                                                                                            85
Journal of Natural Sciences Research                                                                                                           www.iiste.org
ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online)
Vol.2, No.4, 2012


(       )(   )
                 (        )(   )
                                   (      )( ) , (           )(   )
                                                                      (    )(   )
                                                                                    (         )(   )
                                                                                                       (    )(   )
                                                                                                                     (   )(   )
                                                                                                                                  (   )(   )


are Dissipation coefficients
Quantum Mechanical Behaviour And Quantum Information

Module Numbered One

The differential system of this model is now (Module Numbered one)

             (       )(   )
                                         [(     )(       )
                                                              (        )( ) (            )]

             (       )(   )
                                         [(     )(       )
                                                              (        )( ) (            )]

             (       )(   )
                                         [(     )(       )
                                                              (        )( ) (            )]

             (       )(   )
                                        [(     )(    )
                                                             (        )( ) (        )]

             (       )(   )
                                        [(     )(    )
                                                             (        )( ) (        )]

             (       )(   )
                                        [(     )(    )
                                                             (        )( ) (        )]

    (    )( ) (                )        First augmentation factor

    (    )( ) (           )            First detritions factor

Non Adiabatic Multi Phonon Process In The Strong Vibronic Coupling And Quantum Tunneling

Module Numbered Two:

The differential system of this model is now ( Module numbered two)

             (       )(   )
                                         [(     )(       )
                                                              (        )( ) (            )]

             (       )(   )
                                         [(     )(       )
                                                              (        )( ) (            )]

             (       )(   )
                                         [(     )(       )
                                                              (        )( ) (            )]

             (       )(   )
                                        [(     )(    )
                                                             (        )( ) ((        ) )]

             (       )(   )
                                        [(     )(    )
                                                             (        )( ) ((        ) )]

             (       )(   )
                                        [(     )(    )
                                                             (        )( ) ((        ) )]

    (    )( ) (                )        First augmentation factor

    (    )( ) ((              ) )            First detritions factor

Environmental Decoherence (For Example Green House Effects) And Collapse of Schrodinger’s Wave
Function:

Module Numbered Three

The differential system of this model is now (Module numbered three)



                                                                                                       86
Journal of Natural Sciences Research                                                   www.iiste.org
ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online)
Vol.2, No.4, 2012


       (       )(   )
                              [(      )(       )
                                                   (    )( ) (    )]

       (       )(   )
                              [(      )(       )
                                                   (    )( ) (    )]

       (       )(   )
                              [(      )(       )
                                                   (    )( ) (    )]

       (       )(   )
                              [(     )(    )
                                                   (   )( ) (    )]

       (       )(   )
                              [(     )(    )
                                                   (   )( ) (    )]

       (       )(   )
                              [(     )(    )
                                                   (   )( ) (    )]

 (    )( ) (            )     First augmentation factor

 (    )( ) (            )     First detritions factor

Gravitational Lensing And Black holes

Module Numbered Four

The differential system of this model is now (Module numbered Four)

       (       )(   )
                              [(      )(       )
                                                   (    )( ) (    )]

       (       )(   )
                              [(      )(       )
                                                   (    )( ) (    )]

       (       )(   )
                              [(      )(       )
                                                   (    )( ) (    )]

       (       )(   )
                              [(     )(    )
                                                   (   )( ) ((   ) )]

       (       )(   )
                              [(     )(    )
                                                   (   )( ) ((   ) )]

       (       )(   )
                              [(     )(    )
                                                   (   )( ) ((   ) )]

 (    )( ) (            )     First augmentation factor

 (    )( ) ((           ) )        First detritions factor

Faster Than Light Particles (Hypothetical Particles Of Neuron Dna-Mind) And Consciousness(Total
Awareness With Visual Images: Calculated Based On Ascii And Information Field Capacity)

Module Numbered Five

The differential system of this model is now (Module number five)

       (       )(   )
                              [(      )(   )
                                                   (    )( ) (    )]

       (       )(   )
                              [(      )(   )
                                                   (   )( ) (     )]

       (       )(   )
                              [(      )(   )
                                                   (    )( ) (    )]



                                                                        87
Journal of Natural Sciences Research                                                               www.iiste.org
ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online)
Vol.2, No.4, 2012


       (       )(   )
                              [(     )(    )
                                                   (   )( ) ((   ) )]

       (       )(   )
                              [(     )(    )
                                                   (   )( ) ((   ) )]

       (       )(   )
                              [(     )(    )
                                                   (   )( ) ((   ) )]

 (    )( ) (            )     First augmentation factor

 (    )( ) ((           ) )        First detritions factor

Distorted Space And Time(St Warp) And Higgs Boson:

Module Numbered Six

The differential system of this model is now (Module numbered Six)

       (       )(   )
                               [(     )(       )
                                                   (    )( ) (    )]

       (       )(   )
                               [(     )(       )
                                                   (    )( ) (    )]

       (       )(   )
                               [(     )(       )
                                                   (    )( ) (    )]

       (       )(   )
                              [(     )(    )
                                                   (   )( ) ((   ) )]

       (       )(   )
                              [(     )(    )
                                                   (   )( ) ((   ) )]

       (       )(   )
                              [(     )(    )
                                                   (   )( ) ((   ) )]

 (    )( ) (            )     First augmentation factor

 (    )( ) ((           ) )        First detritions factor

Holistic Concatenated Equations Henceforth Referred To As “Global Equations”

1.  Quantum Information
2.  Quantum Mechanical behavior
3.  Quantum Tunneling
4.  Non adiabatic multi photon process in the strong vibronic coupling limit
5.  Environmental Decoherence(Green House Effects for example)
6.  Schrodinger’s wave function
7.  Gravitational Lensing
8.  Black holes
9.  Faster than Light Particles (Neuron DNA- Mind, a signature less particles How do you classify that?
    Total energy =Existing matter-Energy attributable to signature less particles. Einstein did not take in
    consideration psychic energy which is taken to be holistically conservational ,but individually and
    collectively non conservative)
10. Consciousness( Total awareness- use ASCII and Information field capacity to find the total storage-
    Please refer Gesellschaft- Gemeinschaft paper on the subject matter)
11. Higgs Boson
12. Distorted Space and Time




                                                                        88
Journal of Natural Sciences Research                                                                                                                                                                                                                                                                          www.iiste.org
ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online)
Vol.2, No.4, 2012



                                                                       (                   )(       )
                                                                                                            (                )( ) (                           )                   (            )(           )
                                                                                                                                                                                                                (           )           (            )(           )
                                                                                                                                                                                                                                                                      (                   )
             (                   )(   )
                                                              [                                                                                                                                                                                                                                       ]
                                                                                                    (                   )                                                             (              )                                           (                    )
                                                                            (                   )                           (                     )           (                   )                      (              )           (           )                         (                   )

                                                                       (                   )(       )
                                                                                                            (                )( ) (                           )                   (            )(           )
                                                                                                                                                                                                                (           )           (            )(           )
                                                                                                                                                                                                                                                                      (                   )
             (                   )(   )
                                                              [                                                                                                                                                                                                                                       ]
                                                                            (                   )(                      )
                                                                                                                            (                     )           (                   )(                )
                                                                                                                                                                                                         (              )           (           )(                    )
                                                                                                                                                                                                                                                                          (                   )

                                                                       (                   )(       )
                                                                                                            (                )( ) (                           )                   (            )(           )
                                                                                                                                                                                                                (           )           (            )(           )
                                                                                                                                                                                                                                                                      (                   )
             (                   )(   )
                                                              [                                                                                                                                                                                                                                       ]
                                                                            (                   )(                      )
                                                                                                                            (                     )           (                   )(                 )
                                                                                                                                                                                                         (              )           (           )(                    )
                                                                                                                                                                                                                                                                          (                   )

Where (              )( ) (                     )         (            )( ) (                           )   (               )( ) (                    ) are first augmentation coefficients for category 1, 2 and 3

  (     )(           )
                         (                ) ,         (            )(              )
                                                                                       (                ) ,           (           )(          )
                                                                                                                                                  (               ) are second augmentation coefficient for category 1, 2 and 3

  (     )(           )
                         (                )           (           )(            )
                                                                                    (                   )           (            )(           )
                                                                                                                                                  (           ) are third augmentation coefficient for category 1, 2 and 3

 (      )(                   )
                                 (            ) ,             (            )(                       )
                                                                                                        (           ) ,               (           )(                  )
                                                                                                                                                                          (                ) are fourth augmentation coefficient for category 1, 2 and 3

 (      )(                   )
                                 (            )           (            )(                   )
                                                                                                (               )                (        )(                  )
                                                                                                                                                                  (                   ) are fifth augmentation coefficient for category 1, 2 and 3

 (      )(                   )
                                 (            ),          (            )(                       )
                                                                                                    (           ) ,               (           )(                  )
                                                                                                                                                                      (                   ) are sixth augmentation coefficient for category 1, 2 and 3


                                                                       (                   )(       )
                                                                                                              (              )( ) (                       )                   (            )(           )
                                                                                                                                                                                                            (               ) –(                 )(           )
                                                                                                                                                                                                                                                                  (                   )
                                 ( )
             (               )                            [                                                                                                                                                                                                                                           ]
                                                                           (                )(                      )
                                                                                                                        (                     )               (                   )(                )
                                                                                                                                                                                                        (               )           (           )(                    )
                                                                                                                                                                                                                                                                          (                   )


                                                                       (                )(          )
                                                                                                            (               )( ) (                     )                      (            )(       )
                                                                                                                                                                                                         (              ) –(                    )(            )
                                                                                                                                                                                                                                                                  (                   )
             (               )(       )
                                                          [                                                                                                                                                                                                                                       ]
                                                                           (                )(                      )
                                                                                                                        (                     )               (               )(                    )
                                                                                                                                                                                                        (               )           (           )(                    )
                                                                                                                                                                                                                                                                          (                   )

                                                                       (                   )(       )
                                                                                                            (                )( ) (                       )                   (            )(           )
                                                                                                                                                                                                            (           ) –(                    )(            )
                                                                                                                                                                                                                                                                  (                   )
             (               )(       )
                                                          [                                                                                                                                                                                                                                           ]
                                                                           (                )(                      )
                                                                                                                        (                     )               (                   )(                )
                                                                                                                                                                                                        (               )           (           )(                    )
                                                                                                                                                                                                                                                                          (                   )

Where        (               )( ) (               )           (            )( ) (                       )           (            )( ) (                ) are first detrition coefficients for category 1, 2 and 3

 (      )(       )
                     (                )               (           )(        )
                                                                                (                       )         (             )(        )
                                                                                                                                              (               ) are second detrition coefficients for category 1, 2 and 3

 (      )(       )
                     (                )               (           )(           )
                                                                                   (                    )           (            )(       )
                                                                                                                                              (               ) are third detrition coefficients for category 1, 2 and 3

 (      )(                   )
                                 (            )               (         )(                      )
                                                                                                    (             )               (           )(                  )
                                                                                                                                                                      (                   ) are fourth detrition coefficients for category 1, 2 and 3

 (      )(                   )
                                 (            ) ,             (            )(                   )
                                                                                                    (               ) ,              (            )(              )
                                                                                                                                                                          (                ) are fifth detrition coefficients for category 1, 2 and 3

 (      )(                   )
                                 (            ) ,             (            )(                   )
                                                                                                    (               ) ,              (            )(                  )
                                                                                                                                                                          (                ) are sixth detrition coefficients for category 1, 2 and 3


                                                                           (                )(          )
                                                                                                                (                )( ) (                           )                   (         )(              )
                                                                                                                                                                                                                    (           )           (         )(                  )
                                                                                                                                                                                                                                                                              (                   )
             (                   )(   )
                                                              [                                                                                                                                                                                                                                               ]
                                                                                                        (                    )                                                             (                    )                                         (                       )
                                                                               (                )                                (                    )               (                )                            (           )           (         )                               (                   )




                                                                                                                                                                                      89
Journal of Natural Sciences Research                                                                                                                                                                                                                                                                               www.iiste.org
ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online)
Vol.2, No.4, 2012



                                                                          (                    )(       )
                                                                                                                       (                )( ) (                              )               (                )(            )
                                                                                                                                                                                                                               (               )        (        )(                )
                                                                                                                                                                                                                                                                                       (                   )
             (                   )(       )
                                                              [                                                                                                                                                                                                                                                    ]
                                                                                                       (                           )                                                                (                  )                                             (                     )
                                                                              (                    )                                   (                        )           (                   )                          (                   )        (        )                             (               )

                                                                              (                )(          )
                                                                                                                           (               )( ) (                           )                   (            )(            )
                                                                                                                                                                                                                               (                )       (            )(            )
                                                                                                                                                                                                                                                                                       (                   )
             (                   )(       )
                                                              [                                                                                                                                                                                                                                                    ]
                                                                                  (                )(                               )
                                                                                                                                        (                       )               (               )(                         )
                                                                                                                                                                                                                               (                )       (            )(                        )
                                                                                                                                                                                                                                                                                                   (           )

Where        (               )( ) (                   )               (               )( ) (                           )               (            )( ) (                      ) are first augmentation coefficients for category 1, 2 and 3

 (      )(           )
                         (                ) ,         (            )(             )
                                                                                      (                 ) ,                (               )(           )
                                                                                                                                                            (               ) are second augmentation coefficient for category 1, 2 and 3

 (      )(               )
                             (                )           (           )(               )
                                                                                           (                   )               (               )(               )
                                                                                                                                                                    (           ) are third augmentation coefficient for category 1, 2 and 3

 (      )(                       )
                                     (            )           (            )(                          )
                                                                                                           (                   )            (               )(                  )
                                                                                                                                                                                    (                   ) are fourth augmentation coefficient for category 1, 2 and 3

 (      )(                       )
                                     (            ),          (               )(                       )
                                                                                                           (                   ) ,              (               )(                  )
                                                                                                                                                                                        (                   ) are fifth augmentation coefficient for category 1, 2 and 3

 (      )(                       )
                                     (            ),          (               )(                       )
                                                                                                           (                   ) ,                 (            )(                  )
                                                                                                                                                                                        (                   ) are sixth augmentation coefficient for category 1, 2 and 3


                                                                          (                    )(       )
                                                                                                                       (                )( ) (                              )                   (            )(            )
                                                                                                                                                                                                                               (               ) –(             )(            )
                                                                                                                                                                                                                                                                                  (                    )
                                     ( )
             (                   )                            [                                                                                                                                                                                                                                                    ]
                                                                           (                   )(                              )
                                                                                                                                   (                        )               (               )(                         )
                                                                                                                                                                                                                           (                   )        (       )(                         )
                                                                                                                                                                                                                                                                                               (               )

                                                                           (                   )(          )
                                                                                                                       (                )( ) (                              )                   (            )(                )
                                                                                                                                                                                                                                   (           ) –(             )(             )
                                                                                                                                                                                                                                                                                   (                   )
                                     ( )
             (                   )                            [                                                                                                                                                                                                                                                    ]
                                                                           (                   )(                              )
                                                                                                                                   (                        )               (               )(                         )
                                                                                                                                                                                                                           (                   )        (       )(                         )
                                                                                                                                                                                                                                                                                               (               )

                                                                          (                    )(       )
                                                                                                                       (                )( ) (                              )                   (            )(            )
                                                                                                                                                                                                                               (               ) –(             )(            )
                                                                                                                                                                                                                                                                                  (                    )
             (                   )(       )
                                                              [                                                                                                                                                                                                                                                    ]
                                                                           (                   )(                              )
                                                                                                                                   (                        )               (               )(                         )
                                                                                                                                                                                                                           (                   )        (       )(                         )
                                                                                                                                                                                                                                                                                               (               )

                 (               )( ) (                ) ,                 (               )( ) (                          ) ,                  (           )( ) (                      ) are first detrition coefficients for category 1, 2 and 3

 (      )(       )
                     (                )           (           )(          )
                                                                              (                ) ,                 (           )(          )
                                                                                                                                               (            ) are second detrition coefficients for category 1,2 and 3

 (      )(               )
                             (                )           (           )(                   )
                                                                                               (                   )                (           )(                  )
                                                                                                                                                                        (           ) are third detrition coefficients for category 1,2 and 3

 (      )(                       )
                                     (            )           (            )(                          )
                                                                                                           (                   )               (            )(                  )
                                                                                                                                                                                    (                   ) are fourth detrition coefficients for category 1,2 and 3

 (      )(                       )
                                     (            ) ,             (           )(                           )
                                                                                                               (                   ) ,              (               )(                  )
                                                                                                                                                                                            (                ) are fifth detrition coefficients for category 1,2 and 3

 (      )(                       )
                                     (            )           (            )(                          )
                                                                                                           (                   ) ,              (               )(                  )
                                                                                                                                                                                        (                   ) are sixth detrition coefficients for category 1,2 and 3


                                                                                  (                 )(             )
                                                                                                                               (               )( ) (                           )                   (             )(                   )
                                                                                                                                                                                                                                           (        )       (             )(                   )
                                                                                                                                                                                                                                                                                                   (           )
                                     ( )
             (                   )                            [                                                                                                                                                                                                                                                                ]
                                                                               (                   )(                                   )
                                                                                                                                            (                        )              (               )(                                 )
                                                                                                                                                                                                                                           (        )       (             )(                           )
                                                                                                                                                                                                                                                                                                           (           )


                                                                              (                    )(          )
                                                                                                                           (               )( ) (                               )               (             )(                   )
                                                                                                                                                                                                                                       (            )       (            )(                )
                                                                                                                                                                                                                                                                                               (               )
             (                   )(       )
                                                              [                                                                                                                                                                                                                                                            ]
                                                                                                   (                                   )                                                                (                          )                                      (                            )
                                                                              (                 )                                          (                        )           (               )                                      (            )       (            )                                 (           )




                                                                                                                                                                                                90
Journal of Natural Sciences Research                                                                                                                                                                                                                                                                      www.iiste.org
ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online)
Vol.2, No.4, 2012



                                                                              (                )(         )
                                                                                                                          (                )( ) (                           )         (         )(               )
                                                                                                                                                                                                                     (               )       (            )(                  )
                                                                                                                                                                                                                                                                                  (                   )
                 (               )(       )
                                                                 [                                                                                                                                                                                                                                             ]
                                                                                                  (                                   )                                                    (                     )                                            (                           )
                                                                              (                )                                          (                    )              (        )                             (               )       (            )                                   (           )

    (       )( ) (                    ),          (             )( ) (                     ),             (               )( ) (                       ) are first augmentation coefficients for category 1, 2 and 3

    (       )(           )
                             (                )             (        )(               )
                                                                                          (                ) ,                (               )(           )
                                                                                                                                                               (              ) are second augmentation coefficients for category 1, 2 and 3

    (       )(           )
                             (                )             (           )(             )
                                                                                           (                  )               (               )(            )
                                                                                                                                                                (               ) are third augmentation coefficients for category 1, 2 and 3

  ( )(                            )
                                      (               ) ,            (            )(                              )
                                                                                                                      (                   )            (            )(                 )
                                                                                                                                                                                           (         ) are fourth augmentation coefficients for category 1, 2
and 3

    (       )(                    )
                                      (               )             (          )(                             )
                                                                                                                  (                   )            (            )(                 )
                                                                                                                                                                                       (            ) are fifth augmentation coefficients for category 1, 2 and 3

    (       )(                    )
                                      (               )              (            )(                          )
                                                                                                                  (                    )           (               )(              )
                                                                                                                                                                                       (            ) are sixth augmentation coefficients for category 1, 2 and
3


                                                                                  (                )(         )
                                                                                                                              (               )( ) (                            ) –(                )(               )
                                                                                                                                                                                                                         (               ) –(             )(                      )
                                                                                                                                                                                                                                                                                      (           )
                 (               )(   )
                                                                [                                                                                                                                                                                                                                              ]
                                                                              (                )(                                     )
                                                                                                                                          (                    )              (        )(                        )
                                                                                                                                                                                                                     (               )       (            )(                              )
                                                                                                                                                                                                                                                                                              (            )

                                                                                  (                )(         )
                                                                                                                          (                   )( ) (                          ) –(              )(               )
                                                                                                                                                                                                                     (               ) –(                 )(                  )
                                                                                                                                                                                                                                                                                  (               )
                 (               )(   )
                                                                [                                                                                                                                                                                                                                              ]
                                                                              (                )(                                     )
                                                                                                                                          (                    )              (        )(                        )
                                                                                                                                                                                                                     (               )       (            )(                              )
                                                                                                                                                                                                                                                                                              (            )

                                                                                  (                )(         )
                                                                                                                              (               )( ) (                            ) –(                )(               )
                                                                                                                                                                                                                         (               ) –(             )(                      )
                                                                                                                                                                                                                                                                                      (           )
                 (               )(   )
                                                                [                                                                                                                                                                                                                                              ]
                                                                              (                )(                                     )
                                                                                                                                          (                    )              (        )(                        )
                                                                                                                                                                                                                     (               )       (            )(                              )
                                                                                                                                                                                                                                                                                              (            )

    (       )( ) (                    )             (           )( ) (                        )               (               )( ) (                       ) are first detrition coefficients for category 1, 2 and 3

    (       )(           )
                             (                ) ,           (            )(            )
                                                                                           (                  ) ,                 (           )(           )
                                                                                                                                                               (                ) are second detrition coefficients for category 1, 2 and 3

    (       )(           )
                             (            )             (           )(            )
                                                                                      (            ) ,                (               )(           )
                                                                                                                                                       (            ) are third detrition coefficients for category 1,2 and 3

    (       )(                    )
                                      (                 )           (             )(                          )
                                                                                                                  (                   )            (            )(                 )
                                                                                                                                                                                       (            ) are fourth detrition coefficients for category 1, 2 and 3

        (    )(                       )
                                          (                 )            (         )(                             )
                                                                                                                      (                   )            (             )(                )
                                                                                                                                                                                           (         ) are fifth detrition coefficients for category 1, 2 and 3

    (       )(                    )
                                      (                 )           (             )(                          )
                                                                                                                  (                   )            (            )(                 )
                                                                                                                                                                                       (            ) are sixth detrition coefficients for category 1, 2 and 3


                                                                          (                )(         )
                                                                                                                  (                   )( ) (                            )         (            )(        )
                                                                                                                                                                                                             (                   )       (           )(           )
                                                                                                                                                                                                                                                                      (                   )
                     (            )(          )
                                                                     [                                                                                                                                                                                                                            ]
                                                                                                          (                       )                                                    (             )                                           (                    )
                                                                                   (                  )                               (                    )              (        )                     (                   )       (       )                            (                   )

                                                                          (                )(         )
                                                                                                                  (                   )( ) (                            )         (            )(        )
                                                                                                                                                                                                             (                   )       (           )(           )
                                                                                                                                                                                                                                                                      (                   )
                     (            )(          )
                                                                     [                                                                                                                                                                                                                            ]
                                                                                                       (                          )                                                    (             )                                           (                    )
                                                                                   (                )                                 (                    )              (        )                     (                   )       (       )                            (               )

                                                                          (                )(         )
                                                                                                                  (                   )( ) (                            )         (            )(        )
                                                                                                                                                                                                             (                   )       (           )(           )
                                                                                                                                                                                                                                                                      (                   )
                     (            )(          )
                                                                     [                                                                                                                                                                                                                            ]
                                                                                                       (                      )                                                        (            )                                            (                    )
                                                                                  (                )                                  (                 )                (        )                      (                   )       (       )                            (               )

                 (           )( ) (                 )           (            )( ) (                       )           (               )( ) (                   )




                                                                                                                                                                                   91
Journal of Natural Sciences Research                                                                                                                                                                                                                                                                                 www.iiste.org
ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online)
Vol.2, No.4, 2012


 (    )(          )
                      (               )            (               )(            )
                                                                                     (                   )               (               )(         )
                                                                                                                                                        (                     )

 (    )(          )
                      (               )            (               )(            )
                                                                                     (                   )                   (           )(           )
                                                                                                                                                          (                   )

 (   )(               )
                          (                )           (                )(                   )
                                                                                                 (                   )               (           )(                   )
                                                                                                                                                                          (                   ) are fourth augmentation coefficients for category 1, 2,and 3

 (   )(               )
                          (                ),              (            )(                   )
                                                                                                 (                   )               (           )(                   )
                                                                                                                                                                          (                   ) are fifth augmentation coefficients for category 1, 2,and 3

 (   )(               )
                          (                ),              (            )(                   )
                                                                                                 (                   ),              (             )(                     )
                                                                                                                                                                              (                   ) are sixth augmentation coefficients for category 1, 2,and 3


                                                                    (                )(          )
                                                                                                                 (               )( ) (                                   )                   (            )(           )
                                                                                                                                                                                                                            (            ) –(              )(        )
                                                                                                                                                                                                                                                                         (                       )
                                  ( )
           (                  )                                [                                                                                                                                                                                                                                         ]
                                                                                 (                   )(                          )
                                                                                                                                     (             )                      (                   )(                )
                                                                                                                                                                                                                    (                   ) –(          )(             )
                                                                                                                                                                                                                                                                         (                       )

                                                                    (                )(          )
                                                                                                                 (               )( ) (                                   )                   (            )(           )
                                                                                                                                                                                                                            (            ) –(              )(        )
                                                                                                                                                                                                                                                                         (                       )
                                  ( )
           (                  )                                [                                                                                                                                                                                                                                     ]
                                                                                 (                   )(                          )
                                                                                                                                     (             )                      (                   )(                )
                                                                                                                                                                                                                    (                   ) –(          )(             )
                                                                                                                                                                                                                                                                         (                       )

                                                                    (                    )(          )
                                                                                                                 (               )( ) (                                   )                       (         )(           )
                                                                                                                                                                                                                             (            ) –(             )(        )
                                                                                                                                                                                                                                                                         (                       )
                                  ( )
           (                  )                                [                                                                                                                                                                                                                                         ]
                                                                                     (                   )(                      )
                                                                                                                                     (                 )                      (               )(                 )
                                                                                                                                                                                                                     (                  ) –(          )(             )
                                                                                                                                                                                                                                                                         (                       )

              (           )( ) (                       )                (            )( ) (                              )               (          )( ) (                                )

 (   )(       )
                  (                   )            (               )(        )
                                                                                 (                       )               (               )(        )
                                                                                                                                                       (                      )

 (   )(       )
                  (                   )            (               )(        )
                                                                                 (                       )               (               )(        )
                                                                                                                                                       (                      )

 (   )(               )
                          (           )            (               )(                )
                                                                                         (               ) ,                 (           )(                   )
                                                                                                                                                                  (               )

 (   )(               )
                          (                ),              (            )(                   )
                                                                                                 (                   ),              (             )(                     )
                                                                                                                                                                              (                   )


–(   )(               )
                          (                ) –(                     )(                    )
                                                                                              (                      ) –(                        )(                   )
                                                                                                                                                                          (                   )


                                                                        (                 )(             )
                                                                                                                     (               )( ) (                                   )                   (         )(              )
                                                                                                                                                                                                                                (         )       (         )(               )
                                                                                                                                                                                                                                                                                 (                   )
          (               )(       )
                                                               [                                                                                                                                                                                                                                                     ]
                                                                             (                   )(                              )
                                                                                                                                     (                        )                   (               )(                     )
                                                                                                                                                                                                                             (            )       (        )(                        )
                                                                                                                                                                                                                                                                                         (                   )

                                                                             (                   )(          )
                                                                                                                         (                   )( ) (                               )                   (         )(              )
                                                                                                                                                                                                                                    (         )       (         )(               )
                                                                                                                                                                                                                                                                                     (               )
           (                  )(       )
                                                                   [                                                                                                                                                                                                                                                     ]
                                                                                 (                   )(                              )
                                                                                                                                         (                        )                   (               )(                        )
                                                                                                                                                                                                                                    (     )       (         )(                           )
                                                                                                                                                                                                                                                                                             (               )

                                                                             (                   )(          )
                                                                                                                         (                   )( ) (                               )                   (         )(              )
                                                                                                                                                                                                                                    (         )       (         )(               )
                                                                                                                                                                                                                                                                                     (                   )
                                  ( )
              (               )                                    [                                                                                                                                                                                                                                                     ]
                                                                                 (                   )(                              )
                                                                                                                                         (                        )                   (               )(                        )
                                                                                                                                                                                                                                    (         )       (     )(                           )
                                                                                                                                                                                                                                                                                             (                   )


              (           )( ) (                       )                (            )( ) (                          )                   (         )( ) (                             )

     (            )(          )
                                  (                )               (             )(              )
                                                                                                     (                   )               (            )(              )
                                                                                                                                                                          (                   )

 (   )(           )
                      (                )               (            )(               )
                                                                                         (                   )                   (            )(              )
                                                                                                                                                                  (                   )

 (   )(                   )
                              (                )               (            )(                       )
                                                                                                         (                   )               (            )(                          )
                                                                                                                                                                                          (               ) are fourth augmentation coefficients for category 1,2, and 3




                                                                                                                                                                                                  92
Journal of Natural Sciences Research                                                                                                                                                                                                                                                           www.iiste.org
ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online)
Vol.2, No.4, 2012


 (   )(                 )
                            (               )           (             )(                       )
                                                                                                       (               )               (            )(                       )
                                                                                                                                                                                 (               ) are fifth augmentation coefficients for category 1,2,and 3

 (   )(                 )
                            (               )            (            )(                           )
                                                                                                       (               )               (            )(                       )
                                                                                                                                                                                 (               ) are sixth augmentation coefficients for category 1,2, 3


                                                                 (                 )(          )
                                                                                                               (               )( ) (                                )               (                )(         )
                                                                                                                                                                                                                     (           ) –(        )(            )
                                                                                                                                                                                                                                                               (               )
          (                )(       )
                                                          [                                                                                                                                                                                                                                ]
                                                                                                   (                       )                                                             (                  )                                (                 )
                                                                       (                   )                                   (                    )                (               )                          (                ) –(    )                         (               )

                                                                 (                 )(          )
                                                                                                               (           )( ) (                                    )               (                )(        )
                                                                                                                                                                                                                    (            ) –(        )(            )
                                                                                                                                                                                                                                                               (               )
          (                )(       )
                                                          [                                                                                                                                                                                                                                ]
                                                                                                   (                       )                                                             (                  )                                (                 )
                                                                       (                   )                                   (                    )                (               )                          (                ) –(    )                         (               )

                                                                  (                    )(          )
                                                                                                               (               )( ) (                                )                (               )(         )
                                                                                                                                                                                                                     (            ) –(           )(        )
                                                                                                                                                                                                                                                               (                   )
          (                )(       )
                                                          [                                                                                                                                                                                                                                ]
                                                                                                   (                           )                                                         (                   )                               (                     )
                                                                       (                   )                                       (                )                (               )                           (               ) –(    )                             (               )

      –(               )( ) (                   )                 (             )( ) (                             )                (               )( ) (                       )

 (   )(    )
               (                    )           (            )(        )
                                                                           (                       )               (               )(           )
                                                                                                                                                    (                )

 (   )(        )
                   (                )               (            )(            )
                                                                                   (                       )               (            )(              )
                                                                                                                                                            (                    )

 (   )(                )
                           (            )           (            )(                        )
                                                                                               (               )               (            )(                       )
                                                                                                                                                                         (           ) are fourth detrition coefficients for category 1,2, and 3

 (   )(                )
                           (                )            (            )(                       )
                                                                                                   (                   )               (            )(                       )
                                                                                                                                                                                 (               ) are fifth detrition coefficients for category 1,2, and 3


–(   )(                )
                           (                ) , –(                    )(                           )
                                                                                                       (               ) –(                         )(                       )
                                                                                                                                                                                 (               ) are sixth detrition coefficients for category 1,2, and 3




                                                                           (                   )(          )
                                                                                                                       (                )( ) (                               )               (             )(            )
                                                                                                                                                                                                                             (     )     (            )(               )
                                                                                                                                                                                                                                                                           (               )
          (                 )(      )
                                                             [                                                                                                                                                                                                                                      ]
                                                                       (                       )(                                  )
                                                                                                                                       (                        )                (               )(                      )
                                                                                                                                                                                                                             (     )     (            )(                       )
                                                                                                                                                                                                                                                                                   (            )

                                                                           (                   )(          )
                                                                                                                       (                )( ) (                               )               (             )(            )
                                                                                                                                                                                                                             (     )     (            )(               )
                                                                                                                                                                                                                                                                           (               )
          (                 )(      )
                                                             [                                                                                                                                                                                                                                      ]
                                                                       (                       )(                                  )
                                                                                                                                       (                        )                (               )(                      )
                                                                                                                                                                                                                             (     )     (            )(                       )
                                                                                                                                                                                                                                                                                   (            )

                                                                           (                   )(          )
                                                                                                                       (                )( ) (                               )               (             )(            )
                                                                                                                                                                                                                             (     )     (            )(               )
                                                                                                                                                                                                                                                                           (               )
          (                 )(      )
                                                             [                                                                                                                                                                                                                                      ]
                                                                       (                       )(                                  )
                                                                                                                                       (                        )                (               )(                      )
                                                                                                                                                                                                                             (     )     (            )(                       )
                                                                                                                                                                                                                                                                                   (            )

 (   )( ) (                    )            (           )( ) (                     )                   (           )( ) (                        )

 (   )(        )
                   (                )               (            )(            )
                                                                                   (                       )           (               )(               )
                                                                                                                                                            (                )

 (   )(        )
                   (                    )           (            )(                )
                                                                                       (                   )               (               )(               )
                                                                                                                                                                (                )

 (   )(                     )
                                (               )            (         )(                                  )
                                                                                                               (               )             (              )(                       )
                                                                                                                                                                                         (             ) - are fourth augmentation coefficients

 (   )(                     )
                                (               )            (         )(                                  )
                                                                                                               (               )             (              )(                       )
                                                                                                                                                                                         (             ) - fifth augmentation coefficients

 (   )(                     )
                                (               ),           (             )(                              )
                                                                                                               (               )                (               )(                       )
                                                                                                                                                                                             (             ) sixth augmentation coefficients




                                                                                                                                                                                     93
Journal of Natural Sciences Research                                                                                                                                                                                                            www.iiste.org
ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online)
Vol.2, No.4, 2012



                                                                    (               )(          )
                                                                                                                (         )( ) (                           ) –(                      )(          )
                                                                                                                                                                                                     (          ) –(   )(   )
                                                                                                                                                                                                                                (           )
              (            )(       )
                                                          [                                                                                                                                                                                         ]
                                                                                         (                                )                                                (                     )                      (           )
                                                                    (                   )                                     (               )            (           )                             (          ) –(   )                (       )

                                                                    (               )(          )
                                                                                                                (         )( ) (                           ) –(                      )(          )
                                                                                                                                                                                                     (          ) –(   )(   )
                                                                                                                                                                                                                                (           )
              (            )(       )
                                                          [                                                                                                                                                                                         ]
                                                                    (                   )(                                )
                                                                                                                              (               )            (           )(                        )
                                                                                                                                                                                                     (          ) –(   )(           )
                                                                                                                                                                                                                                        (       )

                                                                    (               )(          )
                                                                                                                (         )( ) (                           ) –(                      )(          )
                                                                                                                                                                                                     (          ) –(   )(   )
                                                                                                                                                                                                                                (           )
              (            )(       )
                                                          [                                                                                                                                                                                         ]
                                                                    (                   )(                                )
                                                                                                                              (               )            (           )(                        )
                                                                                                                                                                                                     (          ) –(   )(           )
                                                                                                                                                                                                                                        (       )

    (    )( ) (                )             (        )( ) (                        )                   (            )( ) (                    )

    (    )(       )
                      (                 )         (           )(            )
                                                                                (                   )                (            )(           )
                                                                                                                                                   (           )

    (    )(        )
                       (                )         (            )(               )
                                                                                    (                   )             (           )(               )
                                                                                                                                                       (           )

    (    )(                 )
                                (           )         (           )(                            )
                                                                                                    (            )            (           )(                   )
                                                                                                                                                                   (       )     are fourth detrition coefficients for category 1, 2, and 3

    (    )(                 )
                                (               ),         (           )(                               )
                                                                                                            (             )               (        )(                  )
                                                                                                                                                                           (          ) are fifth detrition coefficients for category 1, 2, and 3


–(      )(                 )
                               (                ), –(                  )(                               )
                                                                                                            (             ) –(                     )(                  )
                                                                                                                                                                           (          ) are sixth detrition coefficients for category 1, 2, and 3

Where we suppose

(A)               ( )(              )
                                            ( )(          )
                                                               (            )(          )
                                                                                                ( )(                 )
                                                                                                                          ( )(                 )
                                                                                                                                                       (       )(      )




(B)               The functions (                                       )(          )
                                                                                            (                   )( ) are positive continuous increasing and bounded.

Definition of ( )(                               )
                                                          ( )( ) :

              (           )( ) (                      )             ( )(                    )
                                                                                                                ( ̂           )(          )


              (           )( ) (                 )                 ( )(                 )
                                                                                                            ( )(          )
                                                                                                                                          ( ̂              )(      )


(C)                                         (         )( ) (                                )                   ( )(              )


                                    (            )( ) (                     )                       ( )(              )


Definition of ( ̂                                )(       )
                                                               ( ̂                  )( ) :

              Where ( ̂                               )(      )
                                                                    ( ̂                     )(          )
                                                                                                                ( )(              )
                                                                                                                                          ( )(             )
                                                                                                                                                               are positive constants and

They satisfy Lipschitz condition:

                                                                                                                                                                                                         )( )
    (    )( ) (                         )        (            )( ) (                                )                (̂                   )(       )                                      ( ̂


                                                                                                                                                                                          )( )
(       )( ) (                  )           (         )( ) (                        )                       (̂            )(          )                                        ( ̂




                                                                                                                                                                       94
Journal of Natural Sciences Research                                                                                                                                     www.iiste.org
ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online)
Vol.2, No.4, 2012


With the Lipschitz condition, we place a restriction on the behavior of functions
( )( ) (        ) and( )( ) (      ) (       ) and (     ) are points belonging to the interval
[( ̂ )( ) ( ̂ )( ) ] . It is to be noted that ( )( ) (      ) is uniformly continuous. In the eventuality of the
fact, that if ( ̂ )( )     then the function ( )( ) (        ) , the first augmentation coefficient WOULD be
absolutely continuous.

Definition of ( ̂                          )(      )
                                                       (̂            )( ) :

(D)         ( ̂            )(      )
                                           (̂           )(      )
                                                                        are positive constants

              ( )( )                 ( )( )
            ( ̂ )( )               ( ̂ )( )


Definition of ( ̂ )(                            )
                                                       ( ̂          )( ) :

(E)         There exists two constants ( ̂ )( ) and ( ̂                                                                              )( ) which together
            with ( ̂ )( ) ( ̂ )( ) ( ̂ )( ) and ( ̂                                                                                  )( ) and the constants
            ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )(                                                                             )


            satisfy the inequalities

                       ( )(                )
                                                       ( )(         )
                                                                                     ( ̂       )(   )
                                                                                                                 ( ̂ )( ) ( ̂                  )(   )
      ( ̂      )( )


                        ( )(               )
                                                       ( )(          )
                                                                                     (̂        )(   )
                                                                                                                 ( ̂            )(   )
                                                                                                                                         (̂        )(   )
      ( ̂      )( )

Where we suppose

(F)         ( )(           )
                               ( )(                )
                                                       (        )(       )
                                                                             ( )(          )
                                                                                               ( )(          )
                                                                                                                 (         )(    )


(G)         The functions (                                  )(     )
                                                                         (           )( ) are positive continuous increasing and bounded.

Definition of ( )(                         )
                                                   ( )( ) :
                                                                                                        ( )
            (         )( ) (                       )        ( )(             )
                                                                                       ( ̂          )

            (         )( ) (                       )            ( )(             )
                                                                                           ( )(      )
                                                                                                                 ( ̂        )(       )


(H)                                (           )( ) (                    )            ( )(      )


                                   (           )( ) ((                  ) )                 ( )(         )


Definition of ( ̂                          )(      )
                                                       ( ̂          )( ) :

Where ( ̂             )(       )
                                   ( ̂                 )(   )
                                                                ( )(             )
                                                                                       ( )( ) are positive constants and

They satisfy Lipschitz condition:

                                                                                                                                                    )( )
(     )( ) (            )              (        )( ) (                       )         (̂           )(       )                               ( ̂


                                                                                                                                                                  )( )
(     )( ) ((          )           )           (        )( ) ((                      ) )            (̂           )(    )    (            )    (         )   ( ̂


With the Lipschitz condition, we place a restriction on the behavior of functions ( )( ) (       )
and( )( ) (      ) .(      ) and (        ) are points belonging to the interval [( ̂ )( ) ( ̂ )( ) ] . It is to
be noted that ( )( ) (     ) is uniformly continuous. In the eventuality of the fact, that if ( ̂ )( )
                       ( )
then the function ( ) (          ) , the SECOND augmentation coefficient would be absolutely continuous.


                                                                                                                                    95
Journal of Natural Sciences Research                                                                                                                                   www.iiste.org
ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online)
Vol.2, No.4, 2012


Definition of ( ̂                        )(     )
                                                        (̂              )( ) :

(I)              ( ̂    )(          )
                                        (̂               )(         )
                                                                        are positive constants

               ( )( )                 ( )( )
             ( ̂ )( )               ( ̂ )( )


Definition of ( ̂ )(                            )
                                                        ( ̂             )( ) :

There exists two constants ( ̂ )( ) and ( ̂ )( ) which together
with ( ̂ )( ) ( ̂ )( ) ( ̂ )( )       ( ̂ )( ) and the constants
    ( )     ( )    ( )     ( )    ( )
( ) ( ) ( ) ( ) ( )                    ( )( )

 satisfy the inequalities

                 ( )(       )
                                        ( )(                )
                                                                        ( ̂            )(   )
                                                                                                     ( ̂ )( ) ( ̂                          )(   )
( ̂   )( )


                 ( )(       )
                                        ( )(                )
                                                                        (̂             )(   )
                                                                                                         ( ̂             )(   )
                                                                                                                                  (̂        )(      )
( ̂   )( )

Where we suppose

(J)               ( )(          )
                                    ( )(                )
                                                                (       )(    )
                                                                                      ( )(      )
                                                                                                    ( )(             )
                                                                                                                         (        )(   )


The functions (                     )(      )
                                                (               )( ) are positive continuous increasing and bounded.

Definition of ( )(                      )
                                                ( )( ) :

         (         )( ) (                   )               ( )(          )
                                                                                      ( ̂           )(   )


         (         )( ) (                   )                   ( )(          )
                                                                                       ( )(          )
                                                                                                                 ( ̂          )(   )


             (      )( ) (                      )                ( )(         )


             (     )( ) (                       )                   ( )(      )


Definition of ( ̂                        )(         )
                                                         ( ̂             )( ) :

Where ( ̂              )(       )
                                    (̂                  )(      )
                                                                    ( )(          )
                                                                                        ( )(         )
                                                                                                          are positive constants and

They satisfy Lipschitz condition:

                                                                                                                                                         )( )
(     )( ) (            )           (           )( ) (                        )         (̂           )(      )                                  ( ̂


                                                                                                                                                                )( )
(     )( ) (                )           (           )( ) (                        )         (̂           )(      )                                      ( ̂


With the Lipschitz condition, we place a restriction on the behavior of functions ( )( ) (       )
and( ) ( ( )
                 ) .(      ) And (        ) are points belonging to the interval [( ̂ )( ) ( ̂ )( ) ] . It is to
be noted that ( )( ) (     ) is uniformly continuous. In the eventuality of the fact, that if ( ̂ )( )
then the function ( )( ) (       ) , the THIRD augmentation coefficient, would be absolutely continuous.

Definition of ( ̂                        )(         )
                                                        (̂              )( ) :

(K)              ( ̂    )(          )
                                        (̂                  )(      )
                                                                         are positive constants

               ( )( )                 ( )( )
             ( ̂ )( )               ( ̂ )( )




                                                                                                                                   96
Journal of Natural Sciences Research                                                                                                                                                   www.iiste.org
      ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online)
      Vol.2, No.4, 2012


      There exists two constants There exists two constants ( ̂ )( ) and ( ̂                                                                                         )( ) which together with
      ( ̂ )( ) ( ̂ )( ) ( ̂ )( )        ( ̂ )( ) and the constants
      ( ) ( ) ( ) ( ) ( )( ) ( )( )
           ( )     ( )     ( )   ( )

      satisfy the inequalities

                     ( )(        )
                                             ( )(             )
                                                                        ( ̂             )(    )
                                                                                                      ( ̂              )( ) ( ̂                  )(   )
      ( ̂   )( )


                     ( )(           )
                                             ( )(              )
                                                                         (̂             )(    )
                                                                                                          ( ̂              )(       )
                                                                                                                                        (̂           )(   )
      ( ̂   )( )

      Where we suppose

(L)         ( )(      )
                           ( )(          )
                                             (            )(       )
                                                                       ( )(         )
                                                                                        ( )(      )
                                                                                                          (           )(   )



      (M)          The functions (                                 )(   )
                                                                            (           )( ) are positive continuous increasing and bounded.

      Definition of ( )(                     )
                                                      ( )( ) :

               (          )( ) (                  )            ( )(         )
                                                                                        ( ̂       )(      )


               (          )( ) ((                ) )                    ( )(        )
                                                                                              ( )(            )
                                                                                                                       ( ̂              )(   )




      (N)                                ( )( ) (                           )( )( )
                                        ( )( ) ((                        ) )   ( )(                       )



      Definition of ( ̂                      )(       )
                                                          ( ̂           )( ) :

      Where ( ̂             )(       )
                                         (̂               )(       )
                                                                       ( )(         )
                                                                                         ( )(         )
                                                                                                              are positive constants and

          They satisfy Lipschitz condition:

                                                                                                                                                              )( )
      (     )( ) (              )        (        )( ) (                        )        (̂           )(          )                                   ( ̂


                                                                                                                                                                           )( )
      (     )( ) ((          )           )        (           )( ) ((               ) )               (̂               )(       )       (        )        (    )     ( ̂



      With the Lipschitz condition, we place a restriction on the behavior of functions ( )( ) (                                                                                         )
      and( )( ) (      ) .(      ) and (     ) are points belonging to the interval [( ̂ )( ) ( ̂                                                                                        )( ) ] . It is to
      be noted that ( )( ) (     ) is uniformly continuous. In the eventuality of the fact, that if ( ̂ )( )
      then the function ( )( ) (       ) , the FOURTH augmentation coefficient WOULD be absolutely
      continuous.

      Definition of ( ̂                      )(       )
                                                              (̂        )( ) :

(O)         ( ̂       )(    )
                                 (̂              )(       )
                                                                  are positive constants
(P)
              ( )( )              ( )( )
            ( ̂ )( )            ( ̂ )( )


      Definition of ( ̂                      )(   )
                                                          ( ̂           )( ) :

      (Q)          There exists two constants ( ̂                                                 )( ) and ( ̂ )( ) which together with
                   ( ̂ )( ) ( ̂ )( ) ( ̂ )( )                                                       ( ̂ )( ) and the constants

                                                                                                                                            97
Journal of Natural Sciences Research                                                                                                                                                       www.iiste.org
      ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online)
      Vol.2, No.4, 2012


                        ( )( ) ( )( ) ( )( ) ( )(                                              )
                                                                                                       ( )(             )
                                                                                                                                ( )(      )

                        satisfy the inequalities

                        ( )(        )
                                                ( )(             )
                                                                          ( ̂             )(       )
                                                                                                            ( ̂                 )( ) ( ̂               )(   )
      ( ̂     )( )


                                   ( )(          )
                                                             ( )(         )
                                                                                      (̂               )(       )
                                                                                                                                ( ̂       )(   )
                                                                                                                                                       (̂           )(   )
              ( ̂       )( )


      Where we suppose

(R)       ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )
      (S)      The functions ( )( ) ( )( ) are positive continuous increasing and bounded.
      Definition of ( )( ) ( )( ) :

                    (      )( ) (                    )           ( )(         )
                                                                                          ( ̂           )(      )


                    (      )( ) ((               ) )                     ( )(         )
                                                                                                   ( )(             )
                                                                                                                                ( ̂       )(       )




      (T)                                   (    )( ) (                       )        ( )( )
                                                ( )
                                    (           ) (                       )           ( )( )

      Definition of ( ̂                         )(       )
                                                             ( ̂          )( ) :

      Where ( ̂                )(       )
                                            (̂               )(      )
                                                                         ( )(     )
                                                                                           ( )(             )
                                                                                                                    are positive constants and

      They satisfy Lipschitz condition:

                                                                                                                                                                         )( )
          (    )( ) (               )           (            )( ) (               )            (̂               )(          )                                   ( ̂


                                                                                                                                                                                      )( )
      (       )( ) ((           )           )        (           )( ) ((              ) )                   (̂                  )(    )   (            )        (        )      ( ̂



      With the Lipschitz condition, we place a restriction on the behavior of functions ( )( ) (                                                                                             )
      and( )( ) (      ) .(      ) and (     ) are points belonging to the interval [( ̂ )( ) ( ̂                                                                                            )( ) ] . It is to
      be noted that ( )( ) (     ) is uniformly continuous. In the eventuality of the fact, that if ( ̂ )( )
      then the function ( )( ) (       ) , theFIFTH augmentation coefficient attributable would be absolutely
      continuous.

      Definition of ( ̂                         )(       )
                                                                 (̂       )( ) :

(U)           ( ̂        )(    )
                                    (̂              )(       )
                                                                     are positive constants
                       (   )( )               (      )( )
                     ( ̂       )( )         ( ̂          )( )


      Definition of ( ̂                         )(   )
                                                             ( ̂          )( ) :

(V)           There exists two constants ( ̂ )( ) and ( ̂ )( ) which together with
              ( ̂ )( ) ( ̂ )( ) ( ̂ )( )       ( ̂ )( ) and the constants
              ( ) ( ) ( ) ( ) ( )( ) ( )( )
                 ( )      ( )    ( )     ( )
                                                                            satisfy the inequalities

                        ( )(        )
                                                ( )(             )
                                                                          ( ̂             )(       )
                                                                                                            ( ̂                 )( ) ( ̂               )(   )
      ( ̂     )( )




                                                                                                                                              98
Journal of Natural Sciences Research                                                                                                                               www.iiste.org
ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online)
Vol.2, No.4, 2012


                   ( )(      )
                                         ( )(             )
                                                                 (̂             )(    )
                                                                                               ( ̂      )(       )
                                                                                                                     (̂           )(   )
( ̂   )( )


Where we suppose

( )(   )
             ( )( ) ( )( ) ( )( ) ( )( ) ( )( )
(W)           The functions ( )( ) ( )( ) are positive continuous increasing and bounded.
              Definition of ( )( ) ( )( ) :

           (        )( ) (                 )              ( )(      )
                                                                                ( ̂       )(   )



           (        )( ) ((              ) )                   ( )(         )
                                                                                     ( )(       )
                                                                                                        ( ̂          )(   )




(X)                              (    )( ) ( )                                  ( )( )
                                         ( )
                            (        ) (( ) )                                    ( )( )

Definition of ( ̂                        )(    )
                                                      ( ̂      )( ) :

           Where ( ̂                      )(          )
                                                          (̂        )(      )
                                                                                ( )(      )
                                                                                                ( )(     )
                                                                                                                 are positive constants and

They satisfy Lipschitz condition:

                                                                                                                                           )( )
(     )( ) (            )            (        )( ) (                    )        (̂           )(    )                              ( ̂


                                                                                                                                                        )( )
(     )( ) ((           )        )            (           )( ) ((           ) )               (̂        )(   )       (        )        (    )     ( ̂



With the Lipschitz condition, we place a restriction on the behavior of functions ( )( ) (                                                                     )
and( )( ) (      ) .(      ) and (     ) are points belonging to the interval [( ̂ )( ) ( ̂                                                                    )( ) ] . It is to
be noted that ( )( ) (     ) is uniformly continuous. In the eventuality of the fact, that if ( ̂ )( )
then the function ( )( ) (       ) , the SIXTH augmentation coefficient would be absolutely continuous.

Definition of ( ̂                        )(       )
                                                          (̂    )( ) :

( ̂     )(     )
                   (̂           )(   )
                                              are positive constants
               (    )( )               ( )( )
             ( ̂      )( )           ( ̂ )( )


Definition of ( ̂                     )(      )
                                                      ( ̂      )( ) :

There exists two constants ( ̂ )( ) and ( ̂ )( ) which together with
( ̂ )( ) ( ̂ )( ) ( ̂ )( )       ( ̂ )( ) and the constants
( ) ( ) ( ) ( ) ( )( ) ( )( )
     ( )     ( )     ( )   ( )

satisfy the inequalities

               ( )(         )
                                     ( )(                 )
                                                               ( ̂              )(    )
                                                                                              ( ̂       )( ) ( ̂              )(   )
( ̂   )( )


                   ( )(      )
                                         ( )(             )
                                                                 (̂             )(    )
                                                                                               ( ̂      )(       )
                                                                                                                     (̂           )(   )
( ̂   )( )


Theorem 1: if the conditions IN THE FOREGOING above are fulfilled, there exists a solution satisfying
the conditions



                                                                                                                         99
Journal of Natural Sciences Research                                                                                                                         www.iiste.org
ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online)
Vol.2, No.4, 2012


Definition of            ( )       ( ):
                      ( ) ( ̂       )( )
  ( )         ( ̂ )                              ,                  ( )

                          ) ( ̂    )( )
  ( )     ( ̂       )(                               ,                ( )

Definition of             ( )      ( )

                          ) ( ̂    )( )
  ( )         ( ̂ )(                             ,               ( )

                          ) ( ̂    )( )
  ( )     ( ̂       )(                               ,               ( )

                          ) ( ̂    )( )
  ( )         ( ̂   )(                           ,               ( )

                          ) ( ̂    )( )
  ( )     ( ̂       )(                               ,               ( )

Definition of             ( )      ( ):

                         ( ) ( ̂    )( )
  ( )         ( ̂   )                            ,                  ( )

                          ) ( ̂    )( )
  ( )     ( ̂       )(                               ,                ( )

Definition of             ( )      ( ):

                         ( ) ( ̂    )( )
  ( )         ( ̂   )                            ,                  ( )

                          ) ( ̂    )( )
  ( )     ( ̂       )(                               ,                ( )

Definition of             ( )      ( ):

                         ( ) ( ̂    )( )
  ( )         ( ̂   )                            ,                  ( )

                          ) ( ̂    )( )
  ( )     ( ̂       )(                               ,                ( )

                                               ( )
Proof: Consider operator                                 defined on the space of sextuples of continuous functions
which satisfy

  ( )                ( )                                 ( ̂ )(           )
                                                                                        ( ̂         )(   )


                                         ) ( ̂               )( )
         ( )               ( ̂ )(

                                         ) ( ̂               )( )
        ( )                ( ̂     )(

By

 ̅ ( )                   ∫ [(      )(     )
                                                         (   (      ))        ((    )(      )
                                                                                                         )( ) (   (   (   ))   (   ) ))   (   (   ) )]   (    )


  ̅ ( )                  ∫ [(       )(     )
                                                         (   (      ))        ((   )(    )
                                                                                                (        )( ) (   (   (   ))   (   ) ))   (   (   ) )]   (    )


 ̅ ( )                   ∫ [(      )(     )
                                                     (       (   ))       ((       )(   )
                                                                                                (        )( ) (   (   (   ))   (   ) ))   (   (   ) )]   (    )




                                                                                                100
Journal of Natural Sciences Research                                                                                                                                                                   www.iiste.org
ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online)
Vol.2, No.4, 2012


̅ ( )                ∫ [(      )(       )
                                                    (   (           ))         ((       )(    )
                                                                                                      (        )( ) ( (     (       ))       (       ) ))        (   (           ) )]          (       )


̅ ( )                ∫ [(      )(       )
                                                    (   (           ))         ((       )(    )
                                                                                                      (        )( ) ( (     (       ))       (       ) ))        (   (           ) )]          (       )


̅ ()                 ∫ [(      )(       )
                                                    (   (           ))         ((       )(    )
                                                                                                      (        )( ) ( (     (       ))       (       ) ))        (   (       ) )]           (      )


Where     (    )   is the integrand that is integrated over an interval (                                                   )

Proof:
                             ( )
Consider operator                  defined on the space of sextuples of continuous functions                                                                                                                       which
satisfy

  ( )                ( )                                ( ̂ )(                 )
                                                                                              ( ̂         )(   )


                                            ) ( ̂           )( )
         ( )             ( ̂ )(

                                            ) ( ̂           )( )
        ( )             ( ̂        )(

By

 ̅ ( )                 ∫ [(        )(       )
                                                        (   (        ))            ((        )(   )
                                                                                                               )( ) (       (   (       ))       (       ) ))        (       (       ) )]          (       )


 ̅ ( )                ∫ [(         )(       )
                                                    (       (        ))        ((       )(    )
                                                                                                      (        )( ) (       (   (       ))       (       ) ))        (       (       ) )]          (       )


 ̅ ( )                ∫ [(         )(       )
                                                    (       (        ))        ((       )(    )
                                                                                                      (        )( ) (       (   (       ))       (       ) ))        (       (       ) )]          (       )


̅ ( )                ∫ [(      )(       )
                                                    (   (           ))         ((       )(    )
                                                                                                      (        )( ) ( (     (       ))       (       ) ))        (   (           ) )]          (       )


̅ ( )                ∫ [(      )(       )
                                                    (   (           ))         ((       )(    )
                                                                                                      (        )( ) ( (     (       ))       (       ) ))        (   (           ) )]          (       )


̅ ( )                ∫ [(      )(       )
                                                    (   (           ))         ((       )(    )
                                                                                                      (        )( ) ( (     (       ))       (       ) ))        (   (           ) )]          (       )


Where     (    )   is the integrand that is integrated over an interval (                                                   )

Proof:
                             ( )
Consider operator                  defined on the space of sextuples of continuous functions                                                                                                                       which
satisfy

  ( )                ( )                                ( ̂               )(   )
                                                                                              ( ̂         )(   )


                                            ) ( ̂           )( )
         ( )             ( ̂       )(

                                            ) ( ̂           )( )
        ( )             ( ̂        )(

By

 ̅ ( )                 ∫ [(        )(       )
                                                        (       (    ))            ((        )(   )
                                                                                                               )( ) (       (   (        ))      (       ) ))        (       (       ) )]          (       )


  ̅ ( )                ∫ [(        )(           )
                                                        (       (        ))        ((    )(       )
                                                                                                          (        )( ) (   (       (    ))          (    ) ))           (       (      ) )]           (       )




                                                                                                      101
Journal of Natural Sciences Research                                                                                                                                                       www.iiste.org
ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online)
Vol.2, No.4, 2012


 ̅ ( )                ∫ [(          )(       )
                                                     (       (    ))       ((       )(        )
                                                                                                      (        )( ) (       (   (        ))       (     ) ))        (   (   ) )]       (       )


̅ ( )                 ∫ [(         )(    )
                                                 (       (       ))        ((       )(    )
                                                                                                      (        )( ) ( (     (       ))        (       ) ))      (   (   ) )]       (       )


̅ ( )                 ∫ [(         )(    )
                                                 (       (       ))        ((       )(    )
                                                                                                      (        )( ) ( (     (       ))        (       ) ))      (   (   ) )]       (       )


̅ ()                 ∫ [(          )(    )
                                                 (       (       ))        ((       )(    )
                                                                                                      (        )( ) ( (     (       ))        (       ) ))      (   (   ) )]       (   )


Where     (    )   is the integrand that is integrated over an interval (                                                   )

                              ( )
 Consider operator                      defined on the space of sextuples of continuous functions                                                                                                  which
satisfy

  ( )                ( )                                 ( ̂          )(   )
                                                                                          ( ̂             )(   )


                                         ) ( ̂               )( )
         ( )             ( ̂        )(

                                         ) ( ̂               )( )
        ( )             ( ̂        )(

By

 ̅ ( )                 ∫ [(         )(       )
                                                     (       (      ))         ((        )(       )
                                                                                                               )( ) (       (   (        ))       (     ) ))        (   (   ) )]       (       )


  ̅ ( )                ∫ [(         )(       )
                                                     (       (      ))         ((    )(       )
                                                                                                      (            )( ) (   (   (        ))       (      ) ))       (   (   ) )]       (       )


 ̅ ( )                ∫ [(          )(       )
                                                     (       (    ))       ((       )(    )
                                                                                                      (        )( ) (       (   (    ))           (     ) ))        (   (   ) )]       (       )


̅ ( )                 ∫ [(         )(    )
                                                 (       (       ))        ((       )(    )
                                                                                                      (        )( ) ( (     (       ))        (       ) ))      (   (   ) )]       (       )


̅ ( )                 ∫ [(         )(    )
                                                 (       (       ))        ((       )(    )
                                                                                                      (        )( ) ( (     (       ))        (       ) ))      (   (   ) )]       (       )


̅ ()                 ∫ [(       )(       )
                                                 (       (       ))        ((       )(    )
                                                                                                      (        )( ) ( (     (       ))        (       ) ))      (   (   ) )]       (   )


Where     (    )   is the integrand that is integrated over an interval (                                                   )

                             ( )
Consider operator                   defined on the space of sextuples of continuous functions                                                                                                      which
satisfy

  ( )                ( )                                 ( ̂          )(   )
                                                                                          ( ̂             )(   )


                                         ) ( ̂               )( )
         ( )             ( ̂        )(

                                         ) ( ̂               )( )
        ( )             ( ̂        )(

By

 ̅ ( )                 ∫ [(         )(       )
                                                     (       (      ))         ((    )(           )
                                                                                                               )( ) (       (   (    ))           (     ) ))        (   (   ) )]       (       )




                                                                                                      102
Journal of Natural Sciences Research                                                                                                                                                                               www.iiste.org
ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online)
Vol.2, No.4, 2012


    ̅ ( )                      ∫ [(            )(      )
                                                                 (      (      ))        ((        )(       )
                                                                                                                (             )( ) (          (      (        ))       (     ) ))        (   (      ) )]       (       )


    ̅ ( )                  ∫ [(               )(       )
                                                               (        (      ))        ((       )(    )
                                                                                                                (            )( ) (          (       (    ))           (     ) ))        (   (     ) )]        (       )


̅ ( )                      ∫ [(               )(   )
                                                            (       (        ))          ((       )(    )
                                                                                                                (            )( ) ( (            (       ))        (       ) ))      (   (       ) )]      (       )


̅ ( )                      ∫ [(            )(      )
                                                            (       (        ))          ((       )(    )
                                                                                                                (            )( ) ( (        (           ))        (       ) ))      (   (   ) )]          (   )


̅ ()                       ∫ [(             )(     )
                                                            (       (        ))          ((       )(    )
                                                                                                                (            )( ) ( (         (          ))        (       ) ))      (   (   ) )]          (   )


Where        (    )   is the integrand that is integrated over an interval (                                                                 )

                                      ( )
Consider operator                              defined on the space of sextuples of continuous functions                                                                                                                   which
satisfy

    ( )                    ( )                                      ( ̂             )(   )
                                                                                                        ( ̂          )(      )


                                                    ) ( ̂               )( )
            ( )                 ( ̂           )(

                                                    ) ( ̂               )( )
          ( )                   ( ̂           )(

By

    ̅ ( )                      ∫ [(            )(      )
                                                                 (       (     ))            ((        )(   )
                                                                                                                             )( ) (          (       (        ))       (     ) ))        (   (      ) )]       (       )


    ̅ ( )                      ∫ [(            )(      )
                                                                 (       (     ))            ((    )(       )
                                                                                                                 (               )( ) (          (   (        ))       (      ) ))       (   (      ) )]       (       )


    ̅ ( )                  ∫ [(               )(       )
                                                                (       (      ))        ((       )(    )
                                                                                                                (            )( ) (          (       (        ))       (     ) ))        (   (     ) )]        (       )


̅ ( )                      ∫ [(               )(   )
                                                            (       (        ))          ((       )(    )
                                                                                                                (            )( ) ( (            (       ))        (       ) ))      (   (       ) )]      (       )


̅ ( )                      ∫ [(               )(   )
                                                            (       (        ))          ((       )(    )
                                                                                                                (            )( ) ( (            (       ))        (       ) ))      (   (       ) )]      (       )


̅ ()                       ∫ [(             )(     )
                                                            (       (        ))          ((       )(    )
                                                                                                                (            )( ) ( (         (          ))        (       ) ))      (   (   ) )]          (   )


Where        (    )   is the integrand that is integrated over an interval (                                                                 )

                                 ( )
(a) The operator                          maps the space of functions satisfying GLOBAL EQUATIONS into itself .Indeed it
    is obvious that

                                                                                              ) ( ̂         )( ) (
      ( )                   ∫ [(               )( ) (                        ( ̂ )(                                      )   )]        (     )


                                                                 (            )( ) ( ̂ )( )                     )( )
                  (        (         )(   )
                                               )                                            ( (̂                                     )
                                                                             ( ̂ )( )

From which it follows that

                                                                                                                                  (̂       )( )
                                                           (            )( )                                                 (                                )
                               ( ̂        )( )                                      ̂ )(
(     ( )              )                                                      ) [((
                                                                                                   )
                                                                                                                     )                                                 ( ̂ )( ) ]
                                                           ( ̂          )(




                                                                                                                103
Journal of Natural Sciences Research                                                                                                             www.iiste.org
ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online)
Vol.2, No.4, 2012


(   ) is as defined in the statement of theorem 1

Analogous inequalities hold also for
                              ( )
(b) The operator                       maps the space of functions satisfying GLOBAL EQUATIONS into itself .Indeed it
    is obvious that

                                                                             ) ( ̂      )( ) (
    ( )                 ∫ [(               )( ) (             ( ̂ )(                                 )   )]        (     )
                                   (        )( ) ( ̂ )( )                    )( )
(    (     )(   )
                    )                                     ( (̂                           )
                                           ( ̂ )( )

From which it follows that

                                                                                                              (̂       )( )
                                                    (       )( )                                         (                    )
                            ( ̂        )( )                            ̂ )(
(   ( )             )                                            ) [((
                                                                                    )
                                                                                                 )                                ( ̂ )( ) ]
                                                ( ̂         )(


Analogous inequalities hold also for
                              ( )
(a) The operator                       maps the space of functions satisfying GLOBAL EQUATIONS into itself .Indeed it
    is obvious that

                                                                             ) ( ̂      )( ) (
    ( )                     ∫ [(           )( ) (                ( ̂    )(                           )   )]        (     )


                                                        (      )( ) ( ̂ )( )                 )( )
            (           (         )(   )
                                           )                                 ( (̂                              )
                                                              ( ̂ )( )

From which it follows that

                                                                                                              (̂       )( )
                                                    (       )( )                                         (                    )
                            ( ̂        )( )                             ̂
(   ( )             )                                            [((           )( )
                                                                                                 )                                ( ̂   )( ) ]
                                                ( ̂         )( )


Analogous inequalities hold also for

(b) The operator ( ) maps the space of functions satisfying GLOBAL EQUATIONS into itself .Indeed it
    is obvious that
                                             ̂ )( ) ( )
    ( )          ∫ [( )( ) (     ( ̂ )( ) (             )] ( )

                                                        (      )( ) ( ̂ )( )                 )( )
            (           (         )(   )
                                           )                                 ( (̂                              )
                                                              ( ̂ )( )


From which it follows that

                                                                                                              (̂       )( )
                                                    (       )( )                                         (                    )
                            ( ̂        )( )                              ̂
(   ( )             )                                              ) [((       )( )
                                                                                                 )                                ( ̂   )( ) ]
                                                ( ̂         )(



    (     ) is as defined in the statement of theorem 1

(c) The operator ( ) maps the space of functions satisfying GLOBAL EQUATIONS into itself .Indeed it
    is obvious that
                                             ̂ )( ) ( )
    ( )          ∫ [( )( ) (     ( ̂ )( ) (             )] ( )

                                                        (      )( ) ( ̂ )( )                 )( )
            (           (         )(   )
                                           )                                 ( (̂                              )
                                                              ( ̂ )( )




                                                                                             104
Journal of Natural Sciences Research                                                                                                                                              www.iiste.org
ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online)
Vol.2, No.4, 2012


From which it follows that

                                                                                                                             (̂         )( )
                                                                  (        )( )                                          (                            )
                                     ( ̂        )( )                                   ̂
(        ( )                )                                                    ) [((        )(    )
                                                                                                                     )                                       (̂      )( ) ]
                                                               ( ̂          )(



(    ) is as defined in the statement of theorem 1

                                          ( )
(d) The operator                                   maps the space of functions satisfying GLOBAL EQUATIONS into itself .Indeed it
    is obvious that
                                                                                                                     ) ( ̂         )( ) (
                ( )                                           ∫ [(                )( ) (            ( ̂         )(                               )   )]      (   )


                                                                       (      )( ) ( ̂ )( )                     )( )
                   (             (        )(    )
                                                     )                                      ( (̂                                   )
                                                                             ( ̂ )( )


From which it follows that

                                                                                                                             (̂         )( )
                                                                  (        )( )                                          (                            )
                                     ( ̂        )( )                                   ̂
(        ( )                )                                                    ) [((        )( )
                                                                                                                     )                                       ( ̂     )( ) ]
                                                               ( ̂          )(



         (     ) is as defined in the statement of theorem

Analogous inequalities hold also for

                                                           ( )( )                  ( )( )
It is now sufficient to take                                                                            and to choose
                                                         ( ̂ )( )                ( ̂ )( )


( ̂ )(         )
                            (̂            )(   )
                                                    large to have

                                                                                        (̂   )( )
                                                                                        (               )
(    )( )
           [(      ̂ )(          )
                                          (( ̂ )(             )
                                                                             )                              ]        ( ̂ )(            )
(̂    )( )



                                                                  (̂       )( )
                                                          (                             )
 ( )( )
         [((           ̂     )(      )
                                                    )                                        ( ̂        )( ) ]           ( ̂           )(   )
( ̂ )( )


                                                          ( )
In order that the operator                                        transforms the space of sextuples of functions                                                       satisfying GLOBAL
EQUATIONS into itself
                                 ( )
The operator                             is a contraction with respect to the metric

             ( )    ( )                ( )         ( )
    ((                     )(                            ))

                           ( )
                                 ( )            ( )
                                                        ( )|           (̂        )( )               ( )
                                                                                                          ( )             ( )
                                                                                                                                ( )|            (̂    )( )
                   |                                                                           |


Indeed if we denote

Definition of ̃ ̃ :

                                                                                              ( ̃ ̃)                     ( )
                                                                                                                               (            )

It results



                                                                                                                105
Journal of Natural Sciences Research                                                                                                                                                                   www.iiste.org
ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online)
Vol.2, No.4, 2012


     ( )        ̃ ( )|                                             ( )              ( )          (̂           )( ) (             (̂        )( ) (
|̃                                     ∫(          )( ) |                                 |                                 )                       )
                                                                                                                                                               (   )

                              ( )              ( )            (̂        )( ) (                 (̂        )( ) (
∫ (            )( ) |                                |                              )                                   )



                     ( )                        ( )                ( )           (̂           )( ) (              (̂        )( ) (
(         )( ) (                   (    ) )|                              |                               )                            )


    ( )                            ( )                                                  ( )                                 (̂       )( ) (         (̂     )( ) (
           (        )( ) (                  (      ))         (           )( ) (                    (     ))
                                                                                                                                               )                         )
                                                                                                                                                                                   (    )


Where           (     )   represents integrand that is integrated over the interval

From the hypotheses it follows

     ( )            ( )            (̂       )( )
|                         |
               ((             )(   )
                                            (            )(   )
                                                                        ( ̂ )(            )
                                                                                                  ( ̂ )( ) ( ̂ )( ) ) ((                                 ( )       ( )           ( )     ( )
                                                                                                                                                                                               ))
(̂        )( )


And analogous inequalities for                                                                . Taking into account the hypothesis the result follows

Remark 1: The fact that we supposed ( )( )         ( )( ) depending also on can be considered as not
conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition
                                                                               ( )                    ( )
necessary to prove the uniqueness of the solution bounded by ( ̂ )( ) ( ̂ )            ( ̂ )( ) ( ̂ )
respectively of

If instead of proving the existence of the solution on     , we have to prove it only on a compact then it
suffices to consider that ( )( )        ( )( )                 depend only on         and respectively on
  (              ) and hypothesis can replaced by a usual Lipschitz condition.

Remark 2: There does not exist any                                                      where                     ( )                              ( )

From 19 to 24 it results

                              [ ∫ {(        )( ) (            )( ) (          ( (    )) (         ) )}             )]
     ( )                                                                                                      (



     ( )                  ( (          )( ) )
                                                                  for

Definition of (( ̂ )( ) ) (( ̂ )( ) )                                                                     (( ̂ )( ) ) :

Remark 3: if                            is bounded, the same property have also                                                                                    . indeed if

               ( ̂ )( ) it follows                                            (( ̂ )( ) )                         (          )(   )
                                                                                                                                              and by integrating

               (( ̂ )( ) )                                            (        )( ) (( ̂ )( ) ) (                                 )(    )



In the same way , one can obtain

               (( ̂ )( ) )                                            (        )( ) (( ̂ )( ) ) (                                 )(    )



If                             is bounded, the same property follows for                                                                                and                            respectively.

Remark 4: If         bounded, from below, the same property holds for              The proof is
analogous with the preceding one. An analogous property is true if  is bounded from below.

Remark 5: If                                is bounded from below and                                                           ((         )( ) ( ( ) ))                     (         )( ) then

Definition of ( )(                          )
                                                                  :



                                                                                                                                106
Journal of Natural Sciences Research                                                                                                                                                                         www.iiste.org
ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online)
Vol.2, No.4, 2012


Indeed let                        be so that for

(         )(    )
                         (            )( ) ( ( ) )                                           ( )          ( )(             )



Then                              (          )( ) ( )(              )
                                                                                             which leads to

                    (        )( ) ( )( )
               (                                  )(                             )                                 If we take                    such that                                it results

                    (        )( ) ( )( )
               (                                  )                                      By taking now                                     sufficiently small one sees that                            is unbounded.
                                                                                                                        ( )                                             ( )
The same property holds for                                                      if                       (            )        ( ( ) )                   (            )

We now state a more precise theorem about the behaviors at infinity of the solutions

                                                                    ( )( )                 ( )( )
It is now sufficient to take                                                                                                   and to choose
                                                                  ( ̂ )( )               ( ̂ )( )


( ̂ )(              )
                                      ( ̂         )(   )
                                                              large to have

                                                                                                     (̂        )( )
                                                                                                 (                             )
 ( )( )
         [( ̂                     )(   )
                                                  (( ̂ )(               )
                                                                                         )                                         ]        ( ̂ )(             )
( ̂ )( )



                                                                            (̂       )( )
                                                                    (                                )
(     )( )
            [((              ̂         )(    )
                                                              )                                                ( ̂             )( ) ]            ( ̂       )(      )
(̂     )( )


                                                                    ( )
In order that the operator                                                   transforms the space of sextuples of functions                                                                   satisfying
                                       ( )
The operator                                     is a contraction with respect to the metric

     (((            )(       )
                                  (         )( ) ) ((                   )(   )
                                                                                     (       )( ) ))

                                 ( )
                                       ( )             ( )
                                                                  ( )|           (̂      )( )                              ( )
                                                                                                                                 ( )              ( )
                                                                                                                                                        ( )|            (̂     )( )
                         |                                                                                         |


Indeed if we denote

Definition of ̃ ̃ : ( ̃ ̃ )                                                                           ( )
                                                                                                              (                      )

It results
     ( )            ̃ ( )|                                              ( )              ( )              (̂           )( ) (               (̂        )( ) (
|̃                                         ∫(          )( ) |                                    |                                     )                           )
                                                                                                                                                                           (   )

                                  ( )               ( )            (̂        )( ) (                   (̂          )( ) (
∫ (             )( ) |                                    |                                  )                                   )



                         ( )                           ( )               ( )             (̂          )( ) (                (̂          )( ) (
(         )( ) (                       (     ) )|                                |                                 )                              )


    ( )                                ( )                                                       ( )                                 (̂      )( ) (                (̂      )( ) (
           (            )( ) (                    (    ))           (            )( ) (                    (       ))
                                                                                                                                                          )                           )
                                                                                                                                                                                          (   )


Where               (     )      represents integrand that is integrated over the interval

From the hypotheses it follows

           )(       )
                              (            )( ) |      (̂           )( )
|(


                                                                                                                                           107
Journal of Natural Sciences Research                                                                                                                                          www.iiste.org
ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online)
Vol.2, No.4, 2012



           ((           )(   )
                                     (       )(   )
                                                           ( ̂ )(            )
                                                                                   ( ̂ )( ) ( ̂ )( ) ) (((                             )(   )
                                                                                                                                                (   )(   )
                                                                                                                                                             (   )(   )
                                                                                                                                                                          (   )( ) ))
(̂    )( )


And analogous inequalities for                                                   . Taking into account the hypothesis the result follows

Remark 1: The fact that we supposed ( )( )         ( )( ) depending also on can be considered as not
conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition
                                                                           ̂ )( )                 ̂ )( )
necessary to prove the uniqueness of the solution bounded by ( ̂ )( ) (                ( ̂ )( ) (
respectively of

If instead of proving the existence of the solution on    , we have to prove it only on a compact then it
                                 ( )         ( )
suffices to consider that ( )           ( )                     depend only on       and respectively on
( )(                ) and hypothesis can replaced by a usual Lipschitz condition.

Remark 2: There does not exist any                                        where                 ()                          ()

From 19 to 24 it results

                       [ ∫ {(       )( ) (        )( ) (           ( (   )) (      ) )}          )]
     ()                                                                                     (



     ()                ( (       )( ) )
                                                   for

Definition of (( ̂ )( ) ) (( ̂ )( ) )                                                     (( ̂ )( ) ) :

Remark 3: if                      is bounded, the same property have also                                                                   . indeed if

           ( ̂ )( ) it follows                                     (( ̂ )( ) )                   (        )(   )
                                                                                                                        and by integrating

           (( ̂ )( ) )                                     (        )( ) (( ̂ )( ) ) (                         )(   )



In the same way , one can obtain

           (( ̂ )( ) )                                     (        )( ) (( ̂ )( ) ) (                         )(   )



If                       is bounded, the same property follows for                                                               and                     respectively.

Remark 4: If           bounded, from below, the same property holds for                   The proof is
analogous with the preceding one. An analogous property is true if is bounded from below.

Remark 5: If                        is bounded from below and                                             ((        )( ) ((            )( ) ))       (       )( ) then

Definition of ( )(                   )
                                                       :

Indeed let              be so that for

(     )(   )
                   (     )( ) ((          )( ) )                                 ()         ( )(      )



Then                    (         )( ) ( ) (       )
                                                                         which leads to

               (   )( ) ( )( )
           (                         )(                        )                          If we take               such that                        it results

               (   )( ) ( )( )
           (                        )                               By taking now                         sufficiently small one sees that                        is unbounded. The
                                                                                      ( )                                            ( )
same property holds for                               if                 (        )         ((        )( ) )            (        )

We now state a more precise theorem about the behaviors at infinity of the solutions


                                                                                                          108
Journal of Natural Sciences Research                                                                                                                                                                                        www.iiste.org
ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online)
Vol.2, No.4, 2012


                                                                   ( )( )                   ( )( )
It is now sufficient to take                                                                                             and to choose
                                                                 ( ̂ )( )                 ( ̂ )( )


( ̂ )(          )
                                 (̂              )( ) large to have

                                                                                                    (̂        )( )
                                                                                                (                        )
 ( )( )
         [( ̂                    )(   )
                                                 (( ̂            )(    )
                                                                                        )                                    ]      ( ̂           )(     )
( ̂ )( )



                                                                           (̂        )( )
                                                                      (                             )
 ( )( )
         [((             ̂            )   ( )
                                                             )                                               ( ̂         )( ) ]         ( ̂            )(    )
( ̂ )( )


                                                                   ( )
In order that the operator                                                  transforms the space of sextuples of functions                                                                               into itself
                                      ( )
The operator                                    is a contraction with respect to the metric

    (((             )(   )
                                 (         )( ) ) ((                   )(   )
                                                                                    (       )( ) ))

                             ( )
                                      ( )               ( )
                                                                 ( )|           (̂      )( )                         ( )
                                                                                                                           ( )              ( )
                                                                                                                                                  ( )|            (̂       )( )
                     |                                                                                          |


Indeed if we denote

Definition of ̃ ̃ :( (̃) ( ) )
                         ̃                                                                                ( )
                                                                                                                ((             )(           ))

It results
               ( )           ̃ ( )|                                                 ( )             ( )             (̂     )( ) (               (̂       )( ) (
          |̃                                      ∫(              )( ) |                                  |                             )                              )
                                                                                                                                                                                (       )

                                 ( )               ( )            (̂        )( ) (                  (̂        )( ) (
∫ (            )( ) |                                    |                                  )                              )



                         ( )                         ( )                  ( )           (̂       )( ) (              (̂        )( ) (
(         )( ) (                      (     ) )|                                |                               )                           )


    ( )                               ( )                                                       ( )                            (̂   )( ) (                   (̂    )( ) (
           (         )( ) (                      (      ))         (            )( ) (                   (      ))
                                                                                                                                                     )                              )
                                                                                                                                                                                             (       )


Where           (        )   represents integrand that is integrated over the interval

From the hypotheses it follows

     ( )             ( )              (̂         )( )
|                            |
               ((                )(   )
                                                 (           )(    )
                                                                            (̂            )(    )
                                                                                                         ( ̂ )( ) ( ̂ )( ) ) (((                                       )(   )
                                                                                                                                                                                  (         )(   )
                                                                                                                                                                                                         (     )(   )
                                                                                                                                                                                                                        (   )( ) ))
(̂        )( )


And analogous inequalities for                                                                      . Taking into account the hypothesis the result follows

Remark 1: The fact that we supposed ( )( )         ( )( ) depending also on can be considered as not
conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition
                                                                               ( )                    ( )
necessary to prove the uniqueness of the solution bounded by ( ̂ )( ) ( ̂ )            ( ̂ )( ) ( ̂ )
respectively of

If instead of proving the existence of the solution on     , we have to prove it only on a compact then it
suffices to consider that ( )( )        ( )( )                  depend only on        and respectively on
( )(                 ) and hypothesis can replaced by a usual Lipschitz condition.




                                                                                                                                 109
Journal of Natural Sciences Research                                                                                                                                 www.iiste.org
ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online)
Vol.2, No.4, 2012


Remark 2: There does not exist any                                      where              ( )                               ( )

From 19 to 24 it results

                        [ ∫ {(    )( ) (        )( ) (          ( (    )) (    ) )}          )]
     ( )                                                                               (



     ( )                ( (    )( ) )
                                                 for

Definition of (( ̂ )( ) ) (( ̂ )( ) )                                                 (( ̂ )( ) ) :

Remark 3: if                    is bounded, the same property have also                                                                  . indeed if

            ( ̂ )( ) it follows                                 (( ̂ )( ) )                 (            )(   )
                                                                                                                        and by integrating

            (( ̂ )( ) )                                 (        )( ) (( ̂ )( ) ) (                           )(    )



In the same way , one can obtain

            (( ̂ )( ) )                                 (        )( ) (( ̂ )( ) ) (                            )(   )



If                           is bounded, the same property follows for                                                           and               respectively.

Remark 4: If         bounded, from below, the same property holds for               The proof is
analogous with the preceding one. An analogous property is true if   is bounded from below.

Remark 5: If                      is bounded from below and                                                  ((     )( ) ((            )( ) ))    (     )( ) then

Definition of ( )(                    )
                                                    :

Indeed let              be so that for

(      )(   )
                    (       )( ) ((       )( ) )                              ( )          ( )(          )



Then                     (      )( ) ( ) (      )
                                                                      which leads to

                (   )( ) ( )( )
            (                     )(                        )                         If we take                    such that                     it results

                (   )( ) ( )( )
            (                     )                               By taking now                              sufficiently small one sees that                  is unbounded.
                                                                                           ( )                                              ( )
The same property holds for                                 if                 (       )          ((          )( ) )               (    )

We now state a more precise theorem about the behaviors at infinity of the solutions

                                              ( )( )                    ( )( )
It is now sufficient to take                                                                 and to choose
                                            ( ̂ )( )                  ( ̂ )( )


( ̂ )(          )
                         (̂       )( ) large to have

                                                                          (̂        )( )
                                                                         (                       )
 ( )( )
         [( ̂           )( )
                                  (( ̂      )( )
                                                                  )                                  ]        ( ̂       )(   )
( ̂ )( )




                                                                                                         110
Journal of Natural Sciences Research                                                                                                                                                                                     www.iiste.org
ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online)
Vol.2, No.4, 2012


                                                                     (̂        )( )
                                                                (                            )
 ( )( )
         [((             ̂         )   ( )
                                                       )                                               ( ̂           )( ) ]           ( ̂        )(     )
( ̂ )( )



                                                             ( )
In order that the operator                                               transforms the space of sextuples of functions                                                                        satisfying IN to itself

                                   ( )
The operator                                 is a contraction with respect to the metric

     (((        )(       )
                              (         )( ) ) ((                   )(   )
                                                                              (         )( ) ))

                             ( )
                                   ( )             ( )
                                                           ( )|           (̂      )( )                              ( )
                                                                                                                          ( )            ( )
                                                                                                                                               ( )|         (̂       )( )
                     |                                                                                      |


Indeed if we denote

Definition of (̃) ( ) : ( (̃) ( ) )
                  ̃           ̃                                                                                       ( )
                                                                                                                            ((           )(          ))

It results

            ( )               ̃ ( )|                                          ( )             ( )               (̂        )( ) (          (̂         )( ) (
       |̃                                         ∫(        )( ) |                                    |                              )                           )
                                                                                                                                                                          (       )


                                           ( )            ( )            (̂       )( ) (                    (̂       )( ) (
       ∫ (                )( ) |                                |                                )                               )



                                   ( )                      ( )               ( )            (̂           )( ) (            (̂       )( ) (
       (            )( ) (                    (    ) )|                             |                                 )                          )



                              ( )                            ( )                                                          ( )                        (̂       )( ) (              (̂       )( ) (
                                       (          )( ) (                  (       ))      (               )( ) (                 (    ))
                                                                                                                                                                              )                     )
                                                                                                                                                                                                             (       )


Where           (     )      represents integrand that is integrated over the interval

From the hypotheses it follows

           )(   )
                          (            )( ) |       (̂          )( )
|(
            ((                )(   )
                                              (        )(    )
                                                                         (̂         )(   )
                                                                                                     ( ̂ )( ) ( ̂ )( ) ) (((                                     )(   )
                                                                                                                                                                            (         )(   )
                                                                                                                                                                                                (       )(   )
                                                                                                                                                                                                                 (       )( ) ))
(̂     )( )


And analogous inequalities for                                                               . Taking into account the hypothesis the result follows

Remark 1: The fact that we supposed ( )( )         ( )( ) depending also on can be considered as not
conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition
                                                                               ( )                    ( )
necessary to prove the uniqueness of the solution bounded by ( ̂ )( ) ( ̂ )            ( ̂ )( ) ( ̂ )
respectively of

If instead of proving the existence of the solution on     , we have to prove it only on a compact then it
                                 ( )         ( )
suffices to consider that ( )           ( )                     depend only on        and respectively on
( )(                 ) and hypothesis can replaced by a usual Lipschitz condition.

Remark 2: There does not exist any                                                       where                      ( )                          ( )

From 19 to 24 it results

                              [ ∫ {(          )( ) (        )( ) (            ( (       )) (         ) )}            )]
     ( )                                                                                                        (




                                                                                                                                111
Journal of Natural Sciences Research                                                                                                                                      www.iiste.org
ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online)
Vol.2, No.4, 2012


     ( )                 ( (       )( ) )
                                                       for

Definition of (( ̂ )( ) ) (( ̂ )( ) )                                                   (( ̂ )( ) ) :

Remark 3: if                        is bounded, the same property have also                                                                   . indeed if

            ( ̂ )( ) it follows                                     (( ̂ )( ) )               (           )(       )
                                                                                                                             and by integrating

            (( ̂ )( ) )                                    (         )( ) (( ̂ )( ) ) (                            )(   )



In the same way , one can obtain

            (( ̂ )( ) )                                    (         )( ) (( ̂ )( ) ) (                            )(   )



If                            is bounded, the same property follows for                                                                and                respectively.

Remark 4: If           bounded, from below, the same property holds for                   The proof is
analogous with the preceding one. An analogous property is true if is bounded from below.

Remark 5: If                           is bounded from below and                                              ((        )( ) ((            )( ) ))    (      )( ) then

Definition of ( )(                      )
                                                       :

Indeed let               be so that for

(      )(   )
                    (      )( ) ((          )( ) )                               ( )         ( )(         )



Then                      (         )( ) ( ) (     )
                                                                           which leads to

                (    )( ) ( )( )
            (                          )(                       )                        If we take                     such that                     it results

                (    )( ) ( )( )
            (                          )                             By taking now                            sufficiently small one sees that                     is unbounded.
The same property holds for                                     if                 (      )( ) ((                  )( ) )              (     )(   )



We now state a more precise theorem about the behaviors at infinity of the solutions ANALOGOUS
inequalities hold also for

                                                                 ( )( )            ( )( )
        It is now sufficient to take                                                                           and to choose
                                                               ( ̂ )( )          ( ̂ )( )


( ̂ )(          )
                          (̂           )( ) large to have

                                                                              (̂       )( )
                                                                             (                    )
(    )( )
           [(       ̂ )(       )
                                       (( ̂       )(   )
                                                                      )                               ]        ( ̂           )(   )
(̂    )( )



                                                           (̂       )( )
                                                       (                     )
(    )( )
           [((       ̂        )(   )
                                              )                                        ( ̂     )( ) ]                  ( ̂        )(   )
(̂    )( )



                                                   ( )
In order that the operator                                 transforms the space of sextuples of functions                                                   into itself


                                                                                                          112
Journal of Natural Sciences Research                                                                                                                                                                    www.iiste.org
ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online)
Vol.2, No.4, 2012


                                   ( )
The operator                              is a contraction with respect to the metric

     (((         )(     )
                              (         )( ) ) ((                  )(   )
                                                                              (      )( ) ))

                            ( )
                                   ( )            ( )
                                                          ( )|            (̂      )( )                            ( )
                                                                                                                        ( )           ( )
                                                                                                                                            ( )|        (̂    )( )
                    |                                                                                     |


Indeed if we denote

Definition of (̃) ( ) : ( (̃) ( ) )
                  ̃           ̃                                                                                     ( )
                                                                                                                            ((        )(           ))

It results

     ( )         ̃ ( )|                                             ( )             ( )          (̂           )( ) (             (̂       )( ) (
|̃                                     ∫(         )( ) |                                  |                                 )                      )
                                                                                                                                                         (        )


                              ( )               ( )            (̂       )( ) (                 (̂        )( ) (
∫ (             )( ) |                                |                              )                                  )



                      ( )                        ( )                ( )           (̂          )( ) (              (̂        )( ) (
(         )( ) (                   (     ) )|                             |                               )                           )



    ( )                            ( )                                                   ( )                                (̂    )( ) (           (̂    )( ) (
           (        )( ) (                  (     ))           (            )( ) (                  (     ))
                                                                                                                                              )                       )
                                                                                                                                                                           (       )


Where           (     )     represents integrand that is integrated over the interval

From the hypotheses it follows

           )(   )
                          (            )( ) |         (̂       )( )
|(
               ((             )(   )
                                            (             )(   )
                                                                        (̂          )(    )
                                                                                                  ( ̂ )( ) ( ̂ )( ) ) (((                                    )(   )
                                                                                                                                                                      (   )(   )
                                                                                                                                                                                       (   )(   )
                                                                                                                                                                                                    (   )( ) ))
(̂        )( )


And analogous inequalities for                                                                . Taking into account the hypothesis (35,35,36) the result follows

Remark 1: The fact that we supposed ( )( )         ( )( ) depending also on can be considered as not
conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition
                                                                               ( )                    ( )
necessary to prove the uniqueness of the solution bounded by ( ̂ )( ) ( ̂ )            ( ̂ )( ) ( ̂ )
respectively of

If instead of proving the existence of the solution on     , we have to prove it only on a compact then it
suffices to consider that ( )( )        ( )( )                  depend only on        and respectively on
( )(                 ) and hypothesis can replaced by a usual Lipschitz condition.

Remark 2: There does not exist any                                                       where                    ( )                             ( )

From GLOBAL EQUATIONS it results

                              [ ∫ {(        )( ) (             )( ) (         ( (    )) (         ) )}             )]
     ( )                                                                                                      (



     ( )                    ( (         )( ) )
                                                                for

Definition of (( ̂ )( ) ) (( ̂ )( ) )                                                                     (( ̂ )( ) ) :

Remark 3: if                             is bounded, the same property have also                                                                                  . indeed if


                                                                                                                             113
Journal of Natural Sciences Research                                                                                                                                           www.iiste.org
ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online)
Vol.2, No.4, 2012


           ( ̂ )( ) it follows                                          (( ̂ )( ) )                (           )(       )
                                                                                                                                  and by integrating

           (( ̂ )( ) )                                         (            )( ) (( ̂ )( ) ) (                          )(   )



In the same way , one can obtain

           (( ̂ )( ) )                                         (            )( ) (( ̂ )( ) ) (                          )(    )



If                              is bounded, the same property follows for                                                                   and                respectively.

Remark 4: If           bounded, from below, the same property holds for                   The proof is
analogous with the preceding one. An analogous property is true if is bounded from below.

Remark 5: If                              is bounded from below and                                                ((        )( ) ((            )( ) ))    (      )( ) then

Definition of ( )(                         )
                                                           :

Indeed let                  be so that for

(     )(   )
                        (       )( ) ((         )( ) )                                ( )      ( )(            )



Then                        (          )( ) ( )(       )
                                                                                which leads to

               (        )( ) ( )( )
           (                               )(                       )                         If we take                     such that                     it results

               (        )( ) ( )( )
           (                               )                                By taking now                          sufficiently small one sees that                     is unbounded.
The same property holds for                                            if               (      )( ) ((                  )( ) )              (     )(   )



We now state a more precise theorem about the behaviors at infinity of the solutions

Analogous inequalities hold also for

                                                        ( )( )                 ( )( )
It is now sufficient to take                                                                       and to choose
                                                      ( ̂ )( )               ( ̂ )( )


( ̂ )(         )
                            (̂             )( ) large to have

                                                                                   (̂       )( )
                                                                                  (                    )
 ( )( )
         [( ̂               ( )
                            )              (( ̂       )(   )
                                                                            )                              ]        ( ̂           )(   )
( ̂ )( )



                                                               (̂       )( )
                                                           (                      )
 ( )( )
         [((            ̂       )   ( )
                                                  )                                         ( ̂    )( ) ]                   ( ̂        )(   )
( ̂ )( )



                                                       ( )
In order that the operator                                      transforms the space of sextuples of functions                                                   into itself

                                 ( )
The operator                              is a contraction with respect to the metric

    (((            )(   )
                            (        )( ) ) ((             )(      )
                                                                        (       )( ) ))




                                                                                                               114
Journal of Natural Sciences Research                                                                                                                                                                         www.iiste.org
ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online)
Vol.2, No.4, 2012


                         ( )
                                  ( )            ( )
                                                         ( )|            (̂     )( )                             ( )
                                                                                                                       ( )               ( )
                                                                                                                                                 ( )|        (̂    )( )
                    |                                                                                    |


Indeed if we denote

Definition of (̃) ( ) : ( (̃) ( ) )
                  ̃           ̃                                                                                    ( )
                                                                                                                           ((            )(            ))

It results

     ( )         ̃ ( )|                                            ( )             ( )          (̂           )( ) (             (̂           )( ) (
|̃                                    ∫(         )( ) |                                  |                                 )                            )
                                                                                                                                                              (        )


                             ( )               ( )            (̂       )( ) (                 (̂        )( ) (
∫ (             )( ) |                               |                             )                                   )



                     ( )                        ( )                ( )          (̂           )( ) (              (̂        )( ) (
(         )( ) (                  (     ) )|                             |                               )                               )



    ( )                           ( )                                                   ( )                                (̂       )( ) (              (̂    )( ) (
           (        )( ) (                 (     ))           (          )( ) (                    (     ))
                                                                                                                                                  )                        )
                                                                                                                                                                                (       )


Where           (    )   represents integrand that is integrated over the interval

From the hypotheses it follows

           )(   )
                         (            )( ) |         (̂       )( )
|(
               ((            )(   )
                                           (             )(   )
                                                                       (̂          )(    )
                                                                                                 ( ̂ )( ) ( ̂ )( ) ) (((                                          )(   )
                                                                                                                                                                           (   )(   )
                                                                                                                                                                                            (   )(   )
                                                                                                                                                                                                         (   )( ) ))
(̂        )( )


And analogous inequalities for                                                               . Taking into account the hypothesis the result follows

Remark 1: The fact that we supposed ( )( )         ( )( ) depending also on can be considered as not
conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition
                                                                               ( )                    ( )
necessary to prove the uniqueness of the solution bounded by ( ̂ )( ) ( ̂ )            ( ̂ )( ) ( ̂ )
respectively of

If instead of proving the existence of the solution on     , we have to prove it only on a compact then it
                                 ( )         ( )
suffices to consider that ( )           ( )                    depend only on         and respectively on
( )(                 ) and hypothesis can replaced by a usual Lipschitz condition.

Remark 2: There does not exist any                                                      where                    ( )                                  ( )

From 69 to 32 it results

                             [ ∫ {(        )( ) (             )( ) (         ( (    )) (         ) )}             )]
     ( )                                                                                                     (



     ( )                 ( (           )( ) )
                                                               for

Definition of (( ̂ )( ) ) (( ̂ )( ) )                                                                    (( ̂ )( ) ) :

Remark 3: if                            is bounded, the same property have also                                                                                        . indeed if

               ( ̂ )( ) it follows                                           (( ̂ )( ) )                         (             )(   )
                                                                                                                                                 and by integrating

               (( ̂ )( ) )                                          (         )( ) (( ̂ )( ) ) (                                    )(       )




                                                                                                                            115
Journal of Natural Sciences Research                                                                                                                                                                                                                        www.iiste.org
ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online)
Vol.2, No.4, 2012


In the same way , one can obtain

            (( ̂ )( ) )                                                                (                )( ) (( ̂ )( ) ) (                                        )(    )



If                                     is bounded, the same property follows for                                                                                                              and                               respectively.

Remark 4: If           bounded, from below, the same property holds for                   The proof is
analogous with the preceding one. An analogous property is true if is bounded from below.

Remark 5: If                                     is bounded from below and                                                                                ((            )( ) ((                   )( ) ))                   (           )( ) then

Definition of ( )(                                    )
                                                                                   :

Indeed let                      be so that for

                                                                          (                )(       )
                                                                                                             (            )( ) ((                 )( ) )                                          ( )            ( )(       )



Then                               (         )( ) ( ) (                       )
                                                                                                             which leads to

                 (            )( ) ( )( )
            (                                     )(                                        )                                         If we take                        such that                                           it results

                 (            )( ) ( )( )
            (                                     )                                                      By taking now                                        sufficiently small one sees that                                                 is unbounded.
The same property holds for                                                                     if                            (       )( ) ((                     )( ) ( ) )                                (      )(   )



We now state a more precise theorem about the behaviors at infinity of the solutions

Behavior of the solutions

If we denote and define

Definition of ( )(                                        )
                                                               ( )(                )
                                                                                           ( )(              )
                                                                                                                     ( )( ) :

(a)         )(       )
                              ( )(           )
                                                  ( )(                    )
                                                                                  ( )(               )
                                                                                                             four constants satisfying

    ( )(         )
                                   (         )(       )
                                                                      (            )(       )
                                                                                                         (               )( ) (                   )       (             )( ) (                      )             ( )(          )


     ( )(        )
                                   (             )(       )
                                                                      (            )(       )
                                                                                                         (               )( ) (           )           (           )( ) (                  )                 ( )(    )


Definition of ( )(                                    )
                                                              ( )(             )
                                                                                       (        )(       )
                                                                                                                 (        )(      )    ( )            ( )
                                                                                                                                                              :

(b) By ( )(                            )
                                                              ( )(             )
                                                                                                    and respectively (                                    )(       )
                                                                                                                                                                                      (         )(      )
                                                                                                                                                                                                                   the roots of                the equations
                         ( )           ( )                                    ( ) ( )                                      ( )                                              ( )           ( )                       ( ) ( )
       (             )         (             )                ( )                                        (               )                    and (                     )         (             )            ( )                          (        )(   )


Definition of ( ̅ )(                                  )
                                                               ( ̅ )(              )
                                                                                        ( ̅ )(               )
                                                                                                                 ( ̅ )( ) :

    By ( ̅ )(             )
                                             ( ̅ )(               )
                                                                                       and respectively ( ̅ )(                                            )
                                                                                                                                                                             ( ̅ )(           )
                                                                                                                                                                                                                the roots of the equations
           ( )           ( )                                  ( ) ( )                                        ( )                                                  ( )        ( )                                ( ) ( )
(      )         (             )             ( )                                            (            )                            and (                   )         (             )             ( )                             (     )(   )


Definition of (                                  )(       )
                                                                  (           )(       )
                                                                                                ( )(             )
                                                                                                                         ( )(         )
                                                                                                                                          ( )( ) :-

(c) If we define (                                        )(      )
                                                                          (            )(       )
                                                                                                         ( )(             )
                                                                                                                              ( )(            )
                                                                                                                                                      by

      (      )(          )
                                   ( )(               )
                                                              (           )(       )
                                                                                                ( )(                 )
                                                                                                                                  ( )(            )
                                                                                                                                                              ( )(           )




                                                                                                                                                          116
Journal of Natural Sciences Research                                                                                                                                                                                                   www.iiste.org
ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online)
Vol.2, No.4, 2012


             (             )(   )
                                              ( )(               )
                                                                     (               )(    )
                                                                                                       ( ̅ )(                  )
                                                                                                                                              ( )(             )
                                                                                                                                                                             ( )(            )
                                                                                                                                                                                                 ( ̅ )(         )



            and ( )(                        )



    (              )(       )
                                         ( )(                )
                                                                 (               )(   )
                                                                                                  ( )(                     )
                                                                                                                                            ( ̅ )(         )
                                                                                                                                                                         ( )(          )


and analogously

    ( )(               )
                                    (       )(       )
                                                            ( )(                 )
                                                                                           (       )(          )
                                                                                                                                   (          )(   )
                                                                                                                                                               (             )(    )


(           )(     )
                                (        )(     )
                                                     ( )(                    )
                                                                                          ( ̅ )(           )
                                                                                                                               (         )(    )
                                                                                                                                                           (            )(    )
                                                                                                                                                                                         ( ̅ )(   )



and (                      )(   )



(            )(    )
                                ( )(             )
                                                         ( )(                )
                                                                                          (       )(       )
                                                                                                                               ( ̅ )(          )
                                                                                                                                                           (            )(    )
                                                                                                                                                                                   where (                )(    )
                                                                                                                                                                                                                    ( ̅ )(   )


are defined respectively

Then the solution satisfies the inequalities

                 ((        )( ) (               )( ) )                                                                     (           )( )
                                                                                      ( )

where ( )( ) is defined

                                         ((      )( ) (                      )( ) )                                                                                      (    )( )
                                                                                                                   ( )
        (        )( )                                                                                                                   (      )( )

                                (   )( )                                                          ((       )( ) (                       )( ) )                       (       )( )                          (        )( )
(                                                                                       [                                                                                                ]                                       ( )
    (         )( ) ((           )( ) (   )( ) (                                  )( ) )
               (            )( )                                         (       )( )                          (           )( )                                         (         )( )
                                                                                                                                                                                             )
(           )( ) ((         )( ) (                  )( ) )


               (       )( )                                                               ((       )( ) (                      )( ) )
                                                     ( )

                                (        )( )                                                                                      ((       )( ) (                 )( ) )
                                                                         ( )
(       )( )                                                                                  (    )( )

             (              )( )                                     (           )( )                          (           )( )                                     (         )( )
                                                        [                                                                               ]                                                         ( )
(       )( ) ((             )( ) (               )( ) )

                           (            )( )                                               ((          )( ) (                      )( ) )                      (         )( )                         (        )( )
                                                                                [                                                                                                 ]
(       )( ) ((             )( ) (              )( ) (                   )( ) )


Definition of ( )(                                           )
                                                                 ( )(                 )
                                                                                           (       )(          )
                                                                                                                       (           )( ) :-

             Where ( )(                             )
                                                                 (               )( ) (                )(          )
                                                                                                                               (              )(   )


                                    ( )(                )
                                                                     (               )(    )
                                                                                                       (               )(      )


                                        (       )(          )
                                                                     (                )( ) (               )(          )
                                                                                                                                   (          )(       )


                                    (           )(       )
                                                                     (               )(    )
                                                                                                       (               )(          )


Behavior of the solutions

If we denote and define



                                                                                                                                                                        117
Journal of Natural Sciences Research                                                                                                                                                                                                   www.iiste.org
ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online)
Vol.2, No.4, 2012


Definition of (                              )(    )
                                                           (              )(       )
                                                                                           ( )(              )
                                                                                                                         ( )( ) :

(d)           )(      )
                              (        )(    )
                                                  ( )(                    )
                                                                               ( )(                 )
                                                                                                             four constants satisfying

    (        )(   )
                                  (          )(       )
                                                                  (                )(       )
                                                                                                        (                )( ) (                            )           (           )( ) (                   )         (   )(   )


    ( )(          )
                                  (          )(       )
                                                                  (            )(          )
                                                                                                     (                   )( ) ((                   ) )                     (            )( ) ((             ) )           ( )(     )


Definition of ( )(                                )
                                                          ( )(                 )
                                                                                       (        )(       )
                                                                                                                 (           )( ) :

By ( )(                   )
                                            ( )(              )
                                                                                   and respectively (                                                  )(      )
                                                                                                                                                                                       (       )(   )
                                                                                                                                                                                                                the roots

(e) of                the equations (                                         )( ) (            ( )
                                                                                                         )                   (           )(       ) ( )
                                                                                                                                                                        (              )(      )



         and (                    )( ) (          ( )
                                                          )                   ( )(              ) ( )
                                                                                                                             (            )(       )
                                                                                                                                                                   and

Definition of ( ̅ )(                              )
                                                           ( ̅ )(                  )
                                                                                       ( ̅ )(                )
                                                                                                                 ( ̅ )( ) :

By ( ̅ )(             )
                                        ( ̅ )(            )
                                                                               and respectively ( ̅ )(                                                         )
                                                                                                                                                                                       ( ̅ )(       )
                                                                                                                                                                                                                the

roots of the equations (                                                  )( ) (               ( )
                                                                                                     )                   (           )(    ) ( )
                                                                                                                                                                   (               )(      )



and (                 )( ) (           ( )
                                             )             ( )(                ) ( )
                                                                                                            (             )(         )


Definition of (                              )(       )
                                                              (               )(       )
                                                                                               ( )(                  )
                                                                                                                          ( )( ) :-

(f) If we define (                                    )(      )
                                                                      (                )(       )
                                                                                                     ( )(                    )
                                                                                                                                     ( )(              )
                                                                                                                                                               by

(       )(    )
                          ( )(           )
                                             (             )(         )
                                                                                   ( )(                 )
                                                                                                                             ( )(              )
                                                                                                                                                           ( )(                )


(       )(    )
                          ( )(           )
                                             (            )(          )
                                                                                   ( ̅ )(               )
                                                                                                                          ( )(                )
                                                                                                                                                           ( )(             )
                                                                                                                                                                                           ( ̅ )(       )



and ( )(                      )



(            )(   )
                              ( )(           )
                                                  (           )(          )
                                                                                       ( )(                 )
                                                                                                                                 ( ̅ )(            )
                                                                                                                                                               ( )(                )


and analogously

(       )(    )
                          (       )(    )
                                             ( )(                 )
                                                                               (           )(       )
                                                                                                                         (           )(    )
                                                                                                                                                           (       )(       )


( )(          )
                          (        )(    )
                                                 ( )(             )
                                                                                   ( ̅ )(            )
                                                                                                                         (           )(    )
                                                                                                                                                           (       )(       )
                                                                                                                                                                                           ( ̅ )(       )



and (             )(      )



(       )(    )
                          ( )(           )
                                             ( )(                 )
                                                                               (               )(    )
                                                                                                                          ( ̅ )(              )
                                                                                                                                                           (           )(      )


Then the solution satisfies the inequalities

             ((       )( ) (             )( ) )                                ( )                                   (       )( )


( )( ) is defined

                                  ((     )( ) (                   )( ) )                                                                                           (        )( )
                                                                                                         ( )
    (        )( )                                                                                                                (        )( )




                                                                                                                                                                   118
Journal of Natural Sciences Research                                                                                                                                                                                                                www.iiste.org
ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online)
Vol.2, No.4, 2012


                          (    )( )                                                                 ((           )( ) (                      )( ) )                        (     )( )                             (   )( )
(                                                                                 [                                                                                                           ]                                         ( )
    (      )( ) ((         )( ) (                 )( ) (                   )( ) )
           (          )( )                                         (           )( )                              (           )( )                                          (        )( )
                                                                                                                                                                                               )
(       )( ) ((       )( ) (                )( ) )


           (      )( )                                                                     ((        )( ) (                      )( ) )
                                                ( )

                          (      )( )                                                                                            ((           )( ) (                  )( ) )
                                                                       ( )
(       )( )                                                                                (        )( )

            (         )( )                                         (           )( )                              (           )( )                                      (           )( )
                                                   [                                                                                     ]                                                                  ( )
(       )( ) ((       )( ) (                )( ) )

                      (         )( )                                                        ((           )( ) (                      )( ) )                        (           )( )                          (    )( )
                                                                              [                                                                                                           ]
(       )( ) ((       )( ) (                )( ) (                     )( ) )


          Definition of ( )(                                           )
                                                                               ( )(                 )
                                                                                                             (           )(      )
                                                                                                                                         (          )( ) :-

                      Where ( )(                               )
                                                                               (                )( ) (                    )(         )
                                                                                                                                               (              )(       )


                                            ( )(                   )
                                                                                   (                )(       )
                                                                                                                         (               )(     )


                                              (            )(          )
                                                                                       (             )( ) ( )(                           )
                                                                                                                                                    (             )(       )


                                            (          )(          )
                                                                                   (                )(       )
                                                                                                                             (           )(     )




Behavior of the solutions

If we denote and define

Definition of ( )(                                     )
                                                                   ( )(                    )
                                                                                                    ( )(                 )
                                                                                                                                 ( )( ) :

(a)            )(     )
                              ( )(            )
                                                     ( )(                      )
                                                                                       ( )(                  )
                                                                                                                         four constants satisfying

    ( )(          )
                                    (           )(     )
                                                                           (               )(       )
                                                                                                                 (               )( ) (                           )            (              )( ) (              )          ( )(   )


        ( )(      )
                                    (             )(       )
                                                                           (               )(        )
                                                                                                                     (           )( ) (                   )            (              )( ) ((               ) )              ( )(   )


Definition of ( )(                                     )
                                                               ( )(                    )
                                                                                            (            )(          )
                                                                                                                         (           )( ) :

(b) By ( )(                             )
                                                               ( )(                    )
                                                                                                             and respectively (                                                )(     )
                                                                                                                                                                                                        (    )(   )
                                                                                                                                                                                                                             the roots of     the equations
                          ( )           ( )                                        ( ) ( )                                               ( )
          (           )         (             )                ( )                                                   (               )

          and (                     )( ) (         ( )
                                                               )                   ( )(                  ) ( )
                                                                                                                                     (           )(       )
                                                                                                                                                                               and

          By ( ̅ )(                 )
                                                       ( ̅ )(                   )
                                                                                                     and respectively ( ̅ )(                                                          )
                                                                                                                                                                                                       ( ̅ )(     )
                                                                                                                                                                                                                             the

         roots of the equations (                                                           )( ) (                   ( )
                                                                                                                             )                ( )(            ) ( )
                                                                                                                                                                                      (            )(   )



        and (                 )( ) (            ( )
                                                       )                       ( )(                 ) ( )
                                                                                                                                 (            )(      )


Definition of (                                 )(         )
                                                                   (                )(          )
                                                                                                        ( )(                 )
                                                                                                                                  ( )( ) :-

(c) If we define (                                     )(              )
                                                                               (               )(        )
                                                                                                                 ( )(                )
                                                                                                                                             ( )(             )
                                                                                                                                                                           by




                                                                                                                                                                               119
Journal of Natural Sciences Research                                                                                                                                                                                                       www.iiste.org
ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online)
Vol.2, No.4, 2012


            (            )(       )
                                              ( )(               )
                                                                         (               )(   )
                                                                                                            ( )(                  )
                                                                                                                                                    ( )(              )
                                                                                                                                                                                   ( )(            )


             (            )(      )
                                               ( )(                  )
                                                                         (               )(    )
                                                                                                            ( ̅ )(                    )
                                                                                                                                                    ( )(              )
                                                                                                                                                                                   ( )(            )
                                                                                                                                                                                                       ( ̅ )(       )



            and ( )(                           )



    (                )(       )
                                           ( )(              )
                                                                     (               )(   )
                                                                                                          ( )(                )
                                                                                                                                                   ( ̅ )(         )
                                                                                                                                                                               ( )(            )


and analogously

    ( )(              )
                                      (        )(    )
                                                             ( )(                    )
                                                                                               (           )(     )
                                                                                                                                          (         )(    )
                                                                                                                                                                          ( )(           )



    ( )(              )
                                      (       )(     )
                                                             ( )(                    )
                                                                                              ( ̅ )(              )
                                                                                                                                          (        )(    )
                                                                                                                                                                      (           )(    )
                                                                                                                                                                                                   ( ̅ )(   )
                                                                                                                                                                                                                        and (   )(   )



(             )(      )
                                  (           )(     )
                                                             ( )(                    )
                                                                                              (            )(     )
                                                                                                                                          ( ̅ )(         )
                                                                                                                                                                      (            )(   )


Then the solution satisfies the inequalities

                 ((       )( ) (                   )( ) )                                                                         (        )( )
                                                                                          ( )

( )( ) is defined

                                           ((        )( ) (                      )( ) )                                                                                        (       )( )
                                                                                                                     ( )
        (        )( )                                                                                                                          (     )( )

                                  (           )( )                                                     ((       )( ) (                         )( ) )                      (       )( )                         (       )( )
(                                                                                           [                                                                                                  ]                                     ( )
    (           )( ) ((      )( ) (                      )( ) (                      )( ) )
                            ( )
               (           )                                                 (       )( )                        (            )( )                                            (         )( )
                                                                                                                                                                                                   )
(           )( ) ((        )( ) (                    )( ) )


                     (        )( )                                                                    ((        )( ) (                     )( ) )
                                                             ( )

                                  (        )( )                                                                                           ((       )( ) (                 )( ) )
                                                                             ( )
(       )( )                                                                                      (        )( )

                 (        )( )                                           (           )( )                        (            )( )                                        (         )( )
                                                           [                                                                                   ]                                                        ( )
(       )( ) ((           )( ) (                    )( ) )

                          (               )( )                                                 ((           )( ) (                        )( ) )                      (        )( )                         (   )( )
                                                                                    [                                                                                                   ]
(       )( ) ((           )( ) (                   )( ) (                    )( ) )


Definition of ( )(                                           )
                                                                     ( )(                 )
                                                                                              (            )(    )
                                                                                                                          (               )( ) :-

             Where ( )(                              )
                                                                     (                )( ) (                )(        )
                                                                                                                                      (             )(    )


                                      ( )(               )
                                                                         (               )(    )
                                                                                                            (             )(          )


                                          (        )(        )
                                                                         (                )( ) (                )(        )
                                                                                                                                          (          )(       )


                                           (         )(          )
                                                                                 (            )(      )
                                                                                                                 (                )(           )




Behavior of the solutions
If we denote and define

Definition of ( )(                                                   )
                                                                         ( )(                 )
                                                                                                       ( )(               )
                                                                                                                                      ( )( ) :


                                                                                                                                                                              120
Journal of Natural Sciences Research                                                                                                                                                                                                                                  www.iiste.org
ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online)
Vol.2, No.4, 2012


(d) ( )(                       )
                                      ( )(              )
                                                                    ( )(                )
                                                                                                ( )(              )
                                                                                                                              four constants satisfying

    ( )(              )
                                          (             )(      )
                                                                                (               )(       )
                                                                                                                   (                  )( ) (                          )               (            )( ) (                     )              ( )(     )



        ( )(          )
                                          (             )(          )
                                                                                (               )(       )
                                                                                                                   (                  )( ) ((                     ) )                         (            )( ) ((                ) )               ( )(    )



Definition of ( )(                                              )
                                                                        ( )(                )
                                                                                                    (        )(       )
                                                                                                                              (           )(       )         ( )              ( )
                                                                                                                                                                                          :

(e) By ( )(                                   )
                                                                        ( )(                )
                                                                                                                 and respectively (                                                   )(      )
                                                                                                                                                                                                                   (     )(   )
                                                                                                                                                                                                                                              the roots of      the equations
                              ( )             ( )                                    ( ) ( )                                                  ( )
             (            )           (             )                   ( )                                           (                   )
                                              ( )           ( )                                         ( ) ( )
             and (                        )         (                   )               ( )                                               (             )(    )
                                                                                                                                                                                      and

Definition of ( ̅ )(                                            )
                                                                        ( ̅ )(                  )
                                                                                                        ( ̅ )(            )
                                                                                                                              ( ̅ )( ) :

             By ( ̅ )(                    )
                                                                ( ̅ )(              )
                                                                                                          and respectively ( ̅ )(                                                             )
                                                                                                                                                                                                                   ( ̅ )(     )
                                                                                                                                                                                                                                              the
                                                                                                        ( )           ( )                                     ( ) ( )                                          ( )
            roots of the equations (                                                                )         (               )                   ( )                                          (               )
                                        ( )             ( )                                         ( ) ( )                                            ( )
  and ( ) (        )  ( )         ( )
Definition of ( )( ) ( )( ) ( )( ) ( )(                                                                                                                  )
                                                                                                                                                               ( )( ) :-

(f) If we define (                                              )(          )
                                                                                    (               )(       )
                                                                                                                  ( )(                    )
                                                                                                                                               ( )(               )
                                                                                                                                                                              by

            (         )(       )
                                              ( )(              )
                                                                        (           )(          )
                                                                                                             ( )(                 )
                                                                                                                                                    ( )(               )
                                                                                                                                                                                      ( )(                 )



             (          )(        )
                                              ( )(                  )
                                                                        (               )(          )
                                                                                                                 ( ̅ )(               )
                                                                                                                                                       ( )(               )
                                                                                                                                                                                      ( )(                 )
                                                                                                                                                                                                                       ( ̅ )(     )


            and ( )(                          )




        (         )(       )
                                          ( )(              )
                                                                    (            )(         )
                                                                                                         ( )(                 )
                                                                                                                                                  ( ̅ )(           )
                                                                                                                                                                                  ( )(                 )


and analogously

             ( )(              )
                                              (      )(         )
                                                                        ( )(                )
                                                                                                          (           )(          )
                                                                                                                                                    (        )(        )
                                                                                                                                                                                      (           )(       )



             ( )(              )
                                              (      )(         )
                                                                        ( )(                )
                                                                                                          ( ̅ )(              )
                                                                                                                                                   (         )(       )
                                                                                                                                                                                      (           )(      )
                                                                                                                                                                                                                   ( ̅ )(         )


            and (                  )(     )




  ( )( ) ( )( ) ( )( ) ( )( )                                                                                                                 ( ̅ )(          )
                                                                                                                                                                              (           )(      )
                                                                                                                                                                                                          where ( )(                   )
                                                                                                                                                                                                                                             ( ̅ )(   )

are defined by 59 and 64 respectively

Then the solution satisfies the inequalities

                   ((          )( ) (                   )( ) )                                  ( )                                       (       )( )


             where ( )( ) is defined
                                          ((        )( ) (                      )( ) )                                ( )                                                         (           )( )
        (        )( )                                                                                                                         (         )( )


                              (           )( )                                                          ((        )( ) (                      )( ) )                          (        )( )                                   (       )( )
(                                                                                      [                                                                                                              ]                                                   ( )
    (        )( ) ((        )( ) (                      )( ) (                  )( ) )
                           ( )
               (          )                                                 (       )( )                          (               )( )                                            (           )( )
                                                           [                                                                                   ]                                                           )
(           )( ) ((       )( ) (                    )( ) )




                                                                                                                                                                                  121
Journal of Natural Sciences Research                                                                                                                                                                                                                 www.iiste.org
ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online)
Vol.2, No.4, 2012


            (    )( )                           ( )                                      ((           )( ) (                      )( ) )



                          (        )( )                                                                                            ((         )( ) (                    )( ) )
                                                                     ( )
(   )( )                                                                                     (        )( )


         (           )( )                                        (           )( )                             (            )( )                                         (        )( )
                                                  [                                                                                       ]                                                                  ( )
(   )( ) ((          )( ) (                )( ) )


                     (         )( )                                                          ((       )( ) (                       )( ) )                           (       )( )                              (       )( )
                                                                            [                                                                                                         ]
(   )( ) ((          )( ) (                )( ) (                    )( ) )


Definition of ( )(                                   )
                                                             ( )(                 )
                                                                                         (            )(       )
                                                                                                                       (           )( ) :-

        Where ( )(                           )
                                                             (               )( ) (                       )(       )
                                                                                                                                  (            )(       )



                               ( )(              )
                                                                 (            )(         )
                                                                                                      (                   )(      )



                                       (         )(          )
                                                                         (               )( ) ( )(                            )
                                                                                                                                          (            )(       )



                               (           )(    )
                                                                 (               )(          )
                                                                                                          (               )(       )


Behavior of the solutions
If we denote and define

Definition of ( )(                                       )
                                                                     ( )(                )
                                                                                                  ( )(                 )
                                                                                                                               ( )( ) :

(g) ( )(                  )
                               ( )(              )
                                                             ( )(                )
                                                                                         ( )(                 )
                                                                                                                          four constants satisfying

    ( )(         )
                                   (            )(       )
                                                                         (               )(       )
                                                                                                               (                  )( ) (                        )           (             )( ) (                  )           ( )(   )



    ( )(         )
                                    (            )(          )
                                                                         (               )(       )
                                                                                                               (                  )( ) ((                   ) )                   (            )( ) ((                ) )           ( )(   )



Definition of ( )(                                       )
                                                                 ( )(                )
                                                                                             (        )(          )
                                                                                                                          (           )(      )        ( )              ( )
                                                                                                                                                                              :

(h) By ( )(                            )
                                                                 ( )(                )
                                                                                                          and respectively (                                                )(     )
                                                                                                                                                                                                       (      )(      )
                                                                                                                                                                                                                              the roots of     the equations
                         ( )           ( )                                    ( ) ( )                                                  ( )
        (            )         (             )                   ( )                                              (                )
        and (                      )( ) (            ( )
                                                                 )               ( )(                 ) ( )
                                                                                                                                   (              )(    )
                                                                                                                                                                            and

Definition of ( ̅ )(                                     )
                                                                 ( ̅ )(                  )
                                                                                                 ( ̅ )(               )
                                                                                                                           ( ̅ )( ) :

        By ( ̅ )(                  )
                                                         ( ̅ )(               )
                                                                                                      and respectively ( ̅ )(                                                      )
                                                                                                                                                                                                       ( ̅ )(         )
                                                                                                                                                                                                                              the
                                                                                                 ( )              ( )                                   ( ) ( )                                        ( )
        roots of the equations (                                                             )         (                   )                  ( )                                  (               )
  and ( )( ) ( ( ) )  ( )( ) ( ) ( )(                                                                                                               )

Definition of ( )( ) ( )( ) ( )( ) ( )(                                                                                                             )
                                                                                                                                                            ( )( ) :-

(i) If we define (                                       )(          )
                                                                             (               )(       )
                                                                                                              ( )(                    )
                                                                                                                                          ( )(              )
                                                                                                                                                                         by

        (        )(       )
                                       ( )(              )
                                                                 (           )(          )
                                                                                                      ( )(                    )
                                                                                                                                               ( )(              )
                                                                                                                                                                              ( )(             )



        (        )(       )
                                       ( )(                  )
                                                                 (               )(          )
                                                                                                          ( ̅ )(               )
                                                                                                                                                  ( )(              )
                                                                                                                                                                              ( )(             )
                                                                                                                                                                                                           ( ̅ )(         )


        and ( )(                       )




    (           )(    )
                                   ( )(              )
                                                             (           )(          )
                                                                                                  ( )(                    )
                                                                                                                                              ( ̅ )(         )
                                                                                                                                                                            ( )(           )




                                                                                                                                                                            122
Journal of Natural Sciences Research                                                                                                                                                                                              www.iiste.org
ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online)
Vol.2, No.4, 2012



and analogously

             ( )(             )
                                        (           )(       )
                                                                 ( )(              )
                                                                                               (           )(       )
                                                                                                                                    (      )(   )
                                                                                                                                                                 (        )(      )



             ( )(             )
                                        (           )(       )
                                                                 ( )(              )
                                                                                               ( ̅ )(               )
                                                                                                                                   (      )(    )
                                                                                                                                                                 (        )(      )
                                                                                                                                                                                       ( ̅ )(       )


            and (                 )(   )




  ( )( ) ( )( ) ( )(                                                          )
                                                                                           (           )(       )
                                                                                                                              ( ̅ )(       )
                                                                                                                                                        (            )(   )
                                                                                                                                                                                  where ( )(             )
                                                                                                                                                                                                               ( ̅ )(   )

are defined respectively

Then the solution satisfies the inequalities

               ((         )( ) (               )( ) )                                                                (        )( )
                                                                                  ( )

where ( )( ) is defined
                                       ((       )( ) (                   )( ) )                                                                              (       )( )
                                                                                                           ( )
        (      )( )                                                                                                            (        )( )


                              (   )( )                                                      ((         )( ) (                  )( ) )                    (       )( )                           (       )( )
(                                                                               [                                                                                             ]                                             ( )
    (        )( ) ((          )( ) (   )( ) (                            )( ) )
               (          )( )                                       (       )( )                      (             )( )                                    (        )( )
                                                       [                                                                       ]                                                  )
(           )( ) ((       )( ) (                )( ) )


               (      )( )                                                          ((          )( ) (                   )( ) )
                                                    ( )

                              (        )( )                                                                               ((        )( ) (              )( ) )
                                                                     ( )
(       )( )                                                                           (        )( )


             (            )( )                                       (       )( )                      (            )( )                                (            )( )
                                                      [                                                                        ]                                                        ( )
(       )( ) ((           )( ) (               )( ) )


                          (   )( )                                                     ((          )( ) (                 )( ) )                    (        )( )                           (   )( )
                                                                            [                                                                                             ]
(       )( ) ((           )( ) ( )( ) (                              )( ) )


Definition of ( )(                                       )
                                                                 ( )(          )
                                                                                    (           )(      )
                                                                                                                (         )( ) :-

             Where ( )(                         )
                                                                 (           )( ) (                )(       )
                                                                                                                         (           )(   )



                                   ( )(             )
                                                                 (            )(       )
                                                                                                   (            )(       )



                                           (        )(       )
                                                                         (             )( ) ( )(                     )
                                                                                                                                (         )(    )



                                   (           )(   )
                                                                     (        )(       )
                                                                                                   (                )(    )


Behavior of the solutions
If we denote and define

Definition of ( )(                                           )
                                                                     ( )(              )
                                                                                            ( )(                )
                                                                                                                         ( )( ) :

(j) ( )(                      )
                                   ( )(              )
                                                             ( )(             )
                                                                                       ( )(            )
                                                                                                                four constants satisfying

    ( )(              )
                                       (            )(       )
                                                                         (          )(      )
                                                                                                        (                )( ) (                 )                (            )( ) (            )              ( )(     )



        ( )(          )
                                        (           )(       )
                                                                         (             )(      )
                                                                                                        (                )( ) ((               ) )                    (           )( ) ((           ) )             ( )(      )




                                                                                                                                                             123
Journal of Natural Sciences Research                                                                                                                                                                                                                            www.iiste.org
ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online)
Vol.2, No.4, 2012


Definition of ( )(                                            )
                                                                      ( )(           )
                                                                                             (        )(       )
                                                                                                                       (           )(       )         ( )              ( )
                                                                                                                                                                                    :

(k) By ( )(                                    )
                                                                      ( )(           )
                                                                                                          and respectively (                                                    )(      )
                                                                                                                                                                                                             (     )(   )
                                                                                                                                                                                                                                        the roots of      the equations
                              ( )              ( )                               ( ) ( )                                               ( )
             (            )            (             )                ( )                                      (                   )
                                               ( )        ( )                                    ( ) ( )
             and (                         )         (                )             ( )                                            (             )(    )
                                                                                                                                                                                and

Definition of ( ̅ )(                                          )
                                                                      ( ̅ )(             )
                                                                                                 ( ̅ )(            )
                                                                                                                       ( ̅ )( ) :

             By ( ̅ )(                     )
                                                              ( ̅ )(             )
                                                                                                     and respectively ( ̅ )(                                                            )
                                                                                                                                                                                                             ( ̅ )(     )
                                                                                                                                                                                                                                        the
                                                                                                 ( )           ( )                                     ( ) ( )                                           ( )
            roots of the equations (                                                         )         (               )                    ( )                                          (               )
  and ( )( ) ( ( ) )  ( )( ) ( ) ( )(                                                                                                             )

Definition of ( )( ) ( )( ) ( )( ) ( )(                                                                                                           )
                                                                                                                                                        ( )( ) :-

(l) If we define (                                            )(          )
                                                                                (            )(       )
                                                                                                           ( )(                    )
                                                                                                                                         ( )(              )
                                                                                                                                                                        by

            (         )(       )
                                               ( )(           )
                                                                      (         )(       )
                                                                                                      ( )(                 )
                                                                                                                                             ( )(               )
                                                                                                                                                                                ( )(                 )



             (            )(       )
                                               ( )(               )
                                                                      (             )(       )
                                                                                                          ( ̅ )(               )
                                                                                                                                                ( )(               )
                                                                                                                                                                                ( )(                 )
                                                                                                                                                                                                                 ( ̅ )(     )


            and ( )(                           )




        (            )(    )
                                           ( )(           )
                                                                  (            )(    )
                                                                                                     ( )(              )
                                                                                                                                            ( ̅ )(          )
                                                                                                                                                                            ( )(                 )


and analogously

             ( )(              )
                                               (      )(      )
                                                                      ( )(             )
                                                                                                     (         )(          )
                                                                                                                                             (        )(        )
                                                                                                                                                                                (           )(       )



             ( )(              )
                                               (      )(      )
                                                                      ( )(             )
                                                                                                     ( ̅ )(            )
                                                                                                                                            (         )(       )
                                                                                                                                                                                (           )(      )
                                                                                                                                                                                                             ( ̅ )(         )


            and (                  )(      )




  ( )( ) ( )( ) ( )(                                                             )
                                                                                                 (        )(       )
                                                                                                                                       ( ̅ )(          )
                                                                                                                                                                       (            )(      )
                                                                                                                                                                                                    where ( )(                   )
                                                                                                                                                                                                                                       ( ̅ )(   )

are defined respectively

Then the solution satisfies the inequalities

                     ((       )( ) (                 )( ) )                                                                    (        )( )
                                                                                         ( )

where ( )( ) is defined
                                           ((        )( ) (                   )( ) )                                                                                        (           )( )
                                                                                                               ( )
        (        )( )                                                                                                                   (        )( )


                               (           )( )                                                  ((        )( ) (                       )( ) )                          (        )( )                                   (       )( )
(                                                                                    [                                                                                                          ]                                                   ( )
    (        )( ) ((         )( ) (                      )( ) (               )( ) )
               (           )( )                                           (     )( )                       (               )( )                                             (           )( )
                                                            [                                                                           ]                                                            )
(           )( ) ((        )( ) (                    )( ) )


                (     )( )                                                               ((          )( ) (                    )( ) )
                                                         ( )

                               (        )( )                                                                                       ((        )( ) (                    )( ) )
                                                                          ( )
(       )( )                                                                                 (       )( )


                 (        )( )                                        (        )( )                        (           )( )                                            (            )( )
                                                          [                                                                             ]                                                                         ( )
(       )( ) ((           )( ) (                   )( ) )




                                                                                                                                                                            124
Journal of Natural Sciences Research                                                                                                                                                                                www.iiste.org
 ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online)
 Vol.2, No.4, 2012


                     (   )( )                                                 ((        )( ) (             )( ) )                   (    )( )                       (      )( )
                                                                    [                                                                            ]
 (   )( ) ((         )( ) ( )( ) (                           )( ) )


 Definition of ( )(                                 )
                                                        ( )(             )
                                                                              (        )(     )
                                                                                                      (     )( ) :-

           Where ( )(                       )
                                                        (            )( ) (              )(       )
                                                                                                           (           )(    )



                           ( )(                 )
                                                         (            )(      )
                                                                                        (             )(   )



                           (            )(      )
                                                            (         )( ) (             )(       )
                                                                                                           (            )(   )



                           (            )(      )
                                                            (         )(      )
                                                                                         (            )(   )




 Proof : From GLOBAL EQUATIONS we obtain
     ( )
                 (         )(       )
                                                ((              )(    )
                                                                                  (         )(        )
                                                                                                               (         )( ) (              ))          (         )( ) (             )   ( )
                                                                                                                                                                                                    (   )(   ) ( )

                                    ( )                               ( )
 Definition of                                  :-

           It follows
                                                                                                                                   ( )
     ((          )( ) (            ( )
                                         )               ( )(                ) ( )
                                                                                              (            )( ) )                                 ((          )( ) (       ( )
                                                                                                                                                                                 )        ( )(      ) ( )
                                                                                                                                                                                                             (       )( ) )



           From which one obtains

 Definition of ( ̅ )(                               )
                                                        ( )( ) :-




(a) For                    ( )(                 )
                                                                              ( )(           )
                                                                                                          ( ̅ )(        )



                                                                               [ (                )( ) ((          )( ) (         )( ) ) ]
           ( )                  (       )( ) ( )( ) (                     )( )                                                                                              (       )( ) (   )( )
                 ( )                                                                  )( ) ((         )( ) (           )( ) ) ]
                                                                                                                                                 ,       ( )(      )
                                                               [ (                                                                                                          (       )( ) (   )( )
                                                        ( )( )


                                                                                                                        ( )(         )           ( )
                                                                                                                                                       ( )         ( )(         )


 In the same manner , we get

                                                             [ (                                      )( )((̅ )( ) (̅ )( ) ) ]
                                    (̅ )( ) ( ̅ )( ) (̅ )( )                                                                                                                    (̅ )( ) (       )( )
             ( )
                     ( )                                                                )( )((̅ )( ) (̅ )( ) ) ]
                                                                                                                                                       , ( ̅ )(        )
                                                                  [ (                                                                                                           (    )( ) (̅ )( )
                                                         ( ̅ )( )


            From which we deduce ( )(                                                         )                ( )
                                                                                                                       ( )         ( ̅ )(    )



(b) If                   ( )(           )
                                                        ( )(         )
                                                                                                  ( ̅ )(           )
                                                                                                                       we find like in the previous case,

                                                                               [ (                )( ) ((          )( ) (        )( ) ) ]
                 ( )           (        )( ) ( )( ) (                     )( )                                                                         ( )
       ( )                                                                            )( ) ((
                                                                                                                                                             ( )
                                                               [ (                                    )( ) (           )( ) ) ]
                                                        ( )( )

                                      [ (                                     )( )((̅ )( ) (̅ )( ) ) ]
             (̅ )( ) ( ̅ )( ) (̅ )( )
                                         [ (                    )( )((̅ )( ) (̅ )( ) ) ]
                                                                                                                                   ( ̅ )(    )
                                ( ̅ )( )




                                                                                                                                         125
Journal of Natural Sciences Research                                                                                                                                                                   www.iiste.org
ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online)
Vol.2, No.4, 2012



(c) If                     ( )(            )
                                                       ( ̅ )(        )
                                                                               ( )(            )
                                                                                                                  , we obtain

                                                                                          [ (                         )( ) ((̅ )( ) (̅ )( )) ]
                                                                 (̅ )( ) ( ̅ )( ) (̅ )( )
              ( )(         )            ( )
                                                 ( )                                      [ (               )( ) ((̅ )( ) (̅ )( )) ]
                                                                                                                                                          ( )(          )
                                                                                 ( ̅ )( )

          And so with the notation of the first part of condition (c) , we have
                                     ( )
Definition of                              ( ) :-

                                                                                                                       ( )
          (           )(   )           ( )
                                               ( )               (         )( ) ,              ( )
                                                                                                     ( )
                                                                                                                       ( )


In a completely analogous way, we obtain
                                      ( )
Definition of                               ( ) :-

                                                                                                            ( )
(    )(       )                ( )
                                     ( )           ( )( ) ,                      ( )
                                                                                       ( )
                                                                                                            ( )


Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the
theorem.

Particular case :

If ( )( ) ( )(                                     )
                                                           ( )( ) ( )( ) and in this case ( )( )                                                            ( ̅ )( ) if in addition ( )( )
( )( ) then ( ) ( )                                                  ( )
                                                        ( ) and as a consequence   ( ) ( )( )                                                                ( ) this also defines ( )( ) for the
special case

Analogously if (                                 )(     )
                                                                  (         )(    )
                                                                                                     ( )(         )
                                                                                                                        ( )( ) and then

 ( )( ) ( ̅ )( ) if in addition ( )( ) ( )( ) then                                                                                 ( ) ( )( ) ( ) This is an important
consequence of the relation between ( )( ) and ( ̅ )(                                                                         )
                                                                                                                                  and definition of ( )( )



 we obtain
    ( )
                  (        )(    )
                                            ((              )(   )
                                                                           (          )(   )
                                                                                                     (         )( ) (             ))        (    )( ) (             )   ( )
                                                                                                                                                                                   (      )(   ) ( )



                                     ( )                             ( )
Definition of                               :-

It follows
                                                                                                                        ( )
     ((           )( ) (         ( )
                                       )               (     )(       ) ( )
                                                                                       (           )( ) )                              ((       )( ) (    ( )
                                                                                                                                                                )           ( )(       ) ( )
                                                                                                                                                                                                (      )( ) )

From which one obtains

Definition of ( ̅ )(                           )
                                                       ( )( ) :-

(d) For                    ( )(            )
                                                                      ( )(        )
                                                                                           ( ̅ )(          )



                                                                      [ (             )( )((         )( ) (       )( ) ) ]
     ( )                   (     )( ) ( )( ) (                   )( )                                                                                (     )( ) (           )( )
              ( )                                                          )( )((      )( ) (            )( ) ) ]
                                                                                                                                  ,    ( )(     )
                                                      [ (                                                                                            (     )( ) (           )( )
                                               ( )( )




                                                                                                                              126
Journal of Natural Sciences Research                                                                                                                                                              www.iiste.org
 ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online)
 Vol.2, No.4, 2012


                         ( )(        )              ( )
                                                           ( )               ( )(           )


 In the same manner , we get

                                               [ (                                 )( ) ((̅ )( ) (̅ )( ) ) ]
                      (̅ )( ) ( ̅ )( ) (̅ )( )                                                                                                         (̅ )( ) (       )( )
     ( )
           ( )                                                          )( ) ((̅ )( ) (̅ )( ) ) ]
                                                                                                                                     , ( ̅ )(    )
                                                  [ (                                                                                                  (       )( ) (̅ )( )
                                         ( ̅ )( )


 From which we deduce ( )(                                               )             ( )
                                                                                             ( )               ( ̅ )(    )



(e) If                   ( )(        )
                                               ( )(             )
                                                                                            ( ̅ )(         )
                                                                                                               we find like in the previous case,
                                                                [ (               )( ) ((           )( ) (      )( ) ) ]
                     (    )( ) ( )( ) (                    )( )
 ( )(       )
                                             [ (                    )( ) ((        )( ) (            )( ) ) ]
                                                                                                                                     ( )
                                                                                                                                           ( )
                                      ( )( )

                              [ (                           )( )((̅ )( ) (̅ )( ) ) ]
     (̅ )( ) ( ̅ )( ) (̅ )( )
                              [ (              )( )((̅ )( ) (̅ )( ) ) ]
                                                                                                                 ( ̅ )(      )
                     ( ̅ )( )


 (f) If                  ( )(            )
                                                   ( ̅ )(           )
                                                                                 ( )(           )
                                                                                                                 , we obtain


                                                                             [ (                                )( )((̅ )( ) (̅ )( ) ) ]
                                                    (̅ )( ) ( ̅ )( ) (̅ )( )
     ( )(       )          ( )
                                    ( )                                          [ (                 )( )((̅ )( ) (̅ )( ) ) ]
                                                                                                                                                     ( )(          )
                                                                        ( ̅ )( )


 And so with the notation of the first part of condition (c) , we have
                                    ( )
 Definition of                            ( ) :-

                                                                                                                 ( )
 (     )(       )         ( )
                                ( )                (         )( ) ,                ( )
                                                                                         ( )
                                                                                                                 ( )


 In a completely analogous way, we obtain
                                    ( )
 Definition of                            ( ) :-

                                                                                                               ( )
 (    )(    )             ( )
                                ( )             ( )( ) ,                          ( )
                                                                                        ( )
                                                                                                               ( )




 Particular case :

 If ( )( ) ( )(                                )
                                                          ( )( ) ( )( ) and in this case ( )(                                                              )
                                                                                                                                                                   ( ̅ )( ) if in addition ( )(      )

 ( )( ) then ( ) ( )                                            ( )
                                                       ( ) and as a consequence   ( ) ( )(                                                                 )
                                                                                                                                                                   ( )

 Analogously if (                              )(      )
                                                                (            )(    )
                                                                                                      ( )(           )
                                                                                                                             ( )( ) and then

  ( )( ) ( ̅ )( ) if in addition ( )( ) ( )( ) then                                                                                    ( )       (     )(      )
                                                                                                                                                                       ( ) This is an important
 consequence of the relation between ( )( ) and ( ̅ )(                                                                           )


 From GLOBAL EQUATIONS we obtain
     ( )
                 (        )(    )
                                          ((               )(   )
                                                                             (         )(       )
                                                                                                       (         )( ) (               ))     (       )( ) (             )   ( )
                                                                                                                                                                                  (   )(   ) ( )



                                ( )                             ( )
 Definition of                            :-




                                                                                                                                 127
Journal of Natural Sciences Research                                                                                                                                              www.iiste.org
 ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online)
 Vol.2, No.4, 2012


 It follows
                                                                                                                 ( )
      ((                 )( ) (       ( )
                                            )        ( )(        ) ( )
                                                                                 (         )( ) )                             ((            )( ) (   ( )
                                                                                                                                                           )    ( )(   ) ( )
                                                                                                                                                                               (   )( ) )


 From which one obtains

(a) For                         ( )(        )
                                                                 ( )(       )
                                                                                         ( ̅ )(    )




                                                              [ (          )( ) ((        )( ) (       )( ) ) ]
     ( )                   (     )( ) ( )( ) (           )( )                                                                                  (     )( ) (    )( )
           ( )                                                   )( ) ((    )( ) (          )( ) ) ]
                                                                                                                       ,     ( )(       )
                                                   [ (                                                                                         (     )( ) (    )( )
                                            ( )( )


                            ( )(        )            ( )
                                                           ( )         ( )(          )


 In the same manner , we get

                                                     [ (                    )( )((̅ )( ) (̅ )( ) ) ]
                            (̅ )( ) ( ̅ )( ) (̅ )( )                                                                                            (̅ )( ) (    )( )
     ( )
           ( )                                                   )( )((̅ )( ) (̅ )( ) ) ]
                                                                                                                           , ( ̅ )(     )
                                                     [ (                                                                                        (    )( ) (̅ )( )
                                            ( ̅ )( )


 Definition of ( ̅ )( ) :-

 From which we deduce ( )(                                         )            ( )
                                                                                      ( )          ( ̅ )(    )



(b) If                      ( )(        )
                                                   ( )(      )
                                                                                  ( ̅ )(       )
                                                                                                    we find like in the previous case,


                                                                [ (        )( ) ((         )( ) (       )( ) ) ]
                            (     )( ) ( )( ) (            )( )
 ( )(           )
                                                   [ (           )( ) ((     )( ) (         )( ) ) ]
                                                                                                                            ( )
                                                                                                                                  ( )
                                            ( )( )

                          [ (                            )( ) ((̅ )( ) (̅ )( ) ) ]
 (̅ )( ) ( ̅ )( ) (̅ )( )
                                 [ (            )( ) ((̅ )( ) (̅ )( ) ) ]
                                                                                                    ( ̅ )(    )
                        ( ̅ )( )


(c) If                      ( )(        )
                                                   ( ̅ )(    )
                                                                       ( )(       )
                                                                                                       , we obtain
                                                                           [ (     )( ) ((̅ )( ) (̅ )( ) ) ]
                                                  (̅ )( ) ( ̅ )( ) (̅ )( )
 ( )(           )               ( )
                                      ( )                            [ (   )( ) ((̅ )( ) (̅ )( ) ) ]
                                                                                                                                            ( )(      )
                                                           ( ̅ )( )

 And so with the notation of the first part of condition (c) , we have
                                       ( )
 Definition of                                  ( ) :-

                                                                                                       ( )
 (         )(       )            ( )
                                       ( )          (       )( ) ,          ( )
                                                                                  ( )
                                                                                                       ( )


 In a completely analogous way, we obtain
                                       ( )
 Definition of                                  ( ) :-

                                                                                                    ( )
 (     )(       )               ( )
                                      ( )          ( )( ) ,                ( )
                                                                                 ( )
                                                                                                    ( )


 Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the
 theorem.



                                                                                                                       128
Journal of Natural Sciences Research                                                                                                                                                                        www.iiste.org
 ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online)
 Vol.2, No.4, 2012


 Particular case :

 If ( )( ) ( )(                                     )
                                                            ( )( ) ( )( ) and in this case ( )(                                                                 )
                                                                                                                                                                         ( ̅ )( ) if in addition ( )(           )

 ( )( ) then ( ) ( )                                               ( )
                                                         ( ) and as a consequence   ( ) ( )(                                                                     )
                                                                                                                                                                          ( )

 Analogously if (                               )(       )
                                                                  (          )(     )
                                                                                                          ( )(          )
                                                                                                                                ( )( ) and then

  ( )( ) ( ̅ )( ) if in addition ( )( ) ( )( ) then                                                                                             ( )       (     )(   )
                                                                                                                                                                               ( ) This is an important
 consequence of the relation between ( )( ) and ( ̅ )(                                                                              )


 : From GLOBAL EQUATIONS we obtain
   ( )
               (        )(      )
                                         ((                  )(   )
                                                                            (           )(          )
                                                                                                          (            )( ) (               ))        (       )( ) (            )    ( )
                                                                                                                                                                                            (   )(   ) ( )




                                ( )                                ( )
 Definition of                          :-

         It follows
                                                                                                                              ( )
   (( )( ) ( ( ) )   ( )(                                             ) ( )
                                                                                            (            )( ) )                                  ((       )( ) (     ( )
                                                                                                                                                                           )         ( )(   ) ( )
                                                                                                                                                                                                      (      )( ) )
 From which one obtains

 Definition of ( ̅ )(                           )
                                                        ( )( ) :-


(d) For                     ( )(            )
                                                                          ( )(          )
                                                                                                        ( ̅ )(     )



                                                                   [ (               )( ) ((             )( ) (         )( ) ) ]
   ( )                 (     )( ) ( )( ) (                    )( )                                                                                               (     )( ) (        )( )
         ( )                                                              )( ) ((
                                                                                                                                        ,        ( )(     )
                                                   [ (                                  )( ) (             )( ) ) ]                                              (     )( ) (        )( )
                                            ( )( )


                       ( )(         )                   ( )
                                                              ( )            ( )(               )


 In the same manner , we get

                                                [ (                                 )( )((̅ )( ) (̅ )( ) ) ]
                       (̅ )( ) ( ̅ )( ) (̅ )( )                                                                                                                 (̅ )( ) (    )( )
   ( )
         ( )                                                              )( )((̅ )( ) (̅ )( ) ) ]
                                                                                                                                        , ( ̅ )(          )
                                        ( ̅ )( )
                                                 [ (                                                                                                            (    )( ) (̅ )( )


  From which we deduce ( )(                                                  )              ( )
                                                                                                        ( )         ( ̅ )(      )



(e) If                 ( )(         )
                                                    ( )(          )
                                                                                            ( ̅ )(            )
                                                                                                                  we find like in the previous case,

                                                                           [ (              )( ) ((           )( ) (        )( ) ) ]
                            (       )( ) ( )( ) (                     )( )
     ( )(          )
                                                           [ (                  )( ) ((             )( ) (        )( ) ) ]
                                                                                                                                                  ( )
                                                                                                                                                        ( )
                                                    ( )( )


                                    [ (                                    )( )((̅ )( ) (̅ )( ) ) ]
           (̅ )( ) ( ̅ )( ) (̅ )( )
                                     [ (                     )( )((̅ )( ) (̅ )( ) ) ]
                                                                                                                              ( ̅ )(        )
                            ( ̅ )( )

 (f) If                 ( )(            )
                                                        ( ̅ )(        )
                                                                                 ( )(               )
                                                                                                                        , we obtain

                                                                                           [ (                               )( ) ((̅ )( ) (̅ )( )) ]
                                                                  (̅ )( ) ( ̅ )( ) (̅ )( )
          ( )(          )               ( )
                                                ( )                                          [ (                  )( ) ((̅ )( ) (̅ )( )) ]
                                                                                                                                                                       ( )(      )
                                                                                    ( ̅ )( )


         And so with the notation of the first part of condition (c) , we have

                                                                                                                                    129
Journal of Natural Sciences Research                                                                                                                                                               www.iiste.org
ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online)
Vol.2, No.4, 2012


                                       ( )
Definition of                                ( ) :-

                                                                                                            ( )
(     )(    )             ( )
                                   ( )                   (      )( ) ,            ( )
                                                                                        ( )
                                                                                                            ( )
In a completely analogous way, we obtain
Definition of ( ) ( ) :-

                                                                                                          ( )
(    )(    )              ( )
                                   ( )               ( )( ) ,                  ( )
                                                                                     ( )
                                                                                                          ( )


Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the
theorem.

Particular case :

If ( )( ) ( )(                                       )
                                                                ( )( ) ( )( ) and in this case ( )(                                                   )
                                                                                                                                                              ( ̅ )( ) if in addition ( )( )
( )( ) then ( ) ( )                                                ( )
                                                             ( ) and as a consequence   ( ) ( )(                                                      )
                                                                                                                                                               ( ) this also defines ( )( ) for
the special case .

Analogously if ( )( ) ( )( )            ( )( ) ( )( ) and then
     ( )       ( )                 ( )
 ( )     ( ̅ ) if in addition ( )       ( )( ) then   ( ) ( )( ) ( ) This is an important
consequence of the relation between ( ) and ( ̅ ) and definition of ( )( )
                                       ( )        ( )




From GLOBAL EQUATIONS we obtain
    ( )
                (         )(       )
                                             ((               )(   )
                                                                          (        )(        )
                                                                                                   (           )( ) (         ))           (     )( ) (             )   ( )
                                                                                                                                                                                  (   )(   ) ( )




                                   ( )                             ( )
Definition of                                :-

          It follows
                                                                                                                     ( )
    ((          )( ) (         ( )
                                        )                ( )(          ) ( )
                                                                                     (            )( ) )                              ((       )( ) (     ( )
                                                                                                                                                                )       ( )(      ) ( )
                                                                                                                                                                                            (      )( ) )


          From which one obtains

Definition of ( ̅ )(                             )
                                                         ( )( ) :-


(g) For                   ( )(               )
                                                                        ( )(       )
                                                                                                 ( ̅ )(    )



                                                                            [ (          )( ) ((       )( ) (      )( ) ) ]
          ( )                  (        )( ) ( )( ) (                  )( )                                                                               (       )( ) (   )( )
                ( )                                                           )( ) ((        )( ) (       )( ) ) ]
                                                                                                                                  ,        ( )(   )
                                                            [ (                                                                                           (       )( ) (   )( )
                                                     ( )( )


                      ( )(              )                ( )
                                                               ( )        ( )(           )


In the same manner , we get

                                                            [ (                              )( )((̅ )( ) (̅ )( ) ) ]
                                   (̅ )( ) ( ̅ )( ) (̅ )( )                                                                                                   (̅ )( ) (       )( )
            ( )
                    ( )                                                         )( )((̅ )( ) (̅ )( ) ) ]
                                                                                                                                       , ( ̅ )(       )
                                                                  [ (                                                                                         (     )( ) (̅ )( )
                                                         ( ̅ )( )


    From which we deduce ( )(                                              )            ( )
                                                                                                 ( )        ( ̅ )(      )



                                                                                                                            130
Journal of Natural Sciences Research                                                                                                                                                     www.iiste.org
 ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online)
 Vol.2, No.4, 2012




(h) If                  ( )(         )
                                                ( )(          )
                                                                                     ( ̅ )(        )
                                                                                                       we find like in the previous case,

                                                                       [ (           )( ) ((       )( ) (      )( ) ) ]
                             (       )( ) ( )( ) (                )( )
       ( )(         )
                                                       [ (                 )( ) ((       )( ) (        )( ) ) ]
                                                                                                                                  ( )
                                                                                                                                        ( )
                                                ( )( )


                                      [ (                             )( )((̅ )( ) (̅ )( ) ) ]
             (̅ )( ) ( ̅ )( ) (̅ )( )
                                      [ (                )( )((̅ )( ) (̅ )( ) ) ]
                                                                                                                   ( ̅ )(   )
                             ( ̅ )( )

 (i) If                 ( )(             )
                                                    ( ̅ )(        )
                                                                            ( )(         )
                                                                                                             , we obtain

                                                                                       [ (                        )( ) ((̅ )( ) (̅ )( )) ]
                                                              (̅ )( ) ( ̅ )( ) (̅ )( )
            ( )(        )                ( )
                                                ( )                                    [ (             )( ) ((̅ )( ) (̅ )( )) ]
                                                                                                                                                       ( )(   )
                                                                              ( ̅ )( )


     And so with the notation of the first part of condition (c) , we have
 Definition of ( ) ( ) :-

                                                                                                         ( )
 (     )(    )              ( )
                                  ( )               (     )( ) ,               ( )
                                                                                     ( )
                                                                                                         ( )
 In a completely analogous way, we obtain
 Definition of ( ) ( ) :-

                                                                                                       ( )
 (    )(    )            ( )
                                 ( )            ( )( ) ,                     ( )
                                                                                   ( )
                                                                                                       ( )


 Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the
 theorem.

 Particular case :

 If ( )( ) ( )(                                 )
                                                           ( )( ) ( )( ) and in this case ( )( )                                                        ( ̅ )( ) if in addition ( )( )
 ( )( ) then ( ) ( )                                           ( )
                                                        ( ) and as a consequence   ( ) ( )( )                                                            ( ) this also defines ( )( ) for
 the special case .

 Analogously if ( )( ) ( )( )            ( )( ) ( )( ) and then
      ( )      ( )                  ( )
  ( )     ( ̅ ) if in addition ( )       ( )( ) then   ( ) ( )( ) ( ) This is an important
 consequence of the relation between ( ) and ( ̅ ) and definition of ( )( )
                                        ( )        ( )




 we obtain
     ( )
                (        )(      )
                                           ((            )(   )
                                                                       (        )(       )
                                                                                               (          )( ) (            ))        (       )( ) (          )   ( )
                                                                                                                                                                         (   )(   ) ( )




                                 ( )                           ( )
 Definition of                             :-

           It follows
                                                                                                                   ( )
     ((          )( ) (          ( )
                                       )            ( )(          ) ( )
                                                                                     (       )( ) )                              ((       )( ) (   ( )
                                                                                                                                                         )        ( )(   ) ( )
                                                                                                                                                                                  (       )( ) )


           From which one obtains



                                                                                                                         131
Journal of Natural Sciences Research                                                                                                                                         www.iiste.org
 ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online)
 Vol.2, No.4, 2012


 Definition of ( ̅ )(                            )
                                                     ( )( ) :-


(j) For                     ( )(             )
                                                                      ( )(     )
                                                                                         ( ̅ )(        )



                                                                       [ (          )( ) ((       )( ) (         )( ) ) ]
          ( )                 (      )( ) ( )( ) (                )( )                                                                                (       )( ) (   )( )
                  ( )                                                     )( ) ((       )( ) (        )( ) ) ]
                                                                                                                              ,     ( )(      )
                                                            [ (                                                                                       (       )( ) (   )( )
                                                     ( )( )


                           ( )(      )                ( )
                                                            ( )         ( )(        )


 In the same manner , we get

                                                           [ (                          )( )((̅ )( ) (̅ )( ) ) ]
                                  (̅ )( ) ( ̅ )( ) (̅ )( )                                                                                                (̅ )( ) (    )( )
              ( )
                      ( )                                                    )( )((̅ )( ) (̅ )( ) ) ]
                                                                                                                                  , ( ̅ )(        )
                                                               [ (                                                                                        (    )( ) (̅ )( )
                                                      ( ̅ )( )


     From which we deduce ( )(                                           )          ( )
                                                                                            ( )         ( ̅ )(      )



(k) If                     ( )(      )
                                                     ( )(     )
                                                                                    ( ̅ )(        )
                                                                                                      we find like in the previous case,

                                                                       [ (          )( ) ((       )( ) (      )( ) ) ]
                             (     )( ) ( )( ) (                  )( )
        ( )(           )
                                                            [ (          )( ) ((        )( ) (        )( ) ) ]
                                                                                                                                  ( )
                                                                                                                                        ( )
                                                     ( )( )


                              [ (                        )( ) ((̅ )( ) (̅ )( )) ]
     (̅ )( ) ( ̅ )( ) (̅ )( )
                               [ (           )( ) ((̅ )( ) (̅ )( )) ]
                                                                                                       ( ̅ )(      )
                      ( ̅ )( )

 (l) If                    ( )(          )
                                                      ( ̅ )(      )
                                                                             ( )(       )
                                                                                                            , we obtain

                                                                               [ (                     )( ) ((̅ )( ) (̅ )( )) ]
                                                      (̅ )( ) ( ̅ )( ) (̅ )( )
     ( )(         )          ( )
                                   ( )                                         [ (          )( ) ((̅ )( ) (̅ )( )) ]
                                                                                                                                              ( )(        )
                                                                      ( ̅ )( )


     And so with the notation of the first part of condition (c) , we have
 Definition of ( ) ( ) :-

                                                                                                        ( )
 (       )(   )             ( )
                                  ( )                (       )( ) ,           ( )
                                                                                    ( )
                                                                                                        ( )
 In a completely analogous way, we obtain
 Definition of ( ) ( ) :-

                                                                                                      ( )
 (      )(    )             ( )
                                  ( )                ( )( ) ,                ( )
                                                                                   ( )
                                                                                                      ( )


 Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the
 theorem.

 Particular case :

 If ( )( ) ( )( )             ( )( ) ( )( ) and in this case ( )( ) ( ̅ )( ) if in addition ( )( )
     ( )        ( )          ( )
 ( ) then           ( ) ( ) and as a consequence         ( ) ( )( )      ( ) this also defines ( )( ) for
 the special case .
 Analogously if ( )( ) ( )( )            ( )( ) ( )( ) and then
      ( )        ( )                 ( )
  ( )       ( ̅ ) if in addition ( )     ( )( ) then       ( ) ( )( ) ( ) This is an important
 consequence of the relation between ( )( ) and ( ̅ )( ) and definition of ( )( )



                                                                                                                        132
Journal of Natural Sciences Research                                                                                                                           www.iiste.org
ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online)
Vol.2, No.4, 2012


We can prove the following

Theorem 3: If (                   )(   )
                                                (   )( ) are independent on , and the conditions

(      )( ) (            )(   )
                                  (        )( ) (   )(   )


(      )( ) (            )(   )
                                  (        )( ) (   )(   )
                                                             (       )( ) (     )(      )
                                                                                             (        )( ) (    )(       )
                                                                                                                                 (     )( ) (         )(   )


(      )( ) (            )(   )
                                  (        )( ) (   )(   )
                                                                 ,

(      )( ) (            )(   )
                                  (        )( ) (   )(   )
                                                             (       )( ) (    )(   )
                                                                                             (       )( ) (    )(    )
                                                                                                                             (       )( ) (      )(   )


         (          )(    )
                              (   )( ) as defined, then the system

If (      )(    )
                              (   )( ) are independent on , and the conditions

(      )( ) (            )(   )
                                  (        )( ) (   )(   )


(      )( ) (            )(   )
                                  (        )( ) (   )(   )
                                                             (       )( ) (     )(      )
                                                                                             (        )( ) (    )(       )
                                                                                                                                 (     )( ) (         )(   )


(      )( ) (            )(   )
                                  (        )( ) (   )(   )
                                                                 ,

(      )( ) (            )(   )
                                  (        )( ) (   )(   )
                                                             (       )( ) (    )(   )
                                                                                             (       )( ) (    )(    )
                                                                                                                             (       )( ) (      )(   )


         (          )(    )
                              (   )( ) as defined are satisfied , then the system

If (      )(    )
                              (   )( ) are independent on , and the conditions

(      )( ) (            )(   )
                                  (        )( ) (   )(   )


(      )( ) (            )(   )
                                  (        )( ) (   )(   )
                                                             (        )( ) (    )(       )
                                                                                                 (    )( ) (        )(   )
                                                                                                                                 (      )( ) (        )(   )


(      )( ) (            )(   )
                                  (        )( ) (   )(   )
                                                                 ,

(      )( ) (            )(   )
                                  (        )( ) (   )(   )
                                                             (       )( ) (    )(    )
                                                                                             (       )( ) (    )(    )
                                                                                                                             (       )( ) (      )(    )


         (          )(    )
                              (   )(   )
                                           as defined are satisfied , then the system

If (     )(    )
                              (   )( ) are independent on , and the conditions

(      )( ) (            )(   )
                                  (        )( ) (   )(   )



(      )( ) (            )(   )
                                  (        )( ) (   )(   )
                                                             (        )( ) (    )(       )
                                                                                                 (    )( ) (        )(   )
                                                                                                                                 (      )( ) (        )(   )



(      )( ) (            )(   )
                                  (        )( ) (   )(   )
                                                                 ,

(      )( ) (            )(   )
                                  (        )( ) (   )(   )
                                                             (       )( ) (    )(    )
                                                                                             (       )( ) (    )(    )
                                                                                                                             (       )( ) (      )(    )



         (          )(    )
                              (   )(   )
                                           as defined are satisfied , then the system

If (     )(    )
                              (   )( ) are independent on , and the conditions

(      )( ) (            )(   )
                                  (        )( ) (   )(   )



(      )( ) (            )(   )
                                  (        )( ) (   )(   )
                                                             (        )( ) (    )(       )
                                                                                                 (    )( ) (        )(   )
                                                                                                                                 (     )( ) (         )(   )




                                                                                         133
Journal of Natural Sciences Research                                                                                                                                     www.iiste.org
ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online)
Vol.2, No.4, 2012


(      )( ) (             )(   )
                                    (            )( ) (        )(    )
                                                                              ,

(      )( ) (             )(   )
                                    (            )( ) (        )(    )
                                                                         (        )( ) (   )(   )
                                                                                                        (       )( ) (    )(    )
                                                                                                                                        (       )( ) (     )(   )



         (           )(    )
                               (    )( ) as defined satisfied , then the system

If (     )(      )
                               (    )( ) are independent on , and the conditions

(      )( ) (             )(   )
                                    (                )( ) (     )(   )



(      )( ) (             )(   )
                                    (                )( ) (     )(   )
                                                                         (        )( ) (    )(      )
                                                                                                            (    )( ) (        )(   )
                                                                                                                                            (     )( ) (        )(   )



(      )( ) (             )(   )
                                    (            )( ) (        )(    )
                                                                              ,

(      )( ) (             )(   )
                                    (            )( ) (        )(    )
                                                                         (        )( ) (   )(   )
                                                                                                        (       )( ) (    )(    )
                                                                                                                                        (       )( ) (     )(   )



         (           )(    )
                               (    )(       )
                                                 as defined are satisfied , then the system

(      )(    )
                               [(       )(       )
                                                        (     )( ) (         )]

(      )(    )
                               [(       )(       )
                                                        (     )( ) (         )]

(      )(    )
                               [(       )(       )
                                                        (     )( ) (         )]

(      )(   )
                               (    )(       )
                                                       (      )( ) ( )

(      )(   )
                               (    )(       )
                                                       (      )( ) ( )

(      )(   )
                               (    )(       )
                                                       (      )( ) ( )

has a unique positive solution , which is an equilibrium solution for the system

(      )(    )
                               [(       )(       )
                                                        (     )( ) (         )]

(      )(    )
                               [(       )(       )
                                                        (     )( ) (         )]

(      )(    )
                               [(       )(       )
                                                        (     )( ) (         )]

(      )(   )
                               (    )(       )
                                                       (      )( ) (     )

(      )(   )
                               (    )(       )
                                                       (      )( ) (     )

(      )(   )
                               (    )(       )
                                                       (      )( ) (     )

has a unique positive solution , which is an equilibrium solution for

(      )(    )
                               [(       )(       )
                                                        (      )( ) (        )]

(      )(    )
                               [(       )(       )
                                                        (      )( ) (        )]

(      )(    )
                               [(       )(       )
                                                        (      )( ) (        )]

(      )(    )
                               (     )(      )
                                                        (     )( ) (     )




                                                                                                    134
Journal of Natural Sciences Research                                               www.iiste.org
ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online)
Vol.2, No.4, 2012


(   )(   )
               (    )(   )
                             (   )( ) (    )

(   )(   )
               (    )(   )
                             (   )( ) (    )

has a unique positive solution , which is an equilibrium solution

(   )(   )
               [(   )(   )
                             (    )( ) (   )]

(   )(   )
               [(   )(   )
                             (    )( ) (   )]
(   )(   )
               [(   )(   )
                             (    )( ) (   )]

(   )(   )
               (    )(   )
                             (   )( ) ((       ))

(   )(   )
               (    )(   )
                             (   )( ) ((       ))

(   )(   )
               (    )(   )
                             (   )( ) ((       ))

has a unique positive solution , which is an equilibrium solution for the system


(   )(   )
              [(    )(   )
                             (   )( ) (    )]


(   )(   )
              [(    )(   )
                             (   )( ) (    )]

(   )(   )
              [(    )(   )
                             (   )( ) (    )]


(   )(   )
               (    )(   )
                             (   )( ) (    )


(   )(   )
               (    )(   )
                             (   )( ) (    )


(   )(   )
               (    )(   )
                             (   )( ) (    )


has a unique positive solution , which is an equilibrium solution for the system


(   )(   )
               [(   )(   )
                             (    )( ) (   )]


(   )(   )
               [(   )(   )
                             (    )( ) (   )]

(   )(   )
               [(   )(   )
                             (    )( ) (   )]


(   )(   )
               (    )(   )
                             (   )( ) (    )


(   )(   )
               (    )(   )
                             (   )( ) (    )


(   )(   )
               (    )(   )
                             (   )( ) (    )




                                                       135
Journal of Natural Sciences Research                                                                                                                                               www.iiste.org
ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online)
Vol.2, No.4, 2012


has a unique positive solution , which is an equilibrium solution for the system




(a) Indeed the first two equations have a nontrivial solution                                                                      if

 ( ) (                      )( ) ( )(       )
                                                    (        )( ) (           )(   )
                                                                                            (        )( ) (        )( ) (      )        (       )( ) (        )( ) (     )
( )( ) (                   )( )( ) (            )



(a) Indeed the first two equations have a nontrivial solution                                                                          if

    (       )         (      )( ) ( )( ) (                       )( ) (         )(      )
                                                                                                (     )( ) (        )( ) (         )        (    )( ) (        )( ) (        )
            ( )
(       )         (        )( )( ) ( )



(a) Indeed the first two equations have a nontrivial solution                                                                      if

    (       )         (      )( ) ( )( ) (                       )( ) (            )(   )
                                                                                                (      )( ) (        )( ) (        )        (        )( ) (     )( ) (        )
            ( )
(       )         (        )( )( ) ( )



(a) Indeed the first two equations have a nontrivial solution                                                                      if

    (     )
(       )( ) (            )(   )   (     )( ) (         )(   )
                                                                   (         )( ) (         )( ) (      )      (      )( ) (       )( ) (        )     (      )( ) (     )(       )( ) (   )




(a) Indeed the first two equations have a nontrivial solution                                                                      if

    (     )
(       )( ) (            )(   )   (     )( ) (         )(   )
                                                                   (         )( ) (         )( ) (      )      (     )( ) (        )( ) (       )      (      )( ) (     )(       )( ) (   )




(a) Indeed the first two equations have a nontrivial solution                                                                      if

    (    )
(       )( ) (            )(   )   (     )( ) (         )(   )
                                                                   (         )( ) (         )( ) (      )      (      )( ) (       )( ) (        )     (      )( ) (     )(       )( ) (   )


Definition and uniqueness of                                           :-

After hypothesis                       ( )       ( )                          and the functions ( )( ) ( ) being increasing, it follows that there
exists a unique                          for which (                        )     . With this value , we obtain from the three first equations




                                                                                                        136
Journal of Natural Sciences Research                                                                                                    www.iiste.org
ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online)
Vol.2, No.4, 2012


                     (    )( )                                                                (    )( )
                                                               ,
           [(       )( ) (     )( ) (             )]                                [(       )( ) (     )( ) (     )]


Definition and uniqueness of                                            :-

After hypothesis                     ( )       ( )                             and the functions ( )( ) ( ) being increasing, it follows that there
exists a unique                        for which (                           )     . With this value , we obtain from the three first equations

                     (    )( )                                                                (    )( )
                                                               ,
           [(       )( ) (     )( ) (             )]                                [(       )( ) (     )( ) (     )]


Definition and uniqueness of                                            :-

After hypothesis                     ( )       ( )                             and the functions ( )( ) ( ) being increasing, it follows that there
exists a unique                        for which (                           )     . With this value , we obtain from the three first equations

                         (    )( )                                                            (    )( )
                                                               ,
           [(           )( ) (     )( ) (         )]                                [(       )( ) (     )( ) (     )]


Definition and uniqueness of                                            :-

After hypothesis                     ( )       ( )                             and the functions ( )( ) ( ) being increasing, it follows that there
exists a unique                        for which (                           )     . With this value , we obtain from the three first equations

                         (    )( )                                                            (    )( )
                                                               ,
           [(           )( ) (       )( ) (       )]                                [(       )( ) (       )( ) (   )]


Definition and uniqueness of                                            :-

After hypothesis                     ( )       ( )                             and the functions ( )( ) ( ) being increasing, it follows that there
exists a unique                        for which (                           )     . With this value , we obtain from the three first equations

                         (    )( )                                                            (    )( )
                                                               ,
           [(           )( ) (       )( ) (       )]                                [(       )( ) (       )( ) (   )]


Definition and uniqueness of                                            :-

After hypothesis                     ( )       ( )                             and the functions ( )( ) ( ) being increasing, it follows that there
exists a unique                        for which (                           )     . With this value , we obtain from the three first equations

                         (    )( )                                                            (    )( )
                                                               ,
           [(           )( ) (     )( ) (         )]                                [(       )( ) (     )( ) (     )]


(e) By the same argument, the equations 92,93 admit solutions                                                                  if

 ( )            (         )( ) (       )(     )
                                                       (           )( ) (     )(    )


[(   )( ) (               )( ) ( )            (        )( ) (           )( ) ( )] (               )( ) ( )(         )( ) ( )

 Where in (              )           must be replaced by their values from 96. It is easy to see that is a
decreasing function in     taking into account the hypothesis ( )           ( )        it follows that there
exists a unique    such that ( )

(f) By the same argument, the equations 92,93 admit solutions                                                                  if

 (     )            (        )( ) (         )(    )
                                                           (         )( ) (        )(    )




                                                                                                       137
Journal of Natural Sciences Research                                                                                              www.iiste.org
ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online)
Vol.2, No.4, 2012


[(   )( ) (       )( ) (       )        (    )( ) (       )( ) (           )] (     )( ) (       )(   )( ) (   )

Where in ( )(               )          must be replaced by their values from 96. It is easy to see that is a
decreasing function in    taking into account the hypothesis ( )           ( )        it follows that there
exists a unique    such that (( ) )

(g) By the same argument, the concatenated equations admit solutions                                                         if

 (    )       (     )( ) (         )(   )
                                             (        )( ) (    )(     )



[(   )( ) (       )( ) (       )        (        )( ) (    )( ) (          )] (         )( ) (   )(   )( ) (   )

Where in      (           )          must be replaced by their values from 96. It is easy to see that is a
decreasing function in    taking into account the hypothesis ( )          ( )         it follows that there
exists a unique    such that  (( ) )

(h) By the same argument, the equations of modules admit solutions                                                      if

 (    )       (     )( ) (         )(   )
                                             (        )( ) (    )(     )



[(   )( ) (       )( ) (       )        (        )( ) (    )( ) (          )] (         )( ) (   )(   )( ) (   )

Where in ( )(               )           must be replaced by their values from 96. It is easy to see that is a
decreasing function in    taking into account the hypothesis ( )            ( )        it follows that there
exists a unique    such that (( ) )

(i) By the same argument, the equations (modules) admit solutions                                                  if


 (    )       (     )( ) (         )(   )
                                             (        )( ) (    )(    )



[(   )( ) (       )( ) (       )        (        )( ) (    )( ) (          )] (     )( ) (       )(   )( ) (   )

Where in ( )(               )           must be replaced by their values from 96. It is easy to see that is a
decreasing function in    taking into account the hypothesis ( )            ( )        it follows that there
exists a unique    such that (( ) )

(j) By the same argument, the equations (modules) admit solutions                                                  if


 (    )       (     )( ) (         )(   )
                                             (        )( ) (    )(     )



[(   )( ) (       )( ) (       )        (        )( ) (    )( ) (          )] (         )( ) (   )(   )( ) (   )

Where in ( )(               )           must be replaced by their values It is easy to see that is a
decreasing function in    taking into account the hypothesis ( )             ( )        it follows that there
exists a unique    such that ( )

Finally we obtain the unique solution of 89 to 94

                    (      )            ,                       (          )      and

               (    )( )                                             (    )( )
                                             ,
       [(     )( ) (     )( ) (         )]                 [(       )( ) (     )( ) (      )]




                                                                                    138
Journal of Natural Sciences Research                                                                                              www.iiste.org
ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online)
Vol.2, No.4, 2012


            (   )( )                                                      (   )( )
                                                  ,
      [(   )( ) (    )( ) (           )]                      [(         )( ) (    )( )(                    )]


Obviously, these values represent an equilibrium solution

Finally we obtain the unique solution

                     ((         ))                ,                               (           )             and

             (   )( )                                                          (   )( )
                                                  ,
      [(   )( ) (     )( ) (             )]                   [(             )( ) (     )( ) (                   )]


                (        )( )                                                             (        )( )
                                                          ,
      [(   )( ) (           )( ) ((        ) )]                         [(        )( ) (              )( ) ((              ) )]


    Obviously, these values represent an equilibrium solution

Finally we obtain the unique solution

                     ((             ))            ,                               (           )             and

            (    )( )                                                         (    )( )
                                                  ,
      [(   )( ) (     )( ) (             )]                   [(             )( ) (     )( ) (                   )]


             (       )( )                                                         (           )( )
                                                      ,
      [(   )( ) (          )( ) (          )]                      [(          )( ) (              )( ) (             )]


Obviously, these values represent an equilibrium solution

Finally we obtain the unique solution

                     (          )          ,                             (            )              and

            (        )( )                                                     (       )( )
                                                  ,
      [(   )( ) (           )( ) (       )]                   [(             )( ) (               )( ) (         )]


                 (       )( )                                                         (            )( )
                                                          ,
      [(   )( ) (          )( ) ((         ) )]                         [(        )( ) (              )( ) ((              ) )]


Obviously, these values represent an equilibrium solution

Finally we obtain the unique solution

                     ((         ))                ,                               (           )             and

            (        )( )                                                     (       )( )
                                                  ,
      [(   )( ) (           )( ) (       )]                   [(             )( ) (               )( ) (         )]


              (   )( )                                                               (   )( )
                                                          ,
      [(   )( ) (    )( ) ((               ) )]                         [(        )( ) (    )( ) ((                        ) )]


Obviously, these values represent an equilibrium solution

Finally we obtain the unique solution

                     ((             ))            ,                               (           )             and




                                                                                                       139
Journal of Natural Sciences Research                                                                                                                                               www.iiste.org
ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online)
Vol.2, No.4, 2012


                  (    )( )                                                                       (    )( )
                                                          ,
        [(       )( ) (     )( ) (                 )]                              [(            )( ) (     )( ) (                 )]


                     (        )( )                                                                             (        )( )
                                                                  ,
       [(        )( ) (            )( ) ((         ) )]                                     [(               )( ) (         )( ) ((         ) )]


Obviously, these values represent an equilibrium solution

ASYMPTOTIC STABILITY ANALYSIS

Theorem 4: If the conditions of the previous theorem are satisfied and if the functions (                                                                              )(      )
                                                                                                                                                                                     (   )(   )

Belong to ( ) (  ) then the above equilibrium point is asymptotically stable.

Proof: Denote

Definition of                             :-

                                                                      ,

                         (         )( )                                                          (           )( )
                                           (       )          (           )(   )
                                                                                        ,                           (          )

Then taking into account equations (global) and neglecting the terms of power 2, we obtain

                ((       )(       )
                                           (       )( ) )                      (            )(           )
                                                                                                                         (         )(   )



                ((       )(       )
                                           (       )( ) )                      (            )(           )
                                                                                                                         (         )(   )



                ((       )(       )
                                           (       )( ) )                      (            )(           )
                                                                                                                         (         )(   )



                ((       )(    )
                                          (        )( ) )                      (            )(       )
                                                                                                                        ∑          (    (     )( )   )

                ((       )(    )
                                          (        )( ) )                      (            )(       )
                                                                                                                        ∑          (    (     )( )   )

                ((       )(    )
                                          (        )( ) )                      (            )(       )
                                                                                                                        ∑          (    (     )( )   )

If the conditions of the previous theorem are satisfied and if the functions (                                                                           )(   )
                                                                                                                                                                  (   )(   )
                                                                                                                                                                               Belong to
 ( )
     (   ) then the above equilibrium point is asymptotically stable

Denote

Definition of                             :-

                                      ,

 (   )( )                                                 (       )( )
            (        )        (           )(   )
                                                    ,                      ((                ) )

taking into account equations (global)and neglecting the terms of power 2, we obtain

                ((       )(    )
                                           (       )( ) )                      (            )(           )
                                                                                                                         (         )(   )



                ((       )(    )
                                           (       )( ) )                      (            )(           )
                                                                                                                         (         )(   )




                                                                                                                             140
Journal of Natural Sciences Research                                                                                                                 www.iiste.org
ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online)
Vol.2, No.4, 2012


         ((       )(   )
                                (            )( ) )              (        )(       )
                                                                                              (     )(       )



         ((       )(   )
                               (         )( ) )                  (        )(   )
                                                                                            ∑           (    (    )( )   )

         ((       )(   )
                               (         )( ) )                  (        )(   )
                                                                                            ∑           (    (    )( )   )

         ((       )(   )
                               (         )( ) )                  (        )(   )
                                                                                            ∑           (    (    )( )   )

If the conditions of the previous theorem are satisfied and if the functions (                                               )(   )
                                                                                                                                      (   )(   )
                                                                                                                                                   Belong to
 ( )
     (   ) then the above equilibrium point is asymptotically stabl

Denote

Definition of                  :-

                                                                 ,

                           (        )( )                                                (   )( )
                                             (       )       (       )(    )
                                                                                   ,               ((            ) )

Then taking into account equations (global) and neglecting the terms of power 2, we obtain

         ((       )(   )
                                (            )( ) )              (         )(       )
                                                                                              (         )(   )



         ((       )(   )
                                (            )( ) )              (         )(       )
                                                                                              (         )(   )



         ((       )(   )
                                (            )( ) )              (         )(       )
                                                                                              (         )(   )



         ((       )(   )
                                (        )( ) )                  (        )(    )
                                                                                             ∑          (    (    )( )   )

         ((       )(   )
                                (        )( ) )                  (        )(    )
                                                                                             ∑          (    (    )( )   )

         ((       )(   )
                                (        )( ) )                  (        )(    )
                                                                                             ∑          (    (    )( )   )

If the conditions of the previous theorem are satisfied and if the functions (                                               )(   )
                                                                                                                                      (   )(   )
                                                                                                                                                   Belong to
  ( )
      (   ) then the above equilibrium point is asymptotically stabl

Denote

Definition of                  :-

                                    ,

   (   )( )                                              (   )( )
              (   )        (            )(   )
                                                 ,                   ((         ) )

Then taking into account equations (global) and neglecting the terms of power 2, we obtain

         ((       )(   )
                                (            )( ) )              (         )(       )
                                                                                              (         )(   )




                                                                                                   141
Journal of Natural Sciences Research                                                                                                                    www.iiste.org
ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online)
Vol.2, No.4, 2012


                ((          )(   )
                                          (         )( ) )                     (         )(       )
                                                                                                       (     )(   )



                ((          )(   )
                                          (         )( ) )                     (         )(       )
                                                                                                       (     )(   )



                ((          )(   )
                                          (        )( ) )                      (        )(    )
                                                                                                       ∑     (    (   )( )   )

                ((          )(   )
                                          (        )( ) )                      (        )(    )
                                                                                                       ∑     (    (   )( )   )

                ((          )(   )
                                          (        )( ) )                      (        )(    )
                                                                                                       ∑     (    (   )( )   )




 If the conditions of the previous theorem are satisfied and if the functions (                                                  )(   )
                                                                                                                                          (   )(   )
                                                                                                                                                       Belong to
 ( )
     (    ) then the above equilibrium point is asymptotically stable

Denote

Definition of                            :-

                                          ,

 (       )( )                                                   (       )( )
                (       )        (        )(   )
                                                        ,                      ((        ) )

Then taking into account equations (global) and neglecting the terms of power 2, we obtain

                ((          )(   )
                                          (         )( ) )                     (         )(       )
                                                                                                       (     )(   )



                ((          )(   )
                                          (         )( ) )                     (        )(       )
                                                                                                       (     )(   )



                ((          )(   )
                                          (         )( ) )                     (         )(       )
                                                                                                       (     )(   )



                ((          )(   )
                                          (        )( ) )                      (        )(    )
                                                                                                       ∑     (    (   )( )   )

                ((          )(   )
                                          (        )( ) )                      (    )(       )
                                                                                                       ∑     (    (   )( )   )

                ((          )(   )
                                          (        )( ) )                      (        )(    )
                                                                                                       ∑     (    (   )( )   )

If the conditions of the previous theorem are satisfied and if the functions (                                                   )(   )
                                                                                                                                          (   )(   )
                                                                                                                                                       Belong to
 ( )
     (   ) then the above equilibrium point is asymptotically stable

Denote

Definition of                            :-

                                          ,

     (     )( )                                                     (     )( )
                    (       )        (         )(   )
                                                            ,                      ((            ) )




                                                                                                           142
Journal of Natural Sciences Research                                                                                                                                                                           www.iiste.org
ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online)
Vol.2, No.4, 2012


Then taking into account equations(global) and neglecting the terms of power 2, we obtain

                    ((           )(    )
                                                       (           )( ) )                      (            )(       )
                                                                                                                                          (           )(   )



                    ((           )(    )
                                                       (           )( ) )                      (            )(       )
                                                                                                                                          (           )(   )



                    ((           )(    )
                                                       (           )( ) )                      (            )(       )
                                                                                                                                          (           )(   )



                    ((           )(    )
                                                    (              )( ) )                  (            )(       )
                                                                                                                                         ∑            (    (        )( )               )

                    ((           )(    )
                                                    (              )( ) )                  (            )(       )
                                                                                                                                         ∑            (    (        )( )               )

                    ((           )(    )
                                                    (              )( ) )                  (            )(       )
                                                                                                                                         ∑            (    (        )( )               )



The characteristic equation of this system is

(( )(   )
                    (           )(    )
                                                   (           )( ) ) (( )(                )
                                                                                                        (            )(      )
                                                                                                                                         (           )( ) )

[((( )(         )
                         (            )(       )
                                                           (           )( ) )(             )(       )
                                                                                                                         (            )( ) (               )(      )
                                                                                                                                                                                )]

((( )(      )
                        (        )(        )
                                                       (           )( ) )    (        )(        )                    (           )(      )
                                                                                                                                                 (    )(       )            )

  ((( )(            )
                             (            )(       )
                                                               (        )( ) )(                )(       )
                                                                                                                             (            )( ) (               )(       )
                                                                                                                                                                                 )

((( )(      )
                        (        )(        )
                                                       (           )( ) )    (        )(        )                    (           )(          )
                                                                                                                                                 (    )(        )           )

((( )( ) )                   ((                )(      )
                                                                   (        )(   )
                                                                                           (                )(   )
                                                                                                                             (            )( ) ) ( ) ( ) )

((( )( ) )                   ((                )(      )
                                                                   (        )(   )
                                                                                           (            )(       )
                                                                                                                             (           )( ) ) ( ) ( ) )

  ((( )( ) )                      ((                   )(      )
                                                                        (        )(    )
                                                                                                    (            )(      )
                                                                                                                                     (           )( ) ) ( ) ( ) ) (                     )(    )



  (( )(         )
                            (         )(       )
                                                           (           )( ) ) ((                   )( ) (                )(      )
                                                                                                                                                      (         )( ) (               )( ) (       )(   )
                                                                                                                                                                                                           )

((( )(      )
                        (        )(        )
                                                       (           )( ) )    (        )(        )                    (           )(      )
                                                                                                                                                 (    )(       )            )


+
(( )(   )
                    (           )(    )
                                                   (           )( ) ) (( )(                )
                                                                                                        (            )(      )
                                                                                                                                         (           )( ) )

[((( )(         )
                         (            )(       )
                                                           (           )( ) )(             )(       )
                                                                                                                         (            )( ) (               )(       )
                                                                                                                                                                                )]

((( )(      )
                        (        )(        )
                                                       (           )( ) )    (        )(        )                    (           )(      )
                                                                                                                                                 (    )(       )            )

  ((( )(            )
                             (            )(       )
                                                               (        )( ) )(                )(       )
                                                                                                                             (            )( ) (               )(       )
                                                                                                                                                                                 )



                                                                                                                                                 143
Journal of Natural Sciences Research                                                                                                                                                                                     www.iiste.org
ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online)
Vol.2, No.4, 2012



((( )(      )
                        (        )(       )
                                                       (            )( ) )   (           )(       )                      (           )(       )
                                                                                                                                                      (       )(       )           )

((( )( ) )                  ((                )(       )
                                                                    (       )(   )
                                                                                              (            )(       )
                                                                                                                                 (            )( ) ) ( ) ( ) )


  ((( )( ) )                     ((                    )(      )
                                                                        (        )(      )
                                                                                                   (            )(       )
                                                                                                                                     (            )( ) ) ( )( ) )


  ((( )( ) )                     ((                    )(       )
                                                                        (        )(       )
                                                                                                       (            )(      )
                                                                                                                                         (            )( ) ) ( ) ( ) ) (                          )(    )



  (( )(         )
                            (        )(       )
                                                            (           )( ) ) ((                  )( ) (                    )(      )
                                                                                                                                                              (         )( ) (                 )( ) (       )(   )
                                                                                                                                                                                                                     )

((( )(      )
                        (        )(       )
                                                       (            )( ) )   (           )(       )                     (            )(      )
                                                                                                                                                  (           )(       )           )


+
(( )(   )
                    (           )(    )
                                                   (            )( ) ) (( )(                  )
                                                                                                           (            )(       )
                                                                                                                                             (            )( ) )

[((( )(         )
                        (            )(       )
                                                           (            )( ) )(               )(       )
                                                                                                                             (               )( ) (                )(      )
                                                                                                                                                                                       )]

((( )(      )
                        (        )(       )
                                                       (            )( ) )   (           )(        )                    (            )(       )
                                                                                                                                                      (       )(       )           )

  ((( )(            )
                            (             )(       )
                                                                (        )( ) )(                  )(       )
                                                                                                                                 (               )( ) (                )(      )
                                                                                                                                                                                           )

((( )(      )
                        (            )(    )
                                                        (           )( ) )       (       )(        )                        (            )(       )
                                                                                                                                                          (       )(       )           )

((( )( ) )                  ((                )(       )
                                                                    (       )(       )
                                                                                              (                )(   )
                                                                                                                                 (            )( ) ) ( )( ) )


((( )( ) )                  ((                )(       )
                                                                    (       )(   )
                                                                                              (            )(       )
                                                                                                                                 (           )( ) ) ( )( ) )


  ((( )( ) )                     ((                    )(       )
                                                                        (        )(       )
                                                                                                       (            )(       )
                                                                                                                                         (            )( ) ) ( )( ) ) (                           )(    )



  (( )(         )
                            (        )(        )
                                                            (           )( ) ) ((                  )( ) (                    )(      )
                                                                                                                                                              (            )( ) (              )( ) (       )(   )
                                                                                                                                                                                                                     )

((( )(      )
                        (        )(       )
                                                       (            )( ) )   (           )(        )                    (            )(       )
                                                                                                                                                      (       )(       )           )


+
(( )(   )
                    (           )(    )
                                                   (            )( ) ) (( )(                  )
                                                                                                           (            )(       )
                                                                                                                                             (            )( ) )

[((( )(         )
                        (            )(       )
                                                           (            )( ) )(               )(       )
                                                                                                                             (               )( ) (                )(      )
                                                                                                                                                                                       )]

((( )(      )
                        (        )(       )
                                                       (            )( ) )   (           )(        )                    (            )(       )
                                                                                                                                                      (       )(       )           )

  ((( )(            )
                            (             )(       )
                                                                (        )( ) )(                  )(       )
                                                                                                                                 (               )( ) (                )(      )
                                                                                                                                                                                           )




                                                                                                                                                  144
Journal of Natural Sciences Research                                                                                                                                                                               www.iiste.org
ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online)
Vol.2, No.4, 2012



   ((( )(               )
                                (         )(          )
                                                                      (       )( ) )      (        )(           )                     (            )(    )
                                                                                                                                                              (    )(           )    )

((( )( ) )                      ((           )(           )
                                                                      (        )(    )
                                                                                               (                )(   )
                                                                                                                                  (            )( ) ) ( )( ) )


  ((( )( ) )                        ((                )(          )
                                                                          (         )(    )
                                                                                                    (               )(    )
                                                                                                                                          (        )( ) ) ( ) ( ) )


  ((( )( ) )                        ((                )(          )
                                                                          (          )(    )
                                                                                                        (            )(       )
                                                                                                                                          (             )( ) ) ( )( ) ) (                   )(    )



  (( )(         )
                            (        )(       )
                                                              (           )( ) ) ((                 )( ) (                    )(      )
                                                                                                                                                             (         )( ) (            )( ) (       )(   )
                                                                                                                                                                                                               )

((( )(      )
                        (           )(   )
                                                      (               )( ) )     (        )(        )                    (            )(       )
                                                                                                                                                    (        )(    )            )


+
(( )(   )
                    (           )(   )
                                                  (               )( ) ) (( )(                 )
                                                                                                            (            )(       )
                                                                                                                                              (          )( ) )

[((( )(         )
                            (        )(      )
                                                              (           )( ) )(              )(       )
                                                                                                                              (               )( ) (              )(   )
                                                                                                                                                                                    )]

((( )(      )
                        (           )(   )
                                                      (               )( ) )     (        )(        )                    (            )(       )
                                                                                                                                                    (        )(    )            )

  ((( )(            )
                                (        )(       )
                                                                  (        )( ) )(                 )(       )
                                                                                                                                  (            )( ) (              )(       )
                                                                                                                                                                                     )

   ((( )(               )
                                (         )(          )
                                                                      (       )( ) )      (        )(           )                     (            )(    )
                                                                                                                                                              (    )(           )    )

((( )( ) )                      ((           )(           )
                                                                      (        )(    )
                                                                                               (                )(   )
                                                                                                                                  (            )( ) ) ( )( ) )


  ((( )( ) )                        ((                )(          )
                                                                          (         )(    )
                                                                                                    (               )(    )
                                                                                                                                      (            )( ) ) ( )( ) )


  ((( )( ) )                        ((                )(          )
                                                                          (          )(    )
                                                                                                        (            )(       )
                                                                                                                                          (             )( ) ) ( )( ) ) (                   )(    )



  (( )(         )
                            (        )(       )
                                                              (           )( ) ) ((                 )( ) (                    )(      )
                                                                                                                                                             (         )( ) (            )( ) (       )(   )
                                                                                                                                                                                                               )

((( )(      )
                        (           )(   )
                                                      (               )( ) )     (        )(        )                    (            )(       )
                                                                                                                                                    (        )(    )            )


+
(( )(   )
                    (           )(   )
                                                  (               )( ) ) (( )(                 )
                                                                                                            (            )(       )
                                                                                                                                              (          )( ) )

[((( )(         )
                            (        )(      )
                                                              (           )( ) )(              )(       )
                                                                                                                              (               )( ) (              )(    )
                                                                                                                                                                                    )]

((( )(      )
                        (           )(   )
                                                      (               )( ) )     (        )(        )                    (            )(       )
                                                                                                                                                    (        )(    )            )

  ((( )(            )
                                (        )(       )
                                                                  (        )( ) )(                 )(       )
                                                                                                                                  (               )( ) (           )(       )
                                                                                                                                                                                     )



                                                                                                                                                   145
Journal of Natural Sciences Research                                                                                                                                                   www.iiste.org
ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online)
Vol.2, No.4, 2012



     ((( )(       )
                          (        )(       )
                                                        (           )( ) )      (    )(          )                  (             )(   )
                                                                                                                                            (   )(     )     )

((( )( ) )            ((               )(       )
                                                            (        )(    )
                                                                                     (           )(   )
                                                                                                                  (           )( ) ) ( )( ) )


     ((( )( ) )               ((            )(      )
                                                                (         )(    )
                                                                                         (           )(    )
                                                                                                                      (           )( ) ) ( ) ( ) )


     ((( )( ) )               ((            )(          )
                                                                (          )(    )
                                                                                             (        )(      )
                                                                                                                          (        )( ) ) ( )( ) ) (             )(   )



     (( )(    )
                      (        )(      )
                                                    (           )( ) ) ((                )( ) (                )(     )
                                                                                                                                           (        )( ) (   )( ) (       )(   )
                                                                                                                                                                                   )

((( )(    )
                  (           )(   )
                                            (               )( ) )     (        )(       )                (           )(      )
                                                                                                                                   (       )(   )       )

And as one sees, all the coefficients are positive. It follows that all the roots have negative real part, and this
proves the theorem.

Acknowledgments:


The introduction is a collection of information from various articles, Books, News Paper reports, Home
Pages Of authors, Journal Reviews, Nature ‘s L:etters,Article Abstracts, Research papers, Abstracts Of
Research Papers, Stanford Encyclopedia, Web Pages, Ask a Physicist Column, Deliberations with
Professors, the internet including Wikipedia. We acknowledge all authors who have contributed to the same.
In the eventuality of the fact that there has been any act of omission on the part of the authors, we regret
with great deal of compunction, contrition, regret, trepidation and remorse. As Newton said, it is only
because erudite and eminent people allowed one to piggy ride on their backs; probably an attempt has been
made to look slightly further. Once again, it is stated that the references are only illustrative and not
comprehensive

REFERENCES

1. A HAIMOVICI: “On the growth of a two species ecological system divided on age groups”. Tensor,
Vol 37 (1982),Commemoration volume dedicated to Professor Akitsugu Kawaguchi on his 80th birthday

2. FRTJOF CAPRA: “The web of life” Flamingo, Harper Collins See "Dissipative structures” pages 172-
188

3. HEYLIGHEN F. (2001): "The Science of Self-organization and Adaptivity", in L. D. Kiel, (ed) .
Knowledge           Management, Organizational Intelligence and Learning, and Complexity, in: The
Encyclopedia of Life Support Systems ((EOLSS), (Eolss Publishers, Oxford) [http://www.eolss.net

4. MATSUI, T, H. Masunaga, S. M. Kreidenweis, R. A. Pielke Sr., W.-K. Tao, M. Chin, and Y. J
Kaufman (2006), “Satellite-based assessment of marine low cloud variability associated with  aerosol,
atmospheric    stability,    and     the   diurnal     cycle”, J.  Geophys.       Res., 111, D17204,
doi:10.1029/2005JD006097

5. STEVENS, B, G. Feingold, W.R. Cotton and R.L. Walko, “Elements of the microphysical structure of
numerically simulated nonprecipitating stratocumulus” J. Atmos. Sci., 53, 980-1006

6. FEINGOLD, G, Koren, I; Wang, HL; Xue, HW; Brewer, WA (2010), “Precipitation-generated
oscillations in open cellular cloud fields” Nature, 466 (7308) 849-852, doi: 10.1038/nature09314, Published
12-Aug 2010

7.     Paul Allen Tipler, Ralph A. Llewellyn (2003-01), Modern Physics, W. H. Freeman and Company,


                                                                                                                                  146
Journal of Natural Sciences Research                                                              www.iiste.org
ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online)
Vol.2, No.4, 2012


pp. 87–88, ISBN 0-7167-4345-0
8.   Rainville, S. et al. World Year of Physics: A direct test of E=mc2. Nature 438, 1096-1097 (22
December 2005) | doi: 10.1038/4381096a; Published online 21 December 2005.
9.   F. Fernflores. The Equivalence of Mass and Energy. Stanford Encyclopedia of Philosophy
10. Relativity DeMystified, D. McMahon, Mc Graw Hill (USA), 2006, ISBN 0-07-145545-0
11. Dynamics and Relativity, J.R. Forshaw, A.G. Smith, Wiley, 2009, ISBN 978-0-470-01460-8
12. Hans, H. S.; Puri, S. P. (2003). Mechanics (2 ed.). Tata McGraw-Hill. p. 433. ISBN 0-07-047360-
9., Chapter 12 page 433
13. E. F. Taylor and J. A. Wheeler, Spacetime Physics, W.H. Freeman and Co., NY. 1992.ISBN 0-7167-
2327-1, see pp. 248-9 for discussion of mass remaining constant after detonation of nuclear bombs, until
heat is allowed to escape.
14. Mould, Richard A. (2002). Basic relativity (2 ed.). Springer. p. 126. ISBN 0-387-95210-1., Chapter 5
page 126
15. Chow, Tail L. (2006). Introduction to electromagnetic theory: a modern perspective. Jones & Bartlett
Learning. p. 392. ISBN 0-7637-3827-1., Chapter 10 page 392
16. Cockcroft-Walton experiment
17. Earth's gravitational self-energy is 4.6 × 10-10 that of Earth's total mass, or 2.7 trillion metric tons.
Citation: The Apache Point Observatory Lunar Laser-Ranging Operation (APOLLO), T. W. Murphy, Jr. et
al. University of Washington, Dept. of Physics (132 kB PDF.).
18. There is usually more than one possible way to define a field energy, because any field can be made to
couple to gravity in many different ways. By general scaling arguments, the correct answer at everyday
distances, which are long compared to the quantum gravity scale, should be minimal coupling, which means
that no powers of the curvature tensor appear. Any non-minimal couplings, along with other higher order
terms, are presumably only determined by a theory of quantum gravity, and within string theory, they only
start to contribute to experiments at the string scale.
19. G. 't Hooft, "Computation of the quantum effects due to a four-dimensional pseudoparticle", Physical
Review D14:3432–3450 (1976).
20. A. Belavin, A. M. Polyakov, A. Schwarz, Yu. Tyupkin, "Pseudoparticle Solutions to Yang Mills
Equations", Physics Letters 59B:85 (1975).
21. F. Klinkhammer, N. Manton, "A Saddle Point Solution in the Weinberg Salam Theory", Physical
Review D 30:2212.
22. Rubakov V. A. "Monopole Catalysis of Proton Decay", Reports on Progress in Physics 51:189–241
(1988).
23. S.W. Hawking "Black Holes Explosions?" Nature 248:30 (1974).
24. Lev B.Okun, The concept of Mass, Physics Today 42 (6), June 1969, p. 31–36, http://www. Physics
today . org/vol-42/iss-6/vol42no6p31_36.pdf
25. Max Jammer (1999), Concepts of mass in contemporary physics and philosophy, Princeton University
Press, p. 51, ISBN 0-691-01017-X



                                                          147
Journal of Natural Sciences Research                                                              www.iiste.org
ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online)
Vol.2, No.4, 2012


26. Eriksen, Erik; Vøyenli, Kjell (1976), "The classical and relativistic concepts of mass",Foundations of
Physics (Springer) 6: 115–124, Bibcode 1976FoPh....6..115E,DOI:10.1007/BF00708670
27. Jannsen, M., Mecklenburg, M. (2007), From classical to relativistic mechanics: Electromagnetic
models of the electron., in V. F. Hendricks, et al., , Interactions: Mathematics, Physics and
Philosophy (Dordrecht: Springer): 65–134
28. Whittaker, E.T. (1951–1953), 2. Edition: A History of the theories of aether and electricity, vol. 1: The
classical theories / vol. 2: The modern theories 1900–1926, London: Nelson
29. (Miller, Arthur I. (1981), Albert Einstein's special theory of relativity. Emergence (1905) and early
interpretation (1905–1911), Reading: Addison–Wesley, ISBN 0-201-04679-2
30. Darrigol, O. (2005), "The Genesis of the theory of relativity." (PDF), Séminaire Poincaré1: 1–22
31. Philip Ball (Aug 23, 2011). "Did Einstein discover E = mc2?". Physics World.
32. Ives, Herbert E. (1952), "Derivation of the mass-energy relation", Journal of the Optical Society of
America 42 (8): 540–543, DOI:10.1364/JOSA.42.000540
33. Jammer, Max (1961/1997). Concepts of Mass in Classical and Modern Physics. New York:
Dover. ISBN 0-486-29998-8.
34. Stachel, John; Torretti, Roberto (1982), "Einstein's first derivation of mass-energy equivalence",
American Journal of Physics 50 (8): 760–763, Bibcode1982AmJPh..50..760S, DOI:10.1119/1.12764
35. Ohanian, Hans (2008), "Did Einstein prove E=mc2?", Studies In History and Philosophy of Science
Part B 40 (2): 167–173, arXiv:0805.1400,DOI:10.1016/j.shpsb.2009.03.002
36. Hecht, Eugene (2011), "How Einstein confirmed E0=mc2", American Journal of Physics 79 (6): 591–
600, Bibcode 2011AmJPh..79..591H, DOI:10.1119/1.3549223
37. Rohrlich, Fritz (1990), "An elementary derivation of E=mc2", American Journal of Physics 58 (4):
348–349, Bibcode 1990AmJPh..58..348R, DOI:10.1119/1.16168
38. (1996). Lise Meitner: A Life in Physics. California Studies in the History of Science. 13. Berkeley:
University of California Press. pp. 236–237.
39. "consciousness". Merriam-Webster. Retrieved June 4, 2012.
40. Robert van Gulick (2004). "Consciousness". Stanford Encyclopedia of Philosophy.
41. Farthing G (1992). The Psychology of Consciousness. Prentice Hall. ISBN 978-0-13-728668-3.
42. John Searle (2005). "Consciousness". In Honderich T. The Oxford companion to philosophy. Oxford
University Press. ISBN 978-0-19-926479-7.
43. Susan Schneider and Max Velmans (2008). "Introduction". In Max Velmans, Susan Schneider. The
Blackwell Companion to Consciousness. Wiley. ISBN 978-0-470-75145-9.
44. Güven Güzeldere (1997). Ned Block, Owen Flanagan, Güven Güzeldere. ed. The Nature of
Consciousness: Philosophical debates. Cambridge, MA: MIT Press. pp. 1–67.
45. J. J. Fins, N. D. Schiff, and K. M. Foley (2007). "Late recovery from the minimally conscious state:
ethical and policy implications". Neurology 68: 304–307.PMID 17242341.
46. Locke, John. "An Essay Concerning Human Understanding (Chapter XXVII)". Australia: University of
Adelaide. Retrieved August 20, 2010.



                                                      148
Journal of Natural Sciences Research                                                                www.iiste.org
ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online)
Vol.2, No.4, 2012


47. "Science & Technology: consciousness". Encyclopedia Britannica. Retrieved August 20, 2010.
48. Samuel Johnson (1756). A Dictionary of the English Language. Knapton.
49. (C. S. Lewis (1990). "Ch. 8: Conscience and conscious". Studies in words. Cambridge University
Press. ISBN 978-0-521-39831-2.
50. Thomas Hobbes (1904). Leviathan: or, the Matter, Forme & Power of a Commonwealth, Ecclesiastical
and Civill. University Press. p. 39.
51. James Ussher, Charles Richard Elrington (1613). The whole works, Volume 2. Hodges and Smith.
p. 417.
52. James Hastings and John A. Selbie (2003). Encyclopedia of Religion and Ethics Part 7. Kessinger
Publishing. p. 41. ISBN 0-7661-3677-9.
53. G. Melenaar. Mnemosyne, Fourth Series. 22. Brill. pp. 170–180.
54. Boris Hennig (2007). "Cartesian Conscientia". British Journal for the History of Philosophy 15: 455–
484.
55. Sara Heinämaa (2007). Consciousness: from perception to reflection in the history of philosophy.
Springer. pp. 205–206. ISBN 978-1-4020-6081-6.
56. Stuart      Sutherland (1989).      "Consciousness". Macmillan      Dictionary       of        Psychology.
Macmillan. ISBN 978-0-333-38829-7.
57. Justin     Sytsma     and    Edouard    Machery    (2010).   "Two      conceptions        of    subjective
experience". Philosophical Studies 151: 299–327. DOI: 10.1007/s11098-009-9439-x.
58. Gilbert Ryle (1949). The Concept of Mind. University of Chicago Press. pp. 156–163.ISBN 978-0-226-
73296-1.
59. Michael V. Antony (2001). "Is consciousness ambiguous?". Journal of Consciousness Studies 8: 19–44.
60. Max Velmans (2009). "How to define consciousness—and how not to define consciousness". Journal
of Consciousness Studies 16: 139–156.
61. Ned Block (1998). "On a confusion about a function of consciousness". In N. Block, O. Flanagan, G.
Guzeldere. The Nature of Consciousness: Philosophical Debates. MIT Press. pp. 375–415. ISBN 978-0-
262-52210-6.
62. Daniel Dennett (2004). Consciousness Explained. Penguin. pp. 375.




                                                      149
Journal of Natural Sciences Research                                                                 www.iiste.org
ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online)
Vol.2, No.4, 2012


First Author: 1Mr. K. N.Prasanna Kumar has three doctorates one each in Mathematics, Economics,
Political Science. Thesis was based on Mathematical Modeling. He was recently awarded D.litt. for his work on
‘Mathematical Models in Political Science’--- Department of studies in Mathematics, Kuvempu University,
Shimoga, Karnataka, India Corresponding Author:drknpkumar@gmail.com

Second Author: 2Prof. B.S Kiranagi is the Former Chairman of the Department of Studies in Mathematics,
Manasa Gangotri and present Professor Emeritus of UGC in the Department. Professor Kiranagi has guided
over 25 students and he has received many encomiums and laurels for his contribution to Co homology Groups
and Mathematical Sciences. Known for his prolific writing, and one of the senior most Professors of the
country, he has over 150 publications to his credit. A prolific writer and a prodigious thinker, he has to his credit
several books on Lie Groups, Co Homology Groups, and other mathematical application topics, and excellent
publication history.-- UGC Emeritus Professor (Department of studies in Mathematics), Manasagangotri,
University of Mysore, Karnataka, India

Third Author: 3Prof. C.S. Bagewadi is the present Chairman of Department of Mathematics and Department
of Studies in Computer Science and has guided over 25 students. He has published articles in both national and
international journals. Professor Bagewadi specializes in Differential Geometry and its wide-ranging
ramifications. He has to his credit more than 159 research papers. Several Books on Differential Geometry,
Differential Equations are coauthored by him--- Chairman, Department of studies in Mathematics and Computer
science, Jnanasahyadri Kuvempu University, Shankarghatta, Shimoga district, Karnataka, India




                                                        150
This academic article was published by The International Institute for Science,
Technology and Education (IISTE). The IISTE is a pioneer in the Open Access
Publishing service based in the U.S. and Europe. The aim of the institute is
Accelerating Global Knowledge Sharing.

More information about the publisher can be found in the IISTE’s homepage:
http://www.iiste.org


The IISTE is currently hosting more than 30 peer-reviewed academic journals and
collaborating with academic institutions around the world. Prospective authors of
IISTE journals can find the submission instruction on the following page:
http://www.iiste.org/Journals/

The IISTE editorial team promises to the review and publish all the qualified
submissions in a fast manner. All the journals articles are available online to the
readers all over the world without financial, legal, or technical barriers other than
those inseparable from gaining access to the internet itself. Printed version of the
journals is also available upon request of readers and authors.

IISTE Knowledge Sharing Partners

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open
Archives Harvester, Bielefeld Academic Search Engine, Elektronische
Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digtial
Library , NewJour, Google Scholar

More Related Content

PDF
Np complete problems a minimalist mutatis
PDF
The grand unified theory part two the final solution
PDF
Yang mills theory
PDF
Engineering Physics Jntu Model Paper{Www.Studentyogi.Com}
PDF
Physics test2011 1
PDF
Engineering Chemistry 1 Jntu Model Paper{Www.Studentyogi.Com}
PDF
Gentili, F. (2013) ‘Advanced numerical analyses for the assessment of steel ...
PDF
A transformational generative approach towards understanding al-istifham
Np complete problems a minimalist mutatis
The grand unified theory part two the final solution
Yang mills theory
Engineering Physics Jntu Model Paper{Www.Studentyogi.Com}
Physics test2011 1
Engineering Chemistry 1 Jntu Model Paper{Www.Studentyogi.Com}
Gentili, F. (2013) ‘Advanced numerical analyses for the assessment of steel ...
A transformational generative approach towards understanding al-istifham

Viewers also liked (6)

PDF
A trends of salmonella and antibiotic resistance
PDF
A unique common fixed point theorems in generalized d
PDF
A universal model for managing the marketing executives in nigerian banks
PDF
A usability evaluation framework for b2 c e commerce websites
PDF
A validation of the adverse childhood experiences scale in
PDF
Abnormalities of hormones and inflammatory cytokines in women affected with p...
A trends of salmonella and antibiotic resistance
A unique common fixed point theorems in generalized d
A universal model for managing the marketing executives in nigerian banks
A usability evaluation framework for b2 c e commerce websites
A validation of the adverse childhood experiences scale in
Abnormalities of hormones and inflammatory cytokines in women affected with p...
Ad

Similar to Quantum mechanical behaviour, quantum tunneling, higgs boson (20)

PDF
Natures general ledger
PDF
Mat cicrulo trigonometrico branco
PDF
The general theory of einstein field equations a gesellschaft gemeinschaft model
PDF
simple nahw+i'rob al jumaal
PDF
PDF
دليل مصور ومختصر لفهم الإسلام
DOCX
เชิญร่วมกันสวดมนต์ อาธิษฐานจิตถวายพระพร
KEY
A linguistic survey on _Itako Bushi_ (1806)
PDF
แผนการสอน เรื่อง เซลล์
PDF
แผนการสอน เรื่อง เซลล์
PDF
PDF
PDF
License Form_Scuba
PDF
PDF
PDF
DOCX
Ahmed ellord
DOCX
Ahmed ellord
PDF
سلسلة بناء وتطوير القدرات إعداد وإدارة الاجتماعات
DOCX
Nouveau document microsoft office word
Natures general ledger
Mat cicrulo trigonometrico branco
The general theory of einstein field equations a gesellschaft gemeinschaft model
simple nahw+i'rob al jumaal
دليل مصور ومختصر لفهم الإسلام
เชิญร่วมกันสวดมนต์ อาธิษฐานจิตถวายพระพร
A linguistic survey on _Itako Bushi_ (1806)
แผนการสอน เรื่อง เซลล์
แผนการสอน เรื่อง เซลล์
License Form_Scuba
Ahmed ellord
Ahmed ellord
سلسلة بناء وتطوير القدرات إعداد وإدارة الاجتماعات
Nouveau document microsoft office word
Ad

More from Alexander Decker (20)

PDF
A time series analysis of the determinants of savings in namibia
PDF
A therapy for physical and mental fitness of school children
PDF
A theory of efficiency for managing the marketing executives in nigerian banks
PDF
A systematic evaluation of link budget for
PDF
A synthetic review of contraceptive supplies in punjab
PDF
A synthesis of taylor’s and fayol’s management approaches for managing market...
PDF
A survey paper on sequence pattern mining with incremental
PDF
A survey on live virtual machine migrations and its techniques
PDF
A survey on data mining and analysis in hadoop and mongo db
PDF
A survey on challenges to the media cloud
PDF
A survey of provenance leveraged
PDF
A survey of private equity investments in kenya
PDF
A study to measures the financial health of
PDF
A study to evaluate the attitude of faculty members of public universities of...
PDF
A study to assess the knowledge regarding prevention of pneumonia among middl...
PDF
A study regarding analyzing recessionary impact on fundamental determinants o...
PDF
A study on would be urban-migrants’ needs and necessities in rural bangladesh...
PDF
A study on the evaluation of scientific creativity among science
PDF
A study on the antioxidant defense system in breast cancer patients.
PDF
A study on the dimensions of
A time series analysis of the determinants of savings in namibia
A therapy for physical and mental fitness of school children
A theory of efficiency for managing the marketing executives in nigerian banks
A systematic evaluation of link budget for
A synthetic review of contraceptive supplies in punjab
A synthesis of taylor’s and fayol’s management approaches for managing market...
A survey paper on sequence pattern mining with incremental
A survey on live virtual machine migrations and its techniques
A survey on data mining and analysis in hadoop and mongo db
A survey on challenges to the media cloud
A survey of provenance leveraged
A survey of private equity investments in kenya
A study to measures the financial health of
A study to evaluate the attitude of faculty members of public universities of...
A study to assess the knowledge regarding prevention of pneumonia among middl...
A study regarding analyzing recessionary impact on fundamental determinants o...
A study on would be urban-migrants’ needs and necessities in rural bangladesh...
A study on the evaluation of scientific creativity among science
A study on the antioxidant defense system in breast cancer patients.
A study on the dimensions of

Recently uploaded (20)

PDF
DP Operators-handbook-extract for the Mautical Institute
PPT
Module 1.ppt Iot fundamentals and Architecture
PDF
DASA ADMISSION 2024_FirstRound_FirstRank_LastRank.pdf
PPTX
O2C Customer Invoices to Receipt V15A.pptx
PPTX
observCloud-Native Containerability and monitoring.pptx
PDF
How ambidextrous entrepreneurial leaders react to the artificial intelligence...
PPTX
Final SEM Unit 1 for mit wpu at pune .pptx
PDF
A comparative study of natural language inference in Swahili using monolingua...
PDF
Getting started with AI Agents and Multi-Agent Systems
PDF
Enhancing emotion recognition model for a student engagement use case through...
PDF
CloudStack 4.21: First Look Webinar slides
PDF
Assigned Numbers - 2025 - Bluetooth® Document
PDF
Microsoft Solutions Partner Drive Digital Transformation with D365.pdf
PDF
Hybrid horned lizard optimization algorithm-aquila optimizer for DC motor
PDF
August Patch Tuesday
PDF
Zenith AI: Advanced Artificial Intelligence
PDF
WOOl fibre morphology and structure.pdf for textiles
PDF
NewMind AI Weekly Chronicles – August ’25 Week III
PDF
A Late Bloomer's Guide to GenAI: Ethics, Bias, and Effective Prompting - Boha...
PDF
Architecture types and enterprise applications.pdf
DP Operators-handbook-extract for the Mautical Institute
Module 1.ppt Iot fundamentals and Architecture
DASA ADMISSION 2024_FirstRound_FirstRank_LastRank.pdf
O2C Customer Invoices to Receipt V15A.pptx
observCloud-Native Containerability and monitoring.pptx
How ambidextrous entrepreneurial leaders react to the artificial intelligence...
Final SEM Unit 1 for mit wpu at pune .pptx
A comparative study of natural language inference in Swahili using monolingua...
Getting started with AI Agents and Multi-Agent Systems
Enhancing emotion recognition model for a student engagement use case through...
CloudStack 4.21: First Look Webinar slides
Assigned Numbers - 2025 - Bluetooth® Document
Microsoft Solutions Partner Drive Digital Transformation with D365.pdf
Hybrid horned lizard optimization algorithm-aquila optimizer for DC motor
August Patch Tuesday
Zenith AI: Advanced Artificial Intelligence
WOOl fibre morphology and structure.pdf for textiles
NewMind AI Weekly Chronicles – August ’25 Week III
A Late Bloomer's Guide to GenAI: Ethics, Bias, and Effective Prompting - Boha...
Architecture types and enterprise applications.pdf

Quantum mechanical behaviour, quantum tunneling, higgs boson

  • 1. Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.2, No.4, 2012 Quantum Mechanical Behaviour, Quantum Tunneling, Higgs Boson , Distorted Space And Time, Schrödinger’s Wave Function, Neuron DNA, Particles (Hypothetical signature Less Particles) And Consciousness A “Syncopated Syncretism And Atrophied Asseveration” Model *1 Dr K N Prasanna Kumar, 2Prof B S Kiranagi And 3Prof C S Bagewadi *1 Dr K N Prasanna Kumar, Post doctoral researcher, Dr KNP Kumar has three PhD’s, one each in Mathematics, Economics and Political science and a D.Litt. in Political Science, Department of studies in Mathematics, Kuvempu University, Shimoga, Karnataka, India Correspondence Mail id : drknpkumar@gmail.com 2 Prof B S Kiranagi, UGC Emeritus Professor (Department of studies in Mathematics), Manasagangotri, University of Mysore, Karnataka, India 3 Prof C S Bagewadi, Chairman , Department of studies in Mathematics and Computer science, Jnanasahyadri Kuvempu university, Shankarghatta, Shimoga district, Karnataka, India Abstract: We give a holistic model for the systems mentioned in the foregoing. Most important implication is that Higgs Boson is the one, which warps space and time. Concept of Neuron DNA and signature less particles are introduced. Key Words: Quantum Information, Space warp, Quantum Tunneling, Environmental decoherence, Schrödinger’s wave function, Gravitational lensing, Black holes, Higgs Boson, Consciousness Introduction: We take in to consideration the following to build the 36 story model which consummates and consolidates the parameters and processes involved: 1. Quantum Information 2. Quantum Mechanical behaviour 3. Quantum Tunneling 4. Non adiabatic multi photon process in the strong vibronic coupling limit 5. Environmental Decoherence(Green House Effects for example) 6. Schrodinger’s wave function 7. Gravitational lensing 8. Black holes 9. Faster than Light Particles (Neuron DNA- Mind, a signature less particles. How do you classify that? Total energy =Existing matter-Energy attributable to signature less particles. Einstein did not take in consideration psychic energy which is taken to be holistically conservational ,but individually and collectively non conservative) 10. Consciousness( Total awareness- use ASDCII and Information field capacity to find the total storage- Please refer Gesellshaft-Gememshaft paper on the subject matter) 11. Higgs Boson 83
  • 2. Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.2, No.4, 2012 12. Distorted Space and Time Notation : Quantum Mechanical Behaviour And Quantum Information Module Numbered One : Category One Of Quantum Mechanical Behaviour : Category Two Of Quantum Mechanical Behaviour : Category Three Of Quantum Mechanical Behaviour : Category One Of Quantum Information : Category Two Of Quantum Information :Category Three Of Quantum Information Non Adiabatic Multi Phonon Process In The Strong Vibronic Coupling And Quantum Tunneling Module Numbered Two: : Category One Of Non Adiabatic Multi Phonon Process : Category Two Of Non Adiabatic Multi phonon Process : Category Three Of Non Adiabatic Multi Phonon Process :Category One Of Quantum Tunneling(There Are Lot Of Tunnels) : Category Two Of Quantum Tunneling : Category Three Of Quantum Tunneling Environmental Decoherence (For Example Green House Effects) And Collapse of Schrodinger’s Wave Function: Module Numbered Three: : Category One Of Collapse Of Schrodinger’s Wave Function(There Are Lot Of Potentialities) :Category Two Of Collapse Of Schrodinger’s Wave Function : Category Three Of Collapse Of Schrodinger’s Wave Function : Category One Of Environmental Decoherence :Category Two Of Environmental Decoherence : Category Three Of Environmental Decoherence Gravitational Lensing And Black holes Module Numbered Four: : Category One Of Black holes : Category Two Of Black holes 84
  • 3. Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.2, No.4, 2012 : Category Three Ofblack Holes :Category One Of gravitational Lensing :Category Two Of Gravitational Lensing : Category Three Of Gravitational Lensing Faster Than Light Particles(Hypothetical Particles Of Neuron DNA-Mind) And Consciousness(Total Awareness With Visual Images: Calculated Based On Ascii And Information Field Capacity) Module Numbered Five: : Category One Of Faster Than Light Particles(Signatureless Neuron Dna) : Category Two Of Faster Than Light(Signatureless neuron Dna) :Category Three Of Faster Thank Light Neuron Dna Particles Without Signature :Category One Of Consciousness(Just Total Knowledge That Is Stored Like In Computer-See Gratification Deprivation Model For Details) :Category Two Of Consciousness :Category Three Of Consciousness Distorted Space And Time (St Warp) And Higgs Boson Module Numbered Six: : Category One Of Higgs Boson : Category Two Of Higgs Boson : Category Three Of Higgs Boson : Category One Of Distorted Space And Time : Category Two Of Distorted Space And Time : Category Three Of Distorted Space And Time ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) : ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) , ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) are Accentuation coefficients ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) 85
  • 4. Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.2, No.4, 2012 ( )( ) ( )( ) ( )( ) , ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) are Dissipation coefficients Quantum Mechanical Behaviour And Quantum Information Module Numbered One The differential system of this model is now (Module Numbered one) ( )( ) [( )( ) ( )( ) ( )] ( )( ) [( )( ) ( )( ) ( )] ( )( ) [( )( ) ( )( ) ( )] ( )( ) [( )( ) ( )( ) ( )] ( )( ) [( )( ) ( )( ) ( )] ( )( ) [( )( ) ( )( ) ( )] ( )( ) ( ) First augmentation factor ( )( ) ( ) First detritions factor Non Adiabatic Multi Phonon Process In The Strong Vibronic Coupling And Quantum Tunneling Module Numbered Two: The differential system of this model is now ( Module numbered two) ( )( ) [( )( ) ( )( ) ( )] ( )( ) [( )( ) ( )( ) ( )] ( )( ) [( )( ) ( )( ) ( )] ( )( ) [( )( ) ( )( ) (( ) )] ( )( ) [( )( ) ( )( ) (( ) )] ( )( ) [( )( ) ( )( ) (( ) )] ( )( ) ( ) First augmentation factor ( )( ) (( ) ) First detritions factor Environmental Decoherence (For Example Green House Effects) And Collapse of Schrodinger’s Wave Function: Module Numbered Three The differential system of this model is now (Module numbered three) 86
  • 5. Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.2, No.4, 2012 ( )( ) [( )( ) ( )( ) ( )] ( )( ) [( )( ) ( )( ) ( )] ( )( ) [( )( ) ( )( ) ( )] ( )( ) [( )( ) ( )( ) ( )] ( )( ) [( )( ) ( )( ) ( )] ( )( ) [( )( ) ( )( ) ( )] ( )( ) ( ) First augmentation factor ( )( ) ( ) First detritions factor Gravitational Lensing And Black holes Module Numbered Four The differential system of this model is now (Module numbered Four) ( )( ) [( )( ) ( )( ) ( )] ( )( ) [( )( ) ( )( ) ( )] ( )( ) [( )( ) ( )( ) ( )] ( )( ) [( )( ) ( )( ) (( ) )] ( )( ) [( )( ) ( )( ) (( ) )] ( )( ) [( )( ) ( )( ) (( ) )] ( )( ) ( ) First augmentation factor ( )( ) (( ) ) First detritions factor Faster Than Light Particles (Hypothetical Particles Of Neuron Dna-Mind) And Consciousness(Total Awareness With Visual Images: Calculated Based On Ascii And Information Field Capacity) Module Numbered Five The differential system of this model is now (Module number five) ( )( ) [( )( ) ( )( ) ( )] ( )( ) [( )( ) ( )( ) ( )] ( )( ) [( )( ) ( )( ) ( )] 87
  • 6. Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.2, No.4, 2012 ( )( ) [( )( ) ( )( ) (( ) )] ( )( ) [( )( ) ( )( ) (( ) )] ( )( ) [( )( ) ( )( ) (( ) )] ( )( ) ( ) First augmentation factor ( )( ) (( ) ) First detritions factor Distorted Space And Time(St Warp) And Higgs Boson: Module Numbered Six The differential system of this model is now (Module numbered Six) ( )( ) [( )( ) ( )( ) ( )] ( )( ) [( )( ) ( )( ) ( )] ( )( ) [( )( ) ( )( ) ( )] ( )( ) [( )( ) ( )( ) (( ) )] ( )( ) [( )( ) ( )( ) (( ) )] ( )( ) [( )( ) ( )( ) (( ) )] ( )( ) ( ) First augmentation factor ( )( ) (( ) ) First detritions factor Holistic Concatenated Equations Henceforth Referred To As “Global Equations” 1. Quantum Information 2. Quantum Mechanical behavior 3. Quantum Tunneling 4. Non adiabatic multi photon process in the strong vibronic coupling limit 5. Environmental Decoherence(Green House Effects for example) 6. Schrodinger’s wave function 7. Gravitational Lensing 8. Black holes 9. Faster than Light Particles (Neuron DNA- Mind, a signature less particles How do you classify that? Total energy =Existing matter-Energy attributable to signature less particles. Einstein did not take in consideration psychic energy which is taken to be holistically conservational ,but individually and collectively non conservative) 10. Consciousness( Total awareness- use ASCII and Information field capacity to find the total storage- Please refer Gesellschaft- Gemeinschaft paper on the subject matter) 11. Higgs Boson 12. Distorted Space and Time 88
  • 7. Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.2, No.4, 2012 ( )( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) [ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) [ ] ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) [ ] ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) Where ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) are first augmentation coefficients for category 1, 2 and 3 ( )( ) ( ) , ( )( ) ( ) , ( )( ) ( ) are second augmentation coefficient for category 1, 2 and 3 ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) are third augmentation coefficient for category 1, 2 and 3 ( )( ) ( ) , ( )( ) ( ) , ( )( ) ( ) are fourth augmentation coefficient for category 1, 2 and 3 ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) are fifth augmentation coefficient for category 1, 2 and 3 ( )( ) ( ), ( )( ) ( ) , ( )( ) ( ) are sixth augmentation coefficient for category 1, 2 and 3 ( )( ) ( )( ) ( ) ( )( ) ( ) –( )( ) ( ) ( ) ( ) [ ] ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( ) –( )( ) ( ) ( )( ) [ ] ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( ) –( )( ) ( ) ( )( ) [ ] ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) Where ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) are first detrition coefficients for category 1, 2 and 3 ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) are second detrition coefficients for category 1, 2 and 3 ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) are third detrition coefficients for category 1, 2 and 3 ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) are fourth detrition coefficients for category 1, 2 and 3 ( )( ) ( ) , ( )( ) ( ) , ( )( ) ( ) are fifth detrition coefficients for category 1, 2 and 3 ( )( ) ( ) , ( )( ) ( ) , ( )( ) ( ) are sixth detrition coefficients for category 1, 2 and 3 ( )( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) [ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 89
  • 8. Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.2, No.4, 2012 ( )( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) [ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) [ ] ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) Where ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) are first augmentation coefficients for category 1, 2 and 3 ( )( ) ( ) , ( )( ) ( ) , ( )( ) ( ) are second augmentation coefficient for category 1, 2 and 3 ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) are third augmentation coefficient for category 1, 2 and 3 ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) are fourth augmentation coefficient for category 1, 2 and 3 ( )( ) ( ), ( )( ) ( ) , ( )( ) ( ) are fifth augmentation coefficient for category 1, 2 and 3 ( )( ) ( ), ( )( ) ( ) , ( )( ) ( ) are sixth augmentation coefficient for category 1, 2 and 3 ( )( ) ( )( ) ( ) ( )( ) ( ) –( )( ) ( ) ( ) ( ) [ ] ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( ) –( )( ) ( ) ( ) ( ) [ ] ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( ) –( )( ) ( ) ( )( ) [ ] ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) , ( )( ) ( ) , ( )( ) ( ) are first detrition coefficients for category 1, 2 and 3 ( )( ) ( ) ( )( ) ( ) , ( )( ) ( ) are second detrition coefficients for category 1,2 and 3 ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) are third detrition coefficients for category 1,2 and 3 ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) are fourth detrition coefficients for category 1,2 and 3 ( )( ) ( ) , ( )( ) ( ) , ( )( ) ( ) are fifth detrition coefficients for category 1,2 and 3 ( )( ) ( ) ( )( ) ( ) , ( )( ) ( ) are sixth detrition coefficients for category 1,2 and 3 ( )( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) [ ] ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) [ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 90
  • 9. Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.2, No.4, 2012 ( )( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) [ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ), ( )( ) ( ), ( )( ) ( ) are first augmentation coefficients for category 1, 2 and 3 ( )( ) ( ) ( )( ) ( ) , ( )( ) ( ) are second augmentation coefficients for category 1, 2 and 3 ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) are third augmentation coefficients for category 1, 2 and 3 ( )( ) ( ) , ( )( ) ( ) ( )( ) ( ) are fourth augmentation coefficients for category 1, 2 and 3 ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) are fifth augmentation coefficients for category 1, 2 and 3 ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) are sixth augmentation coefficients for category 1, 2 and 3 ( )( ) ( )( ) ( ) –( )( ) ( ) –( )( ) ( ) ( )( ) [ ] ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( ) –( )( ) ( ) –( )( ) ( ) ( )( ) [ ] ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( ) –( )( ) ( ) –( )( ) ( ) ( )( ) [ ] ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) are first detrition coefficients for category 1, 2 and 3 ( )( ) ( ) , ( )( ) ( ) , ( )( ) ( ) are second detrition coefficients for category 1, 2 and 3 ( )( ) ( ) ( )( ) ( ) , ( )( ) ( ) are third detrition coefficients for category 1,2 and 3 ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) are fourth detrition coefficients for category 1, 2 and 3 ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) are fifth detrition coefficients for category 1, 2 and 3 ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) are sixth detrition coefficients for category 1, 2 and 3 ( )( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) [ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) [ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) [ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) 91
  • 10. Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.2, No.4, 2012 ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) are fourth augmentation coefficients for category 1, 2,and 3 ( )( ) ( ), ( )( ) ( ) ( )( ) ( ) are fifth augmentation coefficients for category 1, 2,and 3 ( )( ) ( ), ( )( ) ( ), ( )( ) ( ) are sixth augmentation coefficients for category 1, 2,and 3 ( )( ) ( )( ) ( ) ( )( ) ( ) –( )( ) ( ) ( ) ( ) [ ] ( )( ) ( ) ( )( ) ( ) –( )( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( ) –( )( ) ( ) ( ) ( ) [ ] ( )( ) ( ) ( )( ) ( ) –( )( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( ) –( )( ) ( ) ( ) ( ) [ ] ( )( ) ( ) ( )( ) ( ) –( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) , ( )( ) ( ) ( )( ) ( ), ( )( ) ( ), ( )( ) ( ) –( )( ) ( ) –( )( ) ( ) –( )( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) [ ] ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) [ ] ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) [ ] ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) are fourth augmentation coefficients for category 1,2, and 3 92
  • 11. Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.2, No.4, 2012 ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) are fifth augmentation coefficients for category 1,2,and 3 ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) are sixth augmentation coefficients for category 1,2, 3 ( )( ) ( )( ) ( ) ( )( ) ( ) –( )( ) ( ) ( )( ) [ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) –( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( ) –( )( ) ( ) ( )( ) [ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) –( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( ) –( )( ) ( ) ( )( ) [ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) –( ) ( ) –( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) are fourth detrition coefficients for category 1,2, and 3 ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) are fifth detrition coefficients for category 1,2, and 3 –( )( ) ( ) , –( )( ) ( ) –( )( ) ( ) are sixth detrition coefficients for category 1,2, and 3 ( )( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) [ ] ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) [ ] ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) [ ] ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) - are fourth augmentation coefficients ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) - fifth augmentation coefficients ( )( ) ( ), ( )( ) ( ) ( )( ) ( ) sixth augmentation coefficients 93
  • 12. Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.2, No.4, 2012 ( )( ) ( )( ) ( ) –( )( ) ( ) –( )( ) ( ) ( )( ) [ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) –( ) ( ) ( )( ) ( )( ) ( ) –( )( ) ( ) –( )( ) ( ) ( )( ) [ ] ( )( ) ( ) ( )( ) ( ) –( )( ) ( ) ( )( ) ( )( ) ( ) –( )( ) ( ) –( )( ) ( ) ( )( ) [ ] ( )( ) ( ) ( )( ) ( ) –( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) are fourth detrition coefficients for category 1, 2, and 3 ( )( ) ( ), ( )( ) ( ) ( )( ) ( ) are fifth detrition coefficients for category 1, 2, and 3 –( )( ) ( ), –( )( ) ( ) –( )( ) ( ) are sixth detrition coefficients for category 1, 2, and 3 Where we suppose (A) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) (B) The functions ( )( ) ( )( ) are positive continuous increasing and bounded. Definition of ( )( ) ( )( ) : ( )( ) ( ) ( )( ) ( ̂ )( ) ( )( ) ( ) ( )( ) ( )( ) ( ̂ )( ) (C) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( ) Definition of ( ̂ )( ) ( ̂ )( ) : Where ( ̂ )( ) ( ̂ )( ) ( )( ) ( )( ) are positive constants and They satisfy Lipschitz condition: )( ) ( )( ) ( ) ( )( ) ( ) (̂ )( ) ( ̂ )( ) ( )( ) ( ) ( )( ) ( ) (̂ )( ) ( ̂ 94
  • 13. Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.2, No.4, 2012 With the Lipschitz condition, we place a restriction on the behavior of functions ( )( ) ( ) and( )( ) ( ) ( ) and ( ) are points belonging to the interval [( ̂ )( ) ( ̂ )( ) ] . It is to be noted that ( )( ) ( ) is uniformly continuous. In the eventuality of the fact, that if ( ̂ )( ) then the function ( )( ) ( ) , the first augmentation coefficient WOULD be absolutely continuous. Definition of ( ̂ )( ) (̂ )( ) : (D) ( ̂ )( ) (̂ )( ) are positive constants ( )( ) ( )( ) ( ̂ )( ) ( ̂ )( ) Definition of ( ̂ )( ) ( ̂ )( ) : (E) There exists two constants ( ̂ )( ) and ( ̂ )( ) which together with ( ̂ )( ) ( ̂ )( ) ( ̂ )( ) and ( ̂ )( ) and the constants ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) satisfy the inequalities ( )( ) ( )( ) ( ̂ )( ) ( ̂ )( ) ( ̂ )( ) ( ̂ )( ) ( )( ) ( )( ) (̂ )( ) ( ̂ )( ) (̂ )( ) ( ̂ )( ) Where we suppose (F) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) (G) The functions ( )( ) ( )( ) are positive continuous increasing and bounded. Definition of ( )( ) ( )( ) : ( ) ( )( ) ( ) ( )( ) ( ̂ ) ( )( ) ( ) ( )( ) ( )( ) ( ̂ )( ) (H) ( )( ) ( ) ( )( ) ( )( ) (( ) ) ( )( ) Definition of ( ̂ )( ) ( ̂ )( ) : Where ( ̂ )( ) ( ̂ )( ) ( )( ) ( )( ) are positive constants and They satisfy Lipschitz condition: )( ) ( )( ) ( ) ( )( ) ( ) (̂ )( ) ( ̂ )( ) ( )( ) (( ) ) ( )( ) (( ) ) (̂ )( ) ( ) ( ) ( ̂ With the Lipschitz condition, we place a restriction on the behavior of functions ( )( ) ( ) and( )( ) ( ) .( ) and ( ) are points belonging to the interval [( ̂ )( ) ( ̂ )( ) ] . It is to be noted that ( )( ) ( ) is uniformly continuous. In the eventuality of the fact, that if ( ̂ )( ) ( ) then the function ( ) ( ) , the SECOND augmentation coefficient would be absolutely continuous. 95
  • 14. Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.2, No.4, 2012 Definition of ( ̂ )( ) (̂ )( ) : (I) ( ̂ )( ) (̂ )( ) are positive constants ( )( ) ( )( ) ( ̂ )( ) ( ̂ )( ) Definition of ( ̂ )( ) ( ̂ )( ) : There exists two constants ( ̂ )( ) and ( ̂ )( ) which together with ( ̂ )( ) ( ̂ )( ) ( ̂ )( ) ( ̂ )( ) and the constants ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) satisfy the inequalities ( )( ) ( )( ) ( ̂ )( ) ( ̂ )( ) ( ̂ )( ) ( ̂ )( ) ( )( ) ( )( ) (̂ )( ) ( ̂ )( ) (̂ )( ) ( ̂ )( ) Where we suppose (J) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) The functions ( )( ) ( )( ) are positive continuous increasing and bounded. Definition of ( )( ) ( )( ) : ( )( ) ( ) ( )( ) ( ̂ )( ) ( )( ) ( ) ( )( ) ( )( ) ( ̂ )( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( ) Definition of ( ̂ )( ) ( ̂ )( ) : Where ( ̂ )( ) (̂ )( ) ( )( ) ( )( ) are positive constants and They satisfy Lipschitz condition: )( ) ( )( ) ( ) ( )( ) ( ) (̂ )( ) ( ̂ )( ) ( )( ) ( ) ( )( ) ( ) (̂ )( ) ( ̂ With the Lipschitz condition, we place a restriction on the behavior of functions ( )( ) ( ) and( ) ( ( ) ) .( ) And ( ) are points belonging to the interval [( ̂ )( ) ( ̂ )( ) ] . It is to be noted that ( )( ) ( ) is uniformly continuous. In the eventuality of the fact, that if ( ̂ )( ) then the function ( )( ) ( ) , the THIRD augmentation coefficient, would be absolutely continuous. Definition of ( ̂ )( ) (̂ )( ) : (K) ( ̂ )( ) (̂ )( ) are positive constants ( )( ) ( )( ) ( ̂ )( ) ( ̂ )( ) 96
  • 15. Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.2, No.4, 2012 There exists two constants There exists two constants ( ̂ )( ) and ( ̂ )( ) which together with ( ̂ )( ) ( ̂ )( ) ( ̂ )( ) ( ̂ )( ) and the constants ( ) ( ) ( ) ( ) ( )( ) ( )( ) ( ) ( ) ( ) ( ) satisfy the inequalities ( )( ) ( )( ) ( ̂ )( ) ( ̂ )( ) ( ̂ )( ) ( ̂ )( ) ( )( ) ( )( ) (̂ )( ) ( ̂ )( ) (̂ )( ) ( ̂ )( ) Where we suppose (L) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) (M) The functions ( )( ) ( )( ) are positive continuous increasing and bounded. Definition of ( )( ) ( )( ) : ( )( ) ( ) ( )( ) ( ̂ )( ) ( )( ) (( ) ) ( )( ) ( )( ) ( ̂ )( ) (N) ( )( ) ( )( )( ) ( )( ) (( ) ) ( )( ) Definition of ( ̂ )( ) ( ̂ )( ) : Where ( ̂ )( ) (̂ )( ) ( )( ) ( )( ) are positive constants and They satisfy Lipschitz condition: )( ) ( )( ) ( ) ( )( ) ( ) (̂ )( ) ( ̂ )( ) ( )( ) (( ) ) ( )( ) (( ) ) (̂ )( ) ( ) ( ) ( ̂ With the Lipschitz condition, we place a restriction on the behavior of functions ( )( ) ( ) and( )( ) ( ) .( ) and ( ) are points belonging to the interval [( ̂ )( ) ( ̂ )( ) ] . It is to be noted that ( )( ) ( ) is uniformly continuous. In the eventuality of the fact, that if ( ̂ )( ) then the function ( )( ) ( ) , the FOURTH augmentation coefficient WOULD be absolutely continuous. Definition of ( ̂ )( ) (̂ )( ) : (O) ( ̂ )( ) (̂ )( ) are positive constants (P) ( )( ) ( )( ) ( ̂ )( ) ( ̂ )( ) Definition of ( ̂ )( ) ( ̂ )( ) : (Q) There exists two constants ( ̂ )( ) and ( ̂ )( ) which together with ( ̂ )( ) ( ̂ )( ) ( ̂ )( ) ( ̂ )( ) and the constants 97
  • 16. Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.2, No.4, 2012 ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) satisfy the inequalities ( )( ) ( )( ) ( ̂ )( ) ( ̂ )( ) ( ̂ )( ) ( ̂ )( ) ( )( ) ( )( ) (̂ )( ) ( ̂ )( ) (̂ )( ) ( ̂ )( ) Where we suppose (R) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) (S) The functions ( )( ) ( )( ) are positive continuous increasing and bounded. Definition of ( )( ) ( )( ) : ( )( ) ( ) ( )( ) ( ̂ )( ) ( )( ) (( ) ) ( )( ) ( )( ) ( ̂ )( ) (T) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) Definition of ( ̂ )( ) ( ̂ )( ) : Where ( ̂ )( ) (̂ )( ) ( )( ) ( )( ) are positive constants and They satisfy Lipschitz condition: )( ) ( )( ) ( ) ( )( ) ( ) (̂ )( ) ( ̂ )( ) ( )( ) (( ) ) ( )( ) (( ) ) (̂ )( ) ( ) ( ) ( ̂ With the Lipschitz condition, we place a restriction on the behavior of functions ( )( ) ( ) and( )( ) ( ) .( ) and ( ) are points belonging to the interval [( ̂ )( ) ( ̂ )( ) ] . It is to be noted that ( )( ) ( ) is uniformly continuous. In the eventuality of the fact, that if ( ̂ )( ) then the function ( )( ) ( ) , theFIFTH augmentation coefficient attributable would be absolutely continuous. Definition of ( ̂ )( ) (̂ )( ) : (U) ( ̂ )( ) (̂ )( ) are positive constants ( )( ) ( )( ) ( ̂ )( ) ( ̂ )( ) Definition of ( ̂ )( ) ( ̂ )( ) : (V) There exists two constants ( ̂ )( ) and ( ̂ )( ) which together with ( ̂ )( ) ( ̂ )( ) ( ̂ )( ) ( ̂ )( ) and the constants ( ) ( ) ( ) ( ) ( )( ) ( )( ) ( ) ( ) ( ) ( ) satisfy the inequalities ( )( ) ( )( ) ( ̂ )( ) ( ̂ )( ) ( ̂ )( ) ( ̂ )( ) 98
  • 17. Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.2, No.4, 2012 ( )( ) ( )( ) (̂ )( ) ( ̂ )( ) (̂ )( ) ( ̂ )( ) Where we suppose ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) (W) The functions ( )( ) ( )( ) are positive continuous increasing and bounded. Definition of ( )( ) ( )( ) : ( )( ) ( ) ( )( ) ( ̂ )( ) ( )( ) (( ) ) ( )( ) ( )( ) ( ̂ )( ) (X) ( )( ) ( ) ( )( ) ( ) ( ) (( ) ) ( )( ) Definition of ( ̂ )( ) ( ̂ )( ) : Where ( ̂ )( ) (̂ )( ) ( )( ) ( )( ) are positive constants and They satisfy Lipschitz condition: )( ) ( )( ) ( ) ( )( ) ( ) (̂ )( ) ( ̂ )( ) ( )( ) (( ) ) ( )( ) (( ) ) (̂ )( ) ( ) ( ) ( ̂ With the Lipschitz condition, we place a restriction on the behavior of functions ( )( ) ( ) and( )( ) ( ) .( ) and ( ) are points belonging to the interval [( ̂ )( ) ( ̂ )( ) ] . It is to be noted that ( )( ) ( ) is uniformly continuous. In the eventuality of the fact, that if ( ̂ )( ) then the function ( )( ) ( ) , the SIXTH augmentation coefficient would be absolutely continuous. Definition of ( ̂ )( ) (̂ )( ) : ( ̂ )( ) (̂ )( ) are positive constants ( )( ) ( )( ) ( ̂ )( ) ( ̂ )( ) Definition of ( ̂ )( ) ( ̂ )( ) : There exists two constants ( ̂ )( ) and ( ̂ )( ) which together with ( ̂ )( ) ( ̂ )( ) ( ̂ )( ) ( ̂ )( ) and the constants ( ) ( ) ( ) ( ) ( )( ) ( )( ) ( ) ( ) ( ) ( ) satisfy the inequalities ( )( ) ( )( ) ( ̂ )( ) ( ̂ )( ) ( ̂ )( ) ( ̂ )( ) ( )( ) ( )( ) (̂ )( ) ( ̂ )( ) (̂ )( ) ( ̂ )( ) Theorem 1: if the conditions IN THE FOREGOING above are fulfilled, there exists a solution satisfying the conditions 99
  • 18. Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.2, No.4, 2012 Definition of ( ) ( ): ( ) ( ̂ )( ) ( ) ( ̂ ) , ( ) ) ( ̂ )( ) ( ) ( ̂ )( , ( ) Definition of ( ) ( ) ) ( ̂ )( ) ( ) ( ̂ )( , ( ) ) ( ̂ )( ) ( ) ( ̂ )( , ( ) ) ( ̂ )( ) ( ) ( ̂ )( , ( ) ) ( ̂ )( ) ( ) ( ̂ )( , ( ) Definition of ( ) ( ): ( ) ( ̂ )( ) ( ) ( ̂ ) , ( ) ) ( ̂ )( ) ( ) ( ̂ )( , ( ) Definition of ( ) ( ): ( ) ( ̂ )( ) ( ) ( ̂ ) , ( ) ) ( ̂ )( ) ( ) ( ̂ )( , ( ) Definition of ( ) ( ): ( ) ( ̂ )( ) ( ) ( ̂ ) , ( ) ) ( ̂ )( ) ( ) ( ̂ )( , ( ) ( ) Proof: Consider operator defined on the space of sextuples of continuous functions which satisfy ( ) ( ) ( ̂ )( ) ( ̂ )( ) ) ( ̂ )( ) ( ) ( ̂ )( ) ( ̂ )( ) ( ) ( ̂ )( By ̅ ( ) ∫ [( )( ) ( ( )) (( )( ) )( ) ( ( ( )) ( ) )) ( ( ) )] ( ) ̅ ( ) ∫ [( )( ) ( ( )) (( )( ) ( )( ) ( ( ( )) ( ) )) ( ( ) )] ( ) ̅ ( ) ∫ [( )( ) ( ( )) (( )( ) ( )( ) ( ( ( )) ( ) )) ( ( ) )] ( ) 100
  • 19. Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.2, No.4, 2012 ̅ ( ) ∫ [( )( ) ( ( )) (( )( ) ( )( ) ( ( ( )) ( ) )) ( ( ) )] ( ) ̅ ( ) ∫ [( )( ) ( ( )) (( )( ) ( )( ) ( ( ( )) ( ) )) ( ( ) )] ( ) ̅ () ∫ [( )( ) ( ( )) (( )( ) ( )( ) ( ( ( )) ( ) )) ( ( ) )] ( ) Where ( ) is the integrand that is integrated over an interval ( ) Proof: ( ) Consider operator defined on the space of sextuples of continuous functions which satisfy ( ) ( ) ( ̂ )( ) ( ̂ )( ) ) ( ̂ )( ) ( ) ( ̂ )( ) ( ̂ )( ) ( ) ( ̂ )( By ̅ ( ) ∫ [( )( ) ( ( )) (( )( ) )( ) ( ( ( )) ( ) )) ( ( ) )] ( ) ̅ ( ) ∫ [( )( ) ( ( )) (( )( ) ( )( ) ( ( ( )) ( ) )) ( ( ) )] ( ) ̅ ( ) ∫ [( )( ) ( ( )) (( )( ) ( )( ) ( ( ( )) ( ) )) ( ( ) )] ( ) ̅ ( ) ∫ [( )( ) ( ( )) (( )( ) ( )( ) ( ( ( )) ( ) )) ( ( ) )] ( ) ̅ ( ) ∫ [( )( ) ( ( )) (( )( ) ( )( ) ( ( ( )) ( ) )) ( ( ) )] ( ) ̅ ( ) ∫ [( )( ) ( ( )) (( )( ) ( )( ) ( ( ( )) ( ) )) ( ( ) )] ( ) Where ( ) is the integrand that is integrated over an interval ( ) Proof: ( ) Consider operator defined on the space of sextuples of continuous functions which satisfy ( ) ( ) ( ̂ )( ) ( ̂ )( ) ) ( ̂ )( ) ( ) ( ̂ )( ) ( ̂ )( ) ( ) ( ̂ )( By ̅ ( ) ∫ [( )( ) ( ( )) (( )( ) )( ) ( ( ( )) ( ) )) ( ( ) )] ( ) ̅ ( ) ∫ [( )( ) ( ( )) (( )( ) ( )( ) ( ( ( )) ( ) )) ( ( ) )] ( ) 101
  • 20. Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.2, No.4, 2012 ̅ ( ) ∫ [( )( ) ( ( )) (( )( ) ( )( ) ( ( ( )) ( ) )) ( ( ) )] ( ) ̅ ( ) ∫ [( )( ) ( ( )) (( )( ) ( )( ) ( ( ( )) ( ) )) ( ( ) )] ( ) ̅ ( ) ∫ [( )( ) ( ( )) (( )( ) ( )( ) ( ( ( )) ( ) )) ( ( ) )] ( ) ̅ () ∫ [( )( ) ( ( )) (( )( ) ( )( ) ( ( ( )) ( ) )) ( ( ) )] ( ) Where ( ) is the integrand that is integrated over an interval ( ) ( ) Consider operator defined on the space of sextuples of continuous functions which satisfy ( ) ( ) ( ̂ )( ) ( ̂ )( ) ) ( ̂ )( ) ( ) ( ̂ )( ) ( ̂ )( ) ( ) ( ̂ )( By ̅ ( ) ∫ [( )( ) ( ( )) (( )( ) )( ) ( ( ( )) ( ) )) ( ( ) )] ( ) ̅ ( ) ∫ [( )( ) ( ( )) (( )( ) ( )( ) ( ( ( )) ( ) )) ( ( ) )] ( ) ̅ ( ) ∫ [( )( ) ( ( )) (( )( ) ( )( ) ( ( ( )) ( ) )) ( ( ) )] ( ) ̅ ( ) ∫ [( )( ) ( ( )) (( )( ) ( )( ) ( ( ( )) ( ) )) ( ( ) )] ( ) ̅ ( ) ∫ [( )( ) ( ( )) (( )( ) ( )( ) ( ( ( )) ( ) )) ( ( ) )] ( ) ̅ () ∫ [( )( ) ( ( )) (( )( ) ( )( ) ( ( ( )) ( ) )) ( ( ) )] ( ) Where ( ) is the integrand that is integrated over an interval ( ) ( ) Consider operator defined on the space of sextuples of continuous functions which satisfy ( ) ( ) ( ̂ )( ) ( ̂ )( ) ) ( ̂ )( ) ( ) ( ̂ )( ) ( ̂ )( ) ( ) ( ̂ )( By ̅ ( ) ∫ [( )( ) ( ( )) (( )( ) )( ) ( ( ( )) ( ) )) ( ( ) )] ( ) 102
  • 21. Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.2, No.4, 2012 ̅ ( ) ∫ [( )( ) ( ( )) (( )( ) ( )( ) ( ( ( )) ( ) )) ( ( ) )] ( ) ̅ ( ) ∫ [( )( ) ( ( )) (( )( ) ( )( ) ( ( ( )) ( ) )) ( ( ) )] ( ) ̅ ( ) ∫ [( )( ) ( ( )) (( )( ) ( )( ) ( ( ( )) ( ) )) ( ( ) )] ( ) ̅ ( ) ∫ [( )( ) ( ( )) (( )( ) ( )( ) ( ( ( )) ( ) )) ( ( ) )] ( ) ̅ () ∫ [( )( ) ( ( )) (( )( ) ( )( ) ( ( ( )) ( ) )) ( ( ) )] ( ) Where ( ) is the integrand that is integrated over an interval ( ) ( ) Consider operator defined on the space of sextuples of continuous functions which satisfy ( ) ( ) ( ̂ )( ) ( ̂ )( ) ) ( ̂ )( ) ( ) ( ̂ )( ) ( ̂ )( ) ( ) ( ̂ )( By ̅ ( ) ∫ [( )( ) ( ( )) (( )( ) )( ) ( ( ( )) ( ) )) ( ( ) )] ( ) ̅ ( ) ∫ [( )( ) ( ( )) (( )( ) ( )( ) ( ( ( )) ( ) )) ( ( ) )] ( ) ̅ ( ) ∫ [( )( ) ( ( )) (( )( ) ( )( ) ( ( ( )) ( ) )) ( ( ) )] ( ) ̅ ( ) ∫ [( )( ) ( ( )) (( )( ) ( )( ) ( ( ( )) ( ) )) ( ( ) )] ( ) ̅ ( ) ∫ [( )( ) ( ( )) (( )( ) ( )( ) ( ( ( )) ( ) )) ( ( ) )] ( ) ̅ () ∫ [( )( ) ( ( )) (( )( ) ( )( ) ( ( ( )) ( ) )) ( ( ) )] ( ) Where ( ) is the integrand that is integrated over an interval ( ) ( ) (a) The operator maps the space of functions satisfying GLOBAL EQUATIONS into itself .Indeed it is obvious that ) ( ̂ )( ) ( ( ) ∫ [( )( ) ( ( ̂ )( ) )] ( ) ( )( ) ( ̂ )( ) )( ) ( ( )( ) ) ( (̂ ) ( ̂ )( ) From which it follows that (̂ )( ) ( )( ) ( ) ( ̂ )( ) ̂ )( ( ( ) ) ) [(( ) ) ( ̂ )( ) ] ( ̂ )( 103
  • 22. Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.2, No.4, 2012 ( ) is as defined in the statement of theorem 1 Analogous inequalities hold also for ( ) (b) The operator maps the space of functions satisfying GLOBAL EQUATIONS into itself .Indeed it is obvious that ) ( ̂ )( ) ( ( ) ∫ [( )( ) ( ( ̂ )( ) )] ( ) ( )( ) ( ̂ )( ) )( ) ( ( )( ) ) ( (̂ ) ( ̂ )( ) From which it follows that (̂ )( ) ( )( ) ( ) ( ̂ )( ) ̂ )( ( ( ) ) ) [(( ) ) ( ̂ )( ) ] ( ̂ )( Analogous inequalities hold also for ( ) (a) The operator maps the space of functions satisfying GLOBAL EQUATIONS into itself .Indeed it is obvious that ) ( ̂ )( ) ( ( ) ∫ [( )( ) ( ( ̂ )( ) )] ( ) ( )( ) ( ̂ )( ) )( ) ( ( )( ) ) ( (̂ ) ( ̂ )( ) From which it follows that (̂ )( ) ( )( ) ( ) ( ̂ )( ) ̂ ( ( ) ) [(( )( ) ) ( ̂ )( ) ] ( ̂ )( ) Analogous inequalities hold also for (b) The operator ( ) maps the space of functions satisfying GLOBAL EQUATIONS into itself .Indeed it is obvious that ̂ )( ) ( ) ( ) ∫ [( )( ) ( ( ̂ )( ) ( )] ( ) ( )( ) ( ̂ )( ) )( ) ( ( )( ) ) ( (̂ ) ( ̂ )( ) From which it follows that (̂ )( ) ( )( ) ( ) ( ̂ )( ) ̂ ( ( ) ) ) [(( )( ) ) ( ̂ )( ) ] ( ̂ )( ( ) is as defined in the statement of theorem 1 (c) The operator ( ) maps the space of functions satisfying GLOBAL EQUATIONS into itself .Indeed it is obvious that ̂ )( ) ( ) ( ) ∫ [( )( ) ( ( ̂ )( ) ( )] ( ) ( )( ) ( ̂ )( ) )( ) ( ( )( ) ) ( (̂ ) ( ̂ )( ) 104
  • 23. Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.2, No.4, 2012 From which it follows that (̂ )( ) ( )( ) ( ) ( ̂ )( ) ̂ ( ( ) ) ) [(( )( ) ) (̂ )( ) ] ( ̂ )( ( ) is as defined in the statement of theorem 1 ( ) (d) The operator maps the space of functions satisfying GLOBAL EQUATIONS into itself .Indeed it is obvious that ) ( ̂ )( ) ( ( ) ∫ [( )( ) ( ( ̂ )( ) )] ( ) ( )( ) ( ̂ )( ) )( ) ( ( )( ) ) ( (̂ ) ( ̂ )( ) From which it follows that (̂ )( ) ( )( ) ( ) ( ̂ )( ) ̂ ( ( ) ) ) [(( )( ) ) ( ̂ )( ) ] ( ̂ )( ( ) is as defined in the statement of theorem Analogous inequalities hold also for ( )( ) ( )( ) It is now sufficient to take and to choose ( ̂ )( ) ( ̂ )( ) ( ̂ )( ) (̂ )( ) large to have (̂ )( ) ( ) ( )( ) [( ̂ )( ) (( ̂ )( ) ) ] ( ̂ )( ) (̂ )( ) (̂ )( ) ( ) ( )( ) [(( ̂ )( ) ) ( ̂ )( ) ] ( ̂ )( ) ( ̂ )( ) ( ) In order that the operator transforms the space of sextuples of functions satisfying GLOBAL EQUATIONS into itself ( ) The operator is a contraction with respect to the metric ( ) ( ) ( ) ( ) (( )( )) ( ) ( ) ( ) ( )| (̂ )( ) ( ) ( ) ( ) ( )| (̂ )( ) | | Indeed if we denote Definition of ̃ ̃ : ( ̃ ̃) ( ) ( ) It results 105
  • 24. Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.2, No.4, 2012 ( ) ̃ ( )| ( ) ( ) (̂ )( ) ( (̂ )( ) ( |̃ ∫( )( ) | | ) ) ( ) ( ) ( ) (̂ )( ) ( (̂ )( ) ( ∫ ( )( ) | | ) ) ( ) ( ) ( ) (̂ )( ) ( (̂ )( ) ( ( )( ) ( ( ) )| | ) ) ( ) ( ) ( ) (̂ )( ) ( (̂ )( ) ( ( )( ) ( ( )) ( )( ) ( ( )) ) ) ( ) Where ( ) represents integrand that is integrated over the interval From the hypotheses it follows ( ) ( ) (̂ )( ) | | (( )( ) ( )( ) ( ̂ )( ) ( ̂ )( ) ( ̂ )( ) ) (( ( ) ( ) ( ) ( ) )) (̂ )( ) And analogous inequalities for . Taking into account the hypothesis the result follows Remark 1: The fact that we supposed ( )( ) ( )( ) depending also on can be considered as not conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition ( ) ( ) necessary to prove the uniqueness of the solution bounded by ( ̂ )( ) ( ̂ ) ( ̂ )( ) ( ̂ ) respectively of If instead of proving the existence of the solution on , we have to prove it only on a compact then it suffices to consider that ( )( ) ( )( ) depend only on and respectively on ( ) and hypothesis can replaced by a usual Lipschitz condition. Remark 2: There does not exist any where ( ) ( ) From 19 to 24 it results [ ∫ {( )( ) ( )( ) ( ( ( )) ( ) )} )] ( ) ( ( ) ( ( )( ) ) for Definition of (( ̂ )( ) ) (( ̂ )( ) ) (( ̂ )( ) ) : Remark 3: if is bounded, the same property have also . indeed if ( ̂ )( ) it follows (( ̂ )( ) ) ( )( ) and by integrating (( ̂ )( ) ) ( )( ) (( ̂ )( ) ) ( )( ) In the same way , one can obtain (( ̂ )( ) ) ( )( ) (( ̂ )( ) ) ( )( ) If is bounded, the same property follows for and respectively. Remark 4: If bounded, from below, the same property holds for The proof is analogous with the preceding one. An analogous property is true if is bounded from below. Remark 5: If is bounded from below and (( )( ) ( ( ) )) ( )( ) then Definition of ( )( ) : 106
  • 25. Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.2, No.4, 2012 Indeed let be so that for ( )( ) ( )( ) ( ( ) ) ( ) ( )( ) Then ( )( ) ( )( ) which leads to ( )( ) ( )( ) ( )( ) If we take such that it results ( )( ) ( )( ) ( ) By taking now sufficiently small one sees that is unbounded. ( ) ( ) The same property holds for if ( ) ( ( ) ) ( ) We now state a more precise theorem about the behaviors at infinity of the solutions ( )( ) ( )( ) It is now sufficient to take and to choose ( ̂ )( ) ( ̂ )( ) ( ̂ )( ) ( ̂ )( ) large to have (̂ )( ) ( ) ( )( ) [( ̂ )( ) (( ̂ )( ) ) ] ( ̂ )( ) ( ̂ )( ) (̂ )( ) ( ) ( )( ) [(( ̂ )( ) ) ( ̂ )( ) ] ( ̂ )( ) (̂ )( ) ( ) In order that the operator transforms the space of sextuples of functions satisfying ( ) The operator is a contraction with respect to the metric ((( )( ) ( )( ) ) (( )( ) ( )( ) )) ( ) ( ) ( ) ( )| (̂ )( ) ( ) ( ) ( ) ( )| (̂ )( ) | | Indeed if we denote Definition of ̃ ̃ : ( ̃ ̃ ) ( ) ( ) It results ( ) ̃ ( )| ( ) ( ) (̂ )( ) ( (̂ )( ) ( |̃ ∫( )( ) | | ) ) ( ) ( ) ( ) (̂ )( ) ( (̂ )( ) ( ∫ ( )( ) | | ) ) ( ) ( ) ( ) (̂ )( ) ( (̂ )( ) ( ( )( ) ( ( ) )| | ) ) ( ) ( ) ( ) (̂ )( ) ( (̂ )( ) ( ( )( ) ( ( )) ( )( ) ( ( )) ) ) ( ) Where ( ) represents integrand that is integrated over the interval From the hypotheses it follows )( ) ( )( ) | (̂ )( ) |( 107
  • 26. Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.2, No.4, 2012 (( )( ) ( )( ) ( ̂ )( ) ( ̂ )( ) ( ̂ )( ) ) ((( )( ) ( )( ) ( )( ) ( )( ) )) (̂ )( ) And analogous inequalities for . Taking into account the hypothesis the result follows Remark 1: The fact that we supposed ( )( ) ( )( ) depending also on can be considered as not conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition ̂ )( ) ̂ )( ) necessary to prove the uniqueness of the solution bounded by ( ̂ )( ) ( ( ̂ )( ) ( respectively of If instead of proving the existence of the solution on , we have to prove it only on a compact then it ( ) ( ) suffices to consider that ( ) ( ) depend only on and respectively on ( )( ) and hypothesis can replaced by a usual Lipschitz condition. Remark 2: There does not exist any where () () From 19 to 24 it results [ ∫ {( )( ) ( )( ) ( ( ( )) ( ) )} )] () ( () ( ( )( ) ) for Definition of (( ̂ )( ) ) (( ̂ )( ) ) (( ̂ )( ) ) : Remark 3: if is bounded, the same property have also . indeed if ( ̂ )( ) it follows (( ̂ )( ) ) ( )( ) and by integrating (( ̂ )( ) ) ( )( ) (( ̂ )( ) ) ( )( ) In the same way , one can obtain (( ̂ )( ) ) ( )( ) (( ̂ )( ) ) ( )( ) If is bounded, the same property follows for and respectively. Remark 4: If bounded, from below, the same property holds for The proof is analogous with the preceding one. An analogous property is true if is bounded from below. Remark 5: If is bounded from below and (( )( ) (( )( ) )) ( )( ) then Definition of ( )( ) : Indeed let be so that for ( )( ) ( )( ) (( )( ) ) () ( )( ) Then ( )( ) ( ) ( ) which leads to ( )( ) ( )( ) ( )( ) If we take such that it results ( )( ) ( )( ) ( ) By taking now sufficiently small one sees that is unbounded. The ( ) ( ) same property holds for if ( ) (( )( ) ) ( ) We now state a more precise theorem about the behaviors at infinity of the solutions 108
  • 27. Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.2, No.4, 2012 ( )( ) ( )( ) It is now sufficient to take and to choose ( ̂ )( ) ( ̂ )( ) ( ̂ )( ) (̂ )( ) large to have (̂ )( ) ( ) ( )( ) [( ̂ )( ) (( ̂ )( ) ) ] ( ̂ )( ) ( ̂ )( ) (̂ )( ) ( ) ( )( ) [(( ̂ ) ( ) ) ( ̂ )( ) ] ( ̂ )( ) ( ̂ )( ) ( ) In order that the operator transforms the space of sextuples of functions into itself ( ) The operator is a contraction with respect to the metric ((( )( ) ( )( ) ) (( )( ) ( )( ) )) ( ) ( ) ( ) ( )| (̂ )( ) ( ) ( ) ( ) ( )| (̂ )( ) | | Indeed if we denote Definition of ̃ ̃ :( (̃) ( ) ) ̃ ( ) (( )( )) It results ( ) ̃ ( )| ( ) ( ) (̂ )( ) ( (̂ )( ) ( |̃ ∫( )( ) | | ) ) ( ) ( ) ( ) (̂ )( ) ( (̂ )( ) ( ∫ ( )( ) | | ) ) ( ) ( ) ( ) (̂ )( ) ( (̂ )( ) ( ( )( ) ( ( ) )| | ) ) ( ) ( ) ( ) (̂ )( ) ( (̂ )( ) ( ( )( ) ( ( )) ( )( ) ( ( )) ) ) ( ) Where ( ) represents integrand that is integrated over the interval From the hypotheses it follows ( ) ( ) (̂ )( ) | | (( )( ) ( )( ) (̂ )( ) ( ̂ )( ) ( ̂ )( ) ) ((( )( ) ( )( ) ( )( ) ( )( ) )) (̂ )( ) And analogous inequalities for . Taking into account the hypothesis the result follows Remark 1: The fact that we supposed ( )( ) ( )( ) depending also on can be considered as not conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition ( ) ( ) necessary to prove the uniqueness of the solution bounded by ( ̂ )( ) ( ̂ ) ( ̂ )( ) ( ̂ ) respectively of If instead of proving the existence of the solution on , we have to prove it only on a compact then it suffices to consider that ( )( ) ( )( ) depend only on and respectively on ( )( ) and hypothesis can replaced by a usual Lipschitz condition. 109
  • 28. Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.2, No.4, 2012 Remark 2: There does not exist any where ( ) ( ) From 19 to 24 it results [ ∫ {( )( ) ( )( ) ( ( ( )) ( ) )} )] ( ) ( ( ) ( ( )( ) ) for Definition of (( ̂ )( ) ) (( ̂ )( ) ) (( ̂ )( ) ) : Remark 3: if is bounded, the same property have also . indeed if ( ̂ )( ) it follows (( ̂ )( ) ) ( )( ) and by integrating (( ̂ )( ) ) ( )( ) (( ̂ )( ) ) ( )( ) In the same way , one can obtain (( ̂ )( ) ) ( )( ) (( ̂ )( ) ) ( )( ) If is bounded, the same property follows for and respectively. Remark 4: If bounded, from below, the same property holds for The proof is analogous with the preceding one. An analogous property is true if is bounded from below. Remark 5: If is bounded from below and (( )( ) (( )( ) )) ( )( ) then Definition of ( )( ) : Indeed let be so that for ( )( ) ( )( ) (( )( ) ) ( ) ( )( ) Then ( )( ) ( ) ( ) which leads to ( )( ) ( )( ) ( )( ) If we take such that it results ( )( ) ( )( ) ( ) By taking now sufficiently small one sees that is unbounded. ( ) ( ) The same property holds for if ( ) (( )( ) ) ( ) We now state a more precise theorem about the behaviors at infinity of the solutions ( )( ) ( )( ) It is now sufficient to take and to choose ( ̂ )( ) ( ̂ )( ) ( ̂ )( ) (̂ )( ) large to have (̂ )( ) ( ) ( )( ) [( ̂ )( ) (( ̂ )( ) ) ] ( ̂ )( ) ( ̂ )( ) 110
  • 29. Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.2, No.4, 2012 (̂ )( ) ( ) ( )( ) [(( ̂ ) ( ) ) ( ̂ )( ) ] ( ̂ )( ) ( ̂ )( ) ( ) In order that the operator transforms the space of sextuples of functions satisfying IN to itself ( ) The operator is a contraction with respect to the metric ((( )( ) ( )( ) ) (( )( ) ( )( ) )) ( ) ( ) ( ) ( )| (̂ )( ) ( ) ( ) ( ) ( )| (̂ )( ) | | Indeed if we denote Definition of (̃) ( ) : ( (̃) ( ) ) ̃ ̃ ( ) (( )( )) It results ( ) ̃ ( )| ( ) ( ) (̂ )( ) ( (̂ )( ) ( |̃ ∫( )( ) | | ) ) ( ) ( ) ( ) (̂ )( ) ( (̂ )( ) ( ∫ ( )( ) | | ) ) ( ) ( ) ( ) (̂ )( ) ( (̂ )( ) ( ( )( ) ( ( ) )| | ) ) ( ) ( ) ( ) (̂ )( ) ( (̂ )( ) ( ( )( ) ( ( )) ( )( ) ( ( )) ) ) ( ) Where ( ) represents integrand that is integrated over the interval From the hypotheses it follows )( ) ( )( ) | (̂ )( ) |( (( )( ) ( )( ) (̂ )( ) ( ̂ )( ) ( ̂ )( ) ) ((( )( ) ( )( ) ( )( ) ( )( ) )) (̂ )( ) And analogous inequalities for . Taking into account the hypothesis the result follows Remark 1: The fact that we supposed ( )( ) ( )( ) depending also on can be considered as not conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition ( ) ( ) necessary to prove the uniqueness of the solution bounded by ( ̂ )( ) ( ̂ ) ( ̂ )( ) ( ̂ ) respectively of If instead of proving the existence of the solution on , we have to prove it only on a compact then it ( ) ( ) suffices to consider that ( ) ( ) depend only on and respectively on ( )( ) and hypothesis can replaced by a usual Lipschitz condition. Remark 2: There does not exist any where ( ) ( ) From 19 to 24 it results [ ∫ {( )( ) ( )( ) ( ( ( )) ( ) )} )] ( ) ( 111
  • 30. Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.2, No.4, 2012 ( ) ( ( )( ) ) for Definition of (( ̂ )( ) ) (( ̂ )( ) ) (( ̂ )( ) ) : Remark 3: if is bounded, the same property have also . indeed if ( ̂ )( ) it follows (( ̂ )( ) ) ( )( ) and by integrating (( ̂ )( ) ) ( )( ) (( ̂ )( ) ) ( )( ) In the same way , one can obtain (( ̂ )( ) ) ( )( ) (( ̂ )( ) ) ( )( ) If is bounded, the same property follows for and respectively. Remark 4: If bounded, from below, the same property holds for The proof is analogous with the preceding one. An analogous property is true if is bounded from below. Remark 5: If is bounded from below and (( )( ) (( )( ) )) ( )( ) then Definition of ( )( ) : Indeed let be so that for ( )( ) ( )( ) (( )( ) ) ( ) ( )( ) Then ( )( ) ( ) ( ) which leads to ( )( ) ( )( ) ( )( ) If we take such that it results ( )( ) ( )( ) ( ) By taking now sufficiently small one sees that is unbounded. The same property holds for if ( )( ) (( )( ) ) ( )( ) We now state a more precise theorem about the behaviors at infinity of the solutions ANALOGOUS inequalities hold also for ( )( ) ( )( ) It is now sufficient to take and to choose ( ̂ )( ) ( ̂ )( ) ( ̂ )( ) (̂ )( ) large to have (̂ )( ) ( ) ( )( ) [( ̂ )( ) (( ̂ )( ) ) ] ( ̂ )( ) (̂ )( ) (̂ )( ) ( ) ( )( ) [(( ̂ )( ) ) ( ̂ )( ) ] ( ̂ )( ) (̂ )( ) ( ) In order that the operator transforms the space of sextuples of functions into itself 112
  • 31. Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.2, No.4, 2012 ( ) The operator is a contraction with respect to the metric ((( )( ) ( )( ) ) (( )( ) ( )( ) )) ( ) ( ) ( ) ( )| (̂ )( ) ( ) ( ) ( ) ( )| (̂ )( ) | | Indeed if we denote Definition of (̃) ( ) : ( (̃) ( ) ) ̃ ̃ ( ) (( )( )) It results ( ) ̃ ( )| ( ) ( ) (̂ )( ) ( (̂ )( ) ( |̃ ∫( )( ) | | ) ) ( ) ( ) ( ) (̂ )( ) ( (̂ )( ) ( ∫ ( )( ) | | ) ) ( ) ( ) ( ) (̂ )( ) ( (̂ )( ) ( ( )( ) ( ( ) )| | ) ) ( ) ( ) ( ) (̂ )( ) ( (̂ )( ) ( ( )( ) ( ( )) ( )( ) ( ( )) ) ) ( ) Where ( ) represents integrand that is integrated over the interval From the hypotheses it follows )( ) ( )( ) | (̂ )( ) |( (( )( ) ( )( ) (̂ )( ) ( ̂ )( ) ( ̂ )( ) ) ((( )( ) ( )( ) ( )( ) ( )( ) )) (̂ )( ) And analogous inequalities for . Taking into account the hypothesis (35,35,36) the result follows Remark 1: The fact that we supposed ( )( ) ( )( ) depending also on can be considered as not conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition ( ) ( ) necessary to prove the uniqueness of the solution bounded by ( ̂ )( ) ( ̂ ) ( ̂ )( ) ( ̂ ) respectively of If instead of proving the existence of the solution on , we have to prove it only on a compact then it suffices to consider that ( )( ) ( )( ) depend only on and respectively on ( )( ) and hypothesis can replaced by a usual Lipschitz condition. Remark 2: There does not exist any where ( ) ( ) From GLOBAL EQUATIONS it results [ ∫ {( )( ) ( )( ) ( ( ( )) ( ) )} )] ( ) ( ( ) ( ( )( ) ) for Definition of (( ̂ )( ) ) (( ̂ )( ) ) (( ̂ )( ) ) : Remark 3: if is bounded, the same property have also . indeed if 113
  • 32. Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.2, No.4, 2012 ( ̂ )( ) it follows (( ̂ )( ) ) ( )( ) and by integrating (( ̂ )( ) ) ( )( ) (( ̂ )( ) ) ( )( ) In the same way , one can obtain (( ̂ )( ) ) ( )( ) (( ̂ )( ) ) ( )( ) If is bounded, the same property follows for and respectively. Remark 4: If bounded, from below, the same property holds for The proof is analogous with the preceding one. An analogous property is true if is bounded from below. Remark 5: If is bounded from below and (( )( ) (( )( ) )) ( )( ) then Definition of ( )( ) : Indeed let be so that for ( )( ) ( )( ) (( )( ) ) ( ) ( )( ) Then ( )( ) ( )( ) which leads to ( )( ) ( )( ) ( )( ) If we take such that it results ( )( ) ( )( ) ( ) By taking now sufficiently small one sees that is unbounded. The same property holds for if ( )( ) (( )( ) ) ( )( ) We now state a more precise theorem about the behaviors at infinity of the solutions Analogous inequalities hold also for ( )( ) ( )( ) It is now sufficient to take and to choose ( ̂ )( ) ( ̂ )( ) ( ̂ )( ) (̂ )( ) large to have (̂ )( ) ( ) ( )( ) [( ̂ ( ) ) (( ̂ )( ) ) ] ( ̂ )( ) ( ̂ )( ) (̂ )( ) ( ) ( )( ) [(( ̂ ) ( ) ) ( ̂ )( ) ] ( ̂ )( ) ( ̂ )( ) ( ) In order that the operator transforms the space of sextuples of functions into itself ( ) The operator is a contraction with respect to the metric ((( )( ) ( )( ) ) (( )( ) ( )( ) )) 114
  • 33. Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.2, No.4, 2012 ( ) ( ) ( ) ( )| (̂ )( ) ( ) ( ) ( ) ( )| (̂ )( ) | | Indeed if we denote Definition of (̃) ( ) : ( (̃) ( ) ) ̃ ̃ ( ) (( )( )) It results ( ) ̃ ( )| ( ) ( ) (̂ )( ) ( (̂ )( ) ( |̃ ∫( )( ) | | ) ) ( ) ( ) ( ) (̂ )( ) ( (̂ )( ) ( ∫ ( )( ) | | ) ) ( ) ( ) ( ) (̂ )( ) ( (̂ )( ) ( ( )( ) ( ( ) )| | ) ) ( ) ( ) ( ) (̂ )( ) ( (̂ )( ) ( ( )( ) ( ( )) ( )( ) ( ( )) ) ) ( ) Where ( ) represents integrand that is integrated over the interval From the hypotheses it follows )( ) ( )( ) | (̂ )( ) |( (( )( ) ( )( ) (̂ )( ) ( ̂ )( ) ( ̂ )( ) ) ((( )( ) ( )( ) ( )( ) ( )( ) )) (̂ )( ) And analogous inequalities for . Taking into account the hypothesis the result follows Remark 1: The fact that we supposed ( )( ) ( )( ) depending also on can be considered as not conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition ( ) ( ) necessary to prove the uniqueness of the solution bounded by ( ̂ )( ) ( ̂ ) ( ̂ )( ) ( ̂ ) respectively of If instead of proving the existence of the solution on , we have to prove it only on a compact then it ( ) ( ) suffices to consider that ( ) ( ) depend only on and respectively on ( )( ) and hypothesis can replaced by a usual Lipschitz condition. Remark 2: There does not exist any where ( ) ( ) From 69 to 32 it results [ ∫ {( )( ) ( )( ) ( ( ( )) ( ) )} )] ( ) ( ( ) ( ( )( ) ) for Definition of (( ̂ )( ) ) (( ̂ )( ) ) (( ̂ )( ) ) : Remark 3: if is bounded, the same property have also . indeed if ( ̂ )( ) it follows (( ̂ )( ) ) ( )( ) and by integrating (( ̂ )( ) ) ( )( ) (( ̂ )( ) ) ( )( ) 115
  • 34. Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.2, No.4, 2012 In the same way , one can obtain (( ̂ )( ) ) ( )( ) (( ̂ )( ) ) ( )( ) If is bounded, the same property follows for and respectively. Remark 4: If bounded, from below, the same property holds for The proof is analogous with the preceding one. An analogous property is true if is bounded from below. Remark 5: If is bounded from below and (( )( ) (( )( ) )) ( )( ) then Definition of ( )( ) : Indeed let be so that for ( )( ) ( )( ) (( )( ) ) ( ) ( )( ) Then ( )( ) ( ) ( ) which leads to ( )( ) ( )( ) ( )( ) If we take such that it results ( )( ) ( )( ) ( ) By taking now sufficiently small one sees that is unbounded. The same property holds for if ( )( ) (( )( ) ( ) ) ( )( ) We now state a more precise theorem about the behaviors at infinity of the solutions Behavior of the solutions If we denote and define Definition of ( )( ) ( )( ) ( )( ) ( )( ) : (a) )( ) ( )( ) ( )( ) ( )( ) four constants satisfying ( )( ) ( )( ) ( )( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ) ( )( ) ( ) ( )( ) Definition of ( )( ) ( )( ) ( )( ) ( )( ) ( ) ( ) : (b) By ( )( ) ( )( ) and respectively ( )( ) ( )( ) the roots of the equations ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) and ( ) ( ) ( ) ( )( ) Definition of ( ̅ )( ) ( ̅ )( ) ( ̅ )( ) ( ̅ )( ) : By ( ̅ )( ) ( ̅ )( ) and respectively ( ̅ )( ) ( ̅ )( ) the roots of the equations ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) and ( ) ( ) ( ) ( )( ) Definition of ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) :- (c) If we define ( )( ) ( )( ) ( )( ) ( )( ) by ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) 116
  • 35. Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.2, No.4, 2012 ( )( ) ( )( ) ( )( ) ( ̅ )( ) ( )( ) ( )( ) ( ̅ )( ) and ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ̅ )( ) ( )( ) and analogously ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ̅ )( ) ( )( ) ( )( ) ( ̅ )( ) and ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ̅ )( ) ( )( ) where ( )( ) ( ̅ )( ) are defined respectively Then the solution satisfies the inequalities (( )( ) ( )( ) ) ( )( ) ( ) where ( )( ) is defined (( )( ) ( )( ) ) ( )( ) ( ) ( )( ) ( )( ) ( )( ) (( )( ) ( )( ) ) ( )( ) ( )( ) ( [ ] ( ) ( )( ) (( )( ) ( )( ) ( )( ) ) ( )( ) ( )( ) ( )( ) ( )( ) ) ( )( ) (( )( ) ( )( ) ) ( )( ) (( )( ) ( )( ) ) ( ) ( )( ) (( )( ) ( )( ) ) ( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) [ ] ( ) ( )( ) (( )( ) ( )( ) ) ( )( ) (( )( ) ( )( ) ) ( )( ) ( )( ) [ ] ( )( ) (( )( ) ( )( ) ( )( ) ) Definition of ( )( ) ( )( ) ( )( ) ( )( ) :- Where ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) Behavior of the solutions If we denote and define 117
  • 36. Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.2, No.4, 2012 Definition of ( )( ) ( )( ) ( )( ) ( )( ) : (d) )( ) ( )( ) ( )( ) ( )( ) four constants satisfying ( )( ) ( )( ) ( )( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) (( ) ) ( )( ) (( ) ) ( )( ) Definition of ( )( ) ( )( ) ( )( ) ( )( ) : By ( )( ) ( )( ) and respectively ( )( ) ( )( ) the roots (e) of the equations ( )( ) ( ( ) ) ( )( ) ( ) ( )( ) and ( )( ) ( ( ) ) ( )( ) ( ) ( )( ) and Definition of ( ̅ )( ) ( ̅ )( ) ( ̅ )( ) ( ̅ )( ) : By ( ̅ )( ) ( ̅ )( ) and respectively ( ̅ )( ) ( ̅ )( ) the roots of the equations ( )( ) ( ( ) ) ( )( ) ( ) ( )( ) and ( )( ) ( ( ) ) ( )( ) ( ) ( )( ) Definition of ( )( ) ( )( ) ( )( ) ( )( ) :- (f) If we define ( )( ) ( )( ) ( )( ) ( )( ) by ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ̅ )( ) ( )( ) ( )( ) ( ̅ )( ) and ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ̅ )( ) ( )( ) and analogously ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ̅ )( ) ( )( ) ( )( ) ( ̅ )( ) and ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ̅ )( ) ( )( ) Then the solution satisfies the inequalities (( )( ) ( )( ) ) ( ) ( )( ) ( )( ) is defined (( )( ) ( )( ) ) ( )( ) ( ) ( )( ) ( )( ) 118
  • 37. Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.2, No.4, 2012 ( )( ) (( )( ) ( )( ) ) ( )( ) ( )( ) ( [ ] ( ) ( )( ) (( )( ) ( )( ) ( )( ) ) ( )( ) ( )( ) ( )( ) ( )( ) ) ( )( ) (( )( ) ( )( ) ) ( )( ) (( )( ) ( )( ) ) ( ) ( )( ) (( )( ) ( )( ) ) ( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) [ ] ( ) ( )( ) (( )( ) ( )( ) ) ( )( ) (( )( ) ( )( ) ) ( )( ) ( )( ) [ ] ( )( ) (( )( ) ( )( ) ( )( ) ) Definition of ( )( ) ( )( ) ( )( ) ( )( ) :- Where ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) Behavior of the solutions If we denote and define Definition of ( )( ) ( )( ) ( )( ) ( )( ) : (a) )( ) ( )( ) ( )( ) ( )( ) four constants satisfying ( )( ) ( )( ) ( )( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ) ( )( ) (( ) ) ( )( ) Definition of ( )( ) ( )( ) ( )( ) ( )( ) : (b) By ( )( ) ( )( ) and respectively ( )( ) ( )( ) the roots of the equations ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) and ( )( ) ( ( ) ) ( )( ) ( ) ( )( ) and By ( ̅ )( ) ( ̅ )( ) and respectively ( ̅ )( ) ( ̅ )( ) the roots of the equations ( )( ) ( ( ) ) ( )( ) ( ) ( )( ) and ( )( ) ( ( ) ) ( )( ) ( ) ( )( ) Definition of ( )( ) ( )( ) ( )( ) ( )( ) :- (c) If we define ( )( ) ( )( ) ( )( ) ( )( ) by 119
  • 38. Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.2, No.4, 2012 ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ̅ )( ) ( )( ) ( )( ) ( ̅ )( ) and ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ̅ )( ) ( )( ) and analogously ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ̅ )( ) ( )( ) ( )( ) ( ̅ )( ) and ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ̅ )( ) ( )( ) Then the solution satisfies the inequalities (( )( ) ( )( ) ) ( )( ) ( ) ( )( ) is defined (( )( ) ( )( ) ) ( )( ) ( ) ( )( ) ( )( ) ( )( ) (( )( ) ( )( ) ) ( )( ) ( )( ) ( [ ] ( ) ( )( ) (( )( ) ( )( ) ( )( ) ) ( ) ( ) ( )( ) ( )( ) ( )( ) ) ( )( ) (( )( ) ( )( ) ) ( )( ) (( )( ) ( )( ) ) ( ) ( )( ) (( )( ) ( )( ) ) ( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) [ ] ( ) ( )( ) (( )( ) ( )( ) ) ( )( ) (( )( ) ( )( ) ) ( )( ) ( )( ) [ ] ( )( ) (( )( ) ( )( ) ( )( ) ) Definition of ( )( ) ( )( ) ( )( ) ( )( ) :- Where ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) Behavior of the solutions If we denote and define Definition of ( )( ) ( )( ) ( )( ) ( )( ) : 120
  • 39. Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.2, No.4, 2012 (d) ( )( ) ( )( ) ( )( ) ( )( ) four constants satisfying ( )( ) ( )( ) ( )( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) (( ) ) ( )( ) (( ) ) ( )( ) Definition of ( )( ) ( )( ) ( )( ) ( )( ) ( ) ( ) : (e) By ( )( ) ( )( ) and respectively ( )( ) ( )( ) the roots of the equations ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) and ( ) ( ) ( ) ( )( ) and Definition of ( ̅ )( ) ( ̅ )( ) ( ̅ )( ) ( ̅ )( ) : By ( ̅ )( ) ( ̅ )( ) and respectively ( ̅ )( ) ( ̅ )( ) the ( ) ( ) ( ) ( ) ( ) roots of the equations ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) and ( ) ( ) ( ) ( ) Definition of ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) :- (f) If we define ( )( ) ( )( ) ( )( ) ( )( ) by ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ̅ )( ) ( )( ) ( )( ) ( ̅ )( ) and ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ̅ )( ) ( )( ) and analogously ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ̅ )( ) ( )( ) ( )( ) ( ̅ )( ) and ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ̅ )( ) ( )( ) where ( )( ) ( ̅ )( ) are defined by 59 and 64 respectively Then the solution satisfies the inequalities (( )( ) ( )( ) ) ( ) ( )( ) where ( )( ) is defined (( )( ) ( )( ) ) ( ) ( )( ) ( )( ) ( )( ) ( )( ) (( )( ) ( )( ) ) ( )( ) ( )( ) ( [ ] ( ) ( )( ) (( )( ) ( )( ) ( )( ) ) ( ) ( ) ( )( ) ( )( ) ( )( ) [ ] ) ( )( ) (( )( ) ( )( ) ) 121
  • 40. Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.2, No.4, 2012 ( )( ) ( ) (( )( ) ( )( ) ) ( )( ) (( )( ) ( )( ) ) ( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) [ ] ( ) ( )( ) (( )( ) ( )( ) ) ( )( ) (( )( ) ( )( ) ) ( )( ) ( )( ) [ ] ( )( ) (( )( ) ( )( ) ( )( ) ) Definition of ( )( ) ( )( ) ( )( ) ( )( ) :- Where ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) Behavior of the solutions If we denote and define Definition of ( )( ) ( )( ) ( )( ) ( )( ) : (g) ( )( ) ( )( ) ( )( ) ( )( ) four constants satisfying ( )( ) ( )( ) ( )( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) (( ) ) ( )( ) (( ) ) ( )( ) Definition of ( )( ) ( )( ) ( )( ) ( )( ) ( ) ( ) : (h) By ( )( ) ( )( ) and respectively ( )( ) ( )( ) the roots of the equations ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) and ( )( ) ( ( ) ) ( )( ) ( ) ( )( ) and Definition of ( ̅ )( ) ( ̅ )( ) ( ̅ )( ) ( ̅ )( ) : By ( ̅ )( ) ( ̅ )( ) and respectively ( ̅ )( ) ( ̅ )( ) the ( ) ( ) ( ) ( ) ( ) roots of the equations ( ) ( ) ( ) ( ) and ( )( ) ( ( ) ) ( )( ) ( ) ( )( ) Definition of ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) :- (i) If we define ( )( ) ( )( ) ( )( ) ( )( ) by ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ̅ )( ) ( )( ) ( )( ) ( ̅ )( ) and ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ̅ )( ) ( )( ) 122
  • 41. Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.2, No.4, 2012 and analogously ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ̅ )( ) ( )( ) ( )( ) ( ̅ )( ) and ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ̅ )( ) ( )( ) where ( )( ) ( ̅ )( ) are defined respectively Then the solution satisfies the inequalities (( )( ) ( )( ) ) ( )( ) ( ) where ( )( ) is defined (( )( ) ( )( ) ) ( )( ) ( ) ( )( ) ( )( ) ( )( ) (( )( ) ( )( ) ) ( )( ) ( )( ) ( [ ] ( ) ( )( ) (( )( ) ( )( ) ( )( ) ) ( )( ) ( )( ) ( )( ) ( )( ) [ ] ) ( )( ) (( )( ) ( )( ) ) ( )( ) (( )( ) ( )( ) ) ( ) ( )( ) (( )( ) ( )( ) ) ( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) [ ] ( ) ( )( ) (( )( ) ( )( ) ) ( )( ) (( )( ) ( )( ) ) ( )( ) ( )( ) [ ] ( )( ) (( )( ) ( )( ) ( )( ) ) Definition of ( )( ) ( )( ) ( )( ) ( )( ) :- Where ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) Behavior of the solutions If we denote and define Definition of ( )( ) ( )( ) ( )( ) ( )( ) : (j) ( )( ) ( )( ) ( )( ) ( )( ) four constants satisfying ( )( ) ( )( ) ( )( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) (( ) ) ( )( ) (( ) ) ( )( ) 123
  • 42. Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.2, No.4, 2012 Definition of ( )( ) ( )( ) ( )( ) ( )( ) ( ) ( ) : (k) By ( )( ) ( )( ) and respectively ( )( ) ( )( ) the roots of the equations ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) and ( ) ( ) ( ) ( )( ) and Definition of ( ̅ )( ) ( ̅ )( ) ( ̅ )( ) ( ̅ )( ) : By ( ̅ )( ) ( ̅ )( ) and respectively ( ̅ )( ) ( ̅ )( ) the ( ) ( ) ( ) ( ) ( ) roots of the equations ( ) ( ) ( ) ( ) and ( )( ) ( ( ) ) ( )( ) ( ) ( )( ) Definition of ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) :- (l) If we define ( )( ) ( )( ) ( )( ) ( )( ) by ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ̅ )( ) ( )( ) ( )( ) ( ̅ )( ) and ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ̅ )( ) ( )( ) and analogously ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ̅ )( ) ( )( ) ( )( ) ( ̅ )( ) and ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ̅ )( ) ( )( ) where ( )( ) ( ̅ )( ) are defined respectively Then the solution satisfies the inequalities (( )( ) ( )( ) ) ( )( ) ( ) where ( )( ) is defined (( )( ) ( )( ) ) ( )( ) ( ) ( )( ) ( )( ) ( )( ) (( )( ) ( )( ) ) ( )( ) ( )( ) ( [ ] ( ) ( )( ) (( )( ) ( )( ) ( )( ) ) ( )( ) ( )( ) ( )( ) ( )( ) [ ] ) ( )( ) (( )( ) ( )( ) ) ( )( ) (( )( ) ( )( ) ) ( ) ( )( ) (( )( ) ( )( ) ) ( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) [ ] ( ) ( )( ) (( )( ) ( )( ) ) 124
  • 43. Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.2, No.4, 2012 ( )( ) (( )( ) ( )( ) ) ( )( ) ( )( ) [ ] ( )( ) (( )( ) ( )( ) ( )( ) ) Definition of ( )( ) ( )( ) ( )( ) ( )( ) :- Where ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) Proof : From GLOBAL EQUATIONS we obtain ( ) ( )( ) (( )( ) ( )( ) ( )( ) ( )) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( ) Definition of :- It follows ( ) (( )( ) ( ( ) ) ( )( ) ( ) ( )( ) ) (( )( ) ( ( ) ) ( )( ) ( ) ( )( ) ) From which one obtains Definition of ( ̅ )( ) ( )( ) :- (a) For ( )( ) ( )( ) ( ̅ )( ) [ ( )( ) (( )( ) ( )( ) ) ] ( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ) )( ) (( )( ) ( )( ) ) ] , ( )( ) [ ( ( )( ) ( )( ) ( )( ) ( )( ) ( ) ( ) ( )( ) In the same manner , we get [ ( )( )((̅ )( ) (̅ )( ) ) ] (̅ )( ) ( ̅ )( ) (̅ )( ) (̅ )( ) ( )( ) ( ) ( ) )( )((̅ )( ) (̅ )( ) ) ] , ( ̅ )( ) [ ( ( )( ) (̅ )( ) ( ̅ )( ) From which we deduce ( )( ) ( ) ( ) ( ̅ )( ) (b) If ( )( ) ( )( ) ( ̅ )( ) we find like in the previous case, [ ( )( ) (( )( ) ( )( ) ) ] ( ) ( )( ) ( )( ) ( )( ) ( ) ( ) )( ) (( ( ) [ ( )( ) ( )( ) ) ] ( )( ) [ ( )( )((̅ )( ) (̅ )( ) ) ] (̅ )( ) ( ̅ )( ) (̅ )( ) [ ( )( )((̅ )( ) (̅ )( ) ) ] ( ̅ )( ) ( ̅ )( ) 125
  • 44. Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.2, No.4, 2012 (c) If ( )( ) ( ̅ )( ) ( )( ) , we obtain [ ( )( ) ((̅ )( ) (̅ )( )) ] (̅ )( ) ( ̅ )( ) (̅ )( ) ( )( ) ( ) ( ) [ ( )( ) ((̅ )( ) (̅ )( )) ] ( )( ) ( ̅ )( ) And so with the notation of the first part of condition (c) , we have ( ) Definition of ( ) :- ( ) ( )( ) ( ) ( ) ( )( ) , ( ) ( ) ( ) In a completely analogous way, we obtain ( ) Definition of ( ) :- ( ) ( )( ) ( ) ( ) ( )( ) , ( ) ( ) ( ) Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the theorem. Particular case : If ( )( ) ( )( ) ( )( ) ( )( ) and in this case ( )( ) ( ̅ )( ) if in addition ( )( ) ( )( ) then ( ) ( ) ( ) ( ) and as a consequence ( ) ( )( ) ( ) this also defines ( )( ) for the special case Analogously if ( )( ) ( )( ) ( )( ) ( )( ) and then ( )( ) ( ̅ )( ) if in addition ( )( ) ( )( ) then ( ) ( )( ) ( ) This is an important consequence of the relation between ( )( ) and ( ̅ )( ) and definition of ( )( ) we obtain ( ) ( )( ) (( )( ) ( )( ) ( )( ) ( )) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( ) Definition of :- It follows ( ) (( )( ) ( ( ) ) ( )( ) ( ) ( )( ) ) (( )( ) ( ( ) ) ( )( ) ( ) ( )( ) ) From which one obtains Definition of ( ̅ )( ) ( )( ) :- (d) For ( )( ) ( )( ) ( ̅ )( ) [ ( )( )(( )( ) ( )( ) ) ] ( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ) )( )(( )( ) ( )( ) ) ] , ( )( ) [ ( ( )( ) ( )( ) ( )( ) 126
  • 45. Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.2, No.4, 2012 ( )( ) ( ) ( ) ( )( ) In the same manner , we get [ ( )( ) ((̅ )( ) (̅ )( ) ) ] (̅ )( ) ( ̅ )( ) (̅ )( ) (̅ )( ) ( )( ) ( ) ( ) )( ) ((̅ )( ) (̅ )( ) ) ] , ( ̅ )( ) [ ( ( )( ) (̅ )( ) ( ̅ )( ) From which we deduce ( )( ) ( ) ( ) ( ̅ )( ) (e) If ( )( ) ( )( ) ( ̅ )( ) we find like in the previous case, [ ( )( ) (( )( ) ( )( ) ) ] ( )( ) ( )( ) ( )( ) ( )( ) [ ( )( ) (( )( ) ( )( ) ) ] ( ) ( ) ( )( ) [ ( )( )((̅ )( ) (̅ )( ) ) ] (̅ )( ) ( ̅ )( ) (̅ )( ) [ ( )( )((̅ )( ) (̅ )( ) ) ] ( ̅ )( ) ( ̅ )( ) (f) If ( )( ) ( ̅ )( ) ( )( ) , we obtain [ ( )( )((̅ )( ) (̅ )( ) ) ] (̅ )( ) ( ̅ )( ) (̅ )( ) ( )( ) ( ) ( ) [ ( )( )((̅ )( ) (̅ )( ) ) ] ( )( ) ( ̅ )( ) And so with the notation of the first part of condition (c) , we have ( ) Definition of ( ) :- ( ) ( )( ) ( ) ( ) ( )( ) , ( ) ( ) ( ) In a completely analogous way, we obtain ( ) Definition of ( ) :- ( ) ( )( ) ( ) ( ) ( )( ) , ( ) ( ) ( ) Particular case : If ( )( ) ( )( ) ( )( ) ( )( ) and in this case ( )( ) ( ̅ )( ) if in addition ( )( ) ( )( ) then ( ) ( ) ( ) ( ) and as a consequence ( ) ( )( ) ( ) Analogously if ( )( ) ( )( ) ( )( ) ( )( ) and then ( )( ) ( ̅ )( ) if in addition ( )( ) ( )( ) then ( ) ( )( ) ( ) This is an important consequence of the relation between ( )( ) and ( ̅ )( ) From GLOBAL EQUATIONS we obtain ( ) ( )( ) (( )( ) ( )( ) ( )( ) ( )) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( ) Definition of :- 127
  • 46. Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.2, No.4, 2012 It follows ( ) (( )( ) ( ( ) ) ( )( ) ( ) ( )( ) ) (( )( ) ( ( ) ) ( )( ) ( ) ( )( ) ) From which one obtains (a) For ( )( ) ( )( ) ( ̅ )( ) [ ( )( ) (( )( ) ( )( ) ) ] ( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ) )( ) (( )( ) ( )( ) ) ] , ( )( ) [ ( ( )( ) ( )( ) ( )( ) ( )( ) ( ) ( ) ( )( ) In the same manner , we get [ ( )( )((̅ )( ) (̅ )( ) ) ] (̅ )( ) ( ̅ )( ) (̅ )( ) (̅ )( ) ( )( ) ( ) ( ) )( )((̅ )( ) (̅ )( ) ) ] , ( ̅ )( ) [ ( ( )( ) (̅ )( ) ( ̅ )( ) Definition of ( ̅ )( ) :- From which we deduce ( )( ) ( ) ( ) ( ̅ )( ) (b) If ( )( ) ( )( ) ( ̅ )( ) we find like in the previous case, [ ( )( ) (( )( ) ( )( ) ) ] ( )( ) ( )( ) ( )( ) ( )( ) [ ( )( ) (( )( ) ( )( ) ) ] ( ) ( ) ( )( ) [ ( )( ) ((̅ )( ) (̅ )( ) ) ] (̅ )( ) ( ̅ )( ) (̅ )( ) [ ( )( ) ((̅ )( ) (̅ )( ) ) ] ( ̅ )( ) ( ̅ )( ) (c) If ( )( ) ( ̅ )( ) ( )( ) , we obtain [ ( )( ) ((̅ )( ) (̅ )( ) ) ] (̅ )( ) ( ̅ )( ) (̅ )( ) ( )( ) ( ) ( ) [ ( )( ) ((̅ )( ) (̅ )( ) ) ] ( )( ) ( ̅ )( ) And so with the notation of the first part of condition (c) , we have ( ) Definition of ( ) :- ( ) ( )( ) ( ) ( ) ( )( ) , ( ) ( ) ( ) In a completely analogous way, we obtain ( ) Definition of ( ) :- ( ) ( )( ) ( ) ( ) ( )( ) , ( ) ( ) ( ) Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the theorem. 128
  • 47. Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.2, No.4, 2012 Particular case : If ( )( ) ( )( ) ( )( ) ( )( ) and in this case ( )( ) ( ̅ )( ) if in addition ( )( ) ( )( ) then ( ) ( ) ( ) ( ) and as a consequence ( ) ( )( ) ( ) Analogously if ( )( ) ( )( ) ( )( ) ( )( ) and then ( )( ) ( ̅ )( ) if in addition ( )( ) ( )( ) then ( ) ( )( ) ( ) This is an important consequence of the relation between ( )( ) and ( ̅ )( ) : From GLOBAL EQUATIONS we obtain ( ) ( )( ) (( )( ) ( )( ) ( )( ) ( )) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( ) Definition of :- It follows ( ) (( )( ) ( ( ) ) ( )( ) ( ) ( )( ) ) (( )( ) ( ( ) ) ( )( ) ( ) ( )( ) ) From which one obtains Definition of ( ̅ )( ) ( )( ) :- (d) For ( )( ) ( )( ) ( ̅ )( ) [ ( )( ) (( )( ) ( )( ) ) ] ( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ) )( ) (( , ( )( ) [ ( )( ) ( )( ) ) ] ( )( ) ( )( ) ( )( ) ( )( ) ( ) ( ) ( )( ) In the same manner , we get [ ( )( )((̅ )( ) (̅ )( ) ) ] (̅ )( ) ( ̅ )( ) (̅ )( ) (̅ )( ) ( )( ) ( ) ( ) )( )((̅ )( ) (̅ )( ) ) ] , ( ̅ )( ) ( ̅ )( ) [ ( ( )( ) (̅ )( ) From which we deduce ( )( ) ( ) ( ) ( ̅ )( ) (e) If ( )( ) ( )( ) ( ̅ )( ) we find like in the previous case, [ ( )( ) (( )( ) ( )( ) ) ] ( )( ) ( )( ) ( )( ) ( )( ) [ ( )( ) (( )( ) ( )( ) ) ] ( ) ( ) ( )( ) [ ( )( )((̅ )( ) (̅ )( ) ) ] (̅ )( ) ( ̅ )( ) (̅ )( ) [ ( )( )((̅ )( ) (̅ )( ) ) ] ( ̅ )( ) ( ̅ )( ) (f) If ( )( ) ( ̅ )( ) ( )( ) , we obtain [ ( )( ) ((̅ )( ) (̅ )( )) ] (̅ )( ) ( ̅ )( ) (̅ )( ) ( )( ) ( ) ( ) [ ( )( ) ((̅ )( ) (̅ )( )) ] ( )( ) ( ̅ )( ) And so with the notation of the first part of condition (c) , we have 129
  • 48. Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.2, No.4, 2012 ( ) Definition of ( ) :- ( ) ( )( ) ( ) ( ) ( )( ) , ( ) ( ) ( ) In a completely analogous way, we obtain Definition of ( ) ( ) :- ( ) ( )( ) ( ) ( ) ( )( ) , ( ) ( ) ( ) Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the theorem. Particular case : If ( )( ) ( )( ) ( )( ) ( )( ) and in this case ( )( ) ( ̅ )( ) if in addition ( )( ) ( )( ) then ( ) ( ) ( ) ( ) and as a consequence ( ) ( )( ) ( ) this also defines ( )( ) for the special case . Analogously if ( )( ) ( )( ) ( )( ) ( )( ) and then ( ) ( ) ( ) ( ) ( ̅ ) if in addition ( ) ( )( ) then ( ) ( )( ) ( ) This is an important consequence of the relation between ( ) and ( ̅ ) and definition of ( )( ) ( ) ( ) From GLOBAL EQUATIONS we obtain ( ) ( )( ) (( )( ) ( )( ) ( )( ) ( )) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( ) Definition of :- It follows ( ) (( )( ) ( ( ) ) ( )( ) ( ) ( )( ) ) (( )( ) ( ( ) ) ( )( ) ( ) ( )( ) ) From which one obtains Definition of ( ̅ )( ) ( )( ) :- (g) For ( )( ) ( )( ) ( ̅ )( ) [ ( )( ) (( )( ) ( )( ) ) ] ( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ) )( ) (( )( ) ( )( ) ) ] , ( )( ) [ ( ( )( ) ( )( ) ( )( ) ( )( ) ( ) ( ) ( )( ) In the same manner , we get [ ( )( )((̅ )( ) (̅ )( ) ) ] (̅ )( ) ( ̅ )( ) (̅ )( ) (̅ )( ) ( )( ) ( ) ( ) )( )((̅ )( ) (̅ )( ) ) ] , ( ̅ )( ) [ ( ( )( ) (̅ )( ) ( ̅ )( ) From which we deduce ( )( ) ( ) ( ) ( ̅ )( ) 130
  • 49. Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.2, No.4, 2012 (h) If ( )( ) ( )( ) ( ̅ )( ) we find like in the previous case, [ ( )( ) (( )( ) ( )( ) ) ] ( )( ) ( )( ) ( )( ) ( )( ) [ ( )( ) (( )( ) ( )( ) ) ] ( ) ( ) ( )( ) [ ( )( )((̅ )( ) (̅ )( ) ) ] (̅ )( ) ( ̅ )( ) (̅ )( ) [ ( )( )((̅ )( ) (̅ )( ) ) ] ( ̅ )( ) ( ̅ )( ) (i) If ( )( ) ( ̅ )( ) ( )( ) , we obtain [ ( )( ) ((̅ )( ) (̅ )( )) ] (̅ )( ) ( ̅ )( ) (̅ )( ) ( )( ) ( ) ( ) [ ( )( ) ((̅ )( ) (̅ )( )) ] ( )( ) ( ̅ )( ) And so with the notation of the first part of condition (c) , we have Definition of ( ) ( ) :- ( ) ( )( ) ( ) ( ) ( )( ) , ( ) ( ) ( ) In a completely analogous way, we obtain Definition of ( ) ( ) :- ( ) ( )( ) ( ) ( ) ( )( ) , ( ) ( ) ( ) Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the theorem. Particular case : If ( )( ) ( )( ) ( )( ) ( )( ) and in this case ( )( ) ( ̅ )( ) if in addition ( )( ) ( )( ) then ( ) ( ) ( ) ( ) and as a consequence ( ) ( )( ) ( ) this also defines ( )( ) for the special case . Analogously if ( )( ) ( )( ) ( )( ) ( )( ) and then ( ) ( ) ( ) ( ) ( ̅ ) if in addition ( ) ( )( ) then ( ) ( )( ) ( ) This is an important consequence of the relation between ( ) and ( ̅ ) and definition of ( )( ) ( ) ( ) we obtain ( ) ( )( ) (( )( ) ( )( ) ( )( ) ( )) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( ) Definition of :- It follows ( ) (( )( ) ( ( ) ) ( )( ) ( ) ( )( ) ) (( )( ) ( ( ) ) ( )( ) ( ) ( )( ) ) From which one obtains 131
  • 50. Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.2, No.4, 2012 Definition of ( ̅ )( ) ( )( ) :- (j) For ( )( ) ( )( ) ( ̅ )( ) [ ( )( ) (( )( ) ( )( ) ) ] ( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ) )( ) (( )( ) ( )( ) ) ] , ( )( ) [ ( ( )( ) ( )( ) ( )( ) ( )( ) ( ) ( ) ( )( ) In the same manner , we get [ ( )( )((̅ )( ) (̅ )( ) ) ] (̅ )( ) ( ̅ )( ) (̅ )( ) (̅ )( ) ( )( ) ( ) ( ) )( )((̅ )( ) (̅ )( ) ) ] , ( ̅ )( ) [ ( ( )( ) (̅ )( ) ( ̅ )( ) From which we deduce ( )( ) ( ) ( ) ( ̅ )( ) (k) If ( )( ) ( )( ) ( ̅ )( ) we find like in the previous case, [ ( )( ) (( )( ) ( )( ) ) ] ( )( ) ( )( ) ( )( ) ( )( ) [ ( )( ) (( )( ) ( )( ) ) ] ( ) ( ) ( )( ) [ ( )( ) ((̅ )( ) (̅ )( )) ] (̅ )( ) ( ̅ )( ) (̅ )( ) [ ( )( ) ((̅ )( ) (̅ )( )) ] ( ̅ )( ) ( ̅ )( ) (l) If ( )( ) ( ̅ )( ) ( )( ) , we obtain [ ( )( ) ((̅ )( ) (̅ )( )) ] (̅ )( ) ( ̅ )( ) (̅ )( ) ( )( ) ( ) ( ) [ ( )( ) ((̅ )( ) (̅ )( )) ] ( )( ) ( ̅ )( ) And so with the notation of the first part of condition (c) , we have Definition of ( ) ( ) :- ( ) ( )( ) ( ) ( ) ( )( ) , ( ) ( ) ( ) In a completely analogous way, we obtain Definition of ( ) ( ) :- ( ) ( )( ) ( ) ( ) ( )( ) , ( ) ( ) ( ) Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the theorem. Particular case : If ( )( ) ( )( ) ( )( ) ( )( ) and in this case ( )( ) ( ̅ )( ) if in addition ( )( ) ( ) ( ) ( ) ( ) then ( ) ( ) and as a consequence ( ) ( )( ) ( ) this also defines ( )( ) for the special case . Analogously if ( )( ) ( )( ) ( )( ) ( )( ) and then ( ) ( ) ( ) ( ) ( ̅ ) if in addition ( ) ( )( ) then ( ) ( )( ) ( ) This is an important consequence of the relation between ( )( ) and ( ̅ )( ) and definition of ( )( ) 132
  • 51. Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.2, No.4, 2012 We can prove the following Theorem 3: If ( )( ) ( )( ) are independent on , and the conditions ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) , ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) as defined, then the system If ( )( ) ( )( ) are independent on , and the conditions ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) , ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) as defined are satisfied , then the system If ( )( ) ( )( ) are independent on , and the conditions ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) , ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) as defined are satisfied , then the system If ( )( ) ( )( ) are independent on , and the conditions ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) , ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) as defined are satisfied , then the system If ( )( ) ( )( ) are independent on , and the conditions ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) 133
  • 52. Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.2, No.4, 2012 ( )( ) ( )( ) ( )( ) ( )( ) , ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) as defined satisfied , then the system If ( )( ) ( )( ) are independent on , and the conditions ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) , ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) as defined are satisfied , then the system ( )( ) [( )( ) ( )( ) ( )] ( )( ) [( )( ) ( )( ) ( )] ( )( ) [( )( ) ( )( ) ( )] ( )( ) ( )( ) ( )( ) ( ) ( )( ) ( )( ) ( )( ) ( ) ( )( ) ( )( ) ( )( ) ( ) has a unique positive solution , which is an equilibrium solution for the system ( )( ) [( )( ) ( )( ) ( )] ( )( ) [( )( ) ( )( ) ( )] ( )( ) [( )( ) ( )( ) ( )] ( )( ) ( )( ) ( )( ) ( ) ( )( ) ( )( ) ( )( ) ( ) ( )( ) ( )( ) ( )( ) ( ) has a unique positive solution , which is an equilibrium solution for ( )( ) [( )( ) ( )( ) ( )] ( )( ) [( )( ) ( )( ) ( )] ( )( ) [( )( ) ( )( ) ( )] ( )( ) ( )( ) ( )( ) ( ) 134
  • 53. Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.2, No.4, 2012 ( )( ) ( )( ) ( )( ) ( ) ( )( ) ( )( ) ( )( ) ( ) has a unique positive solution , which is an equilibrium solution ( )( ) [( )( ) ( )( ) ( )] ( )( ) [( )( ) ( )( ) ( )] ( )( ) [( )( ) ( )( ) ( )] ( )( ) ( )( ) ( )( ) (( )) ( )( ) ( )( ) ( )( ) (( )) ( )( ) ( )( ) ( )( ) (( )) has a unique positive solution , which is an equilibrium solution for the system ( )( ) [( )( ) ( )( ) ( )] ( )( ) [( )( ) ( )( ) ( )] ( )( ) [( )( ) ( )( ) ( )] ( )( ) ( )( ) ( )( ) ( ) ( )( ) ( )( ) ( )( ) ( ) ( )( ) ( )( ) ( )( ) ( ) has a unique positive solution , which is an equilibrium solution for the system ( )( ) [( )( ) ( )( ) ( )] ( )( ) [( )( ) ( )( ) ( )] ( )( ) [( )( ) ( )( ) ( )] ( )( ) ( )( ) ( )( ) ( ) ( )( ) ( )( ) ( )( ) ( ) ( )( ) ( )( ) ( )( ) ( ) 135
  • 54. Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.2, No.4, 2012 has a unique positive solution , which is an equilibrium solution for the system (a) Indeed the first two equations have a nontrivial solution if ( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( )( )( ) ( ) (a) Indeed the first two equations have a nontrivial solution if ( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( ) ( ) ( )( )( ) ( ) (a) Indeed the first two equations have a nontrivial solution if ( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( ) ( ) ( )( )( ) ( ) (a) Indeed the first two equations have a nontrivial solution if ( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( )( )( ) ( ) (a) Indeed the first two equations have a nontrivial solution if ( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( )( )( ) ( ) (a) Indeed the first two equations have a nontrivial solution if ( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( )( )( ) ( ) Definition and uniqueness of :- After hypothesis ( ) ( ) and the functions ( )( ) ( ) being increasing, it follows that there exists a unique for which ( ) . With this value , we obtain from the three first equations 136
  • 55. Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.2, No.4, 2012 ( )( ) ( )( ) , [( )( ) ( )( ) ( )] [( )( ) ( )( ) ( )] Definition and uniqueness of :- After hypothesis ( ) ( ) and the functions ( )( ) ( ) being increasing, it follows that there exists a unique for which ( ) . With this value , we obtain from the three first equations ( )( ) ( )( ) , [( )( ) ( )( ) ( )] [( )( ) ( )( ) ( )] Definition and uniqueness of :- After hypothesis ( ) ( ) and the functions ( )( ) ( ) being increasing, it follows that there exists a unique for which ( ) . With this value , we obtain from the three first equations ( )( ) ( )( ) , [( )( ) ( )( ) ( )] [( )( ) ( )( ) ( )] Definition and uniqueness of :- After hypothesis ( ) ( ) and the functions ( )( ) ( ) being increasing, it follows that there exists a unique for which ( ) . With this value , we obtain from the three first equations ( )( ) ( )( ) , [( )( ) ( )( ) ( )] [( )( ) ( )( ) ( )] Definition and uniqueness of :- After hypothesis ( ) ( ) and the functions ( )( ) ( ) being increasing, it follows that there exists a unique for which ( ) . With this value , we obtain from the three first equations ( )( ) ( )( ) , [( )( ) ( )( ) ( )] [( )( ) ( )( ) ( )] Definition and uniqueness of :- After hypothesis ( ) ( ) and the functions ( )( ) ( ) being increasing, it follows that there exists a unique for which ( ) . With this value , we obtain from the three first equations ( )( ) ( )( ) , [( )( ) ( )( ) ( )] [( )( ) ( )( ) ( )] (e) By the same argument, the equations 92,93 admit solutions if ( ) ( )( ) ( )( ) ( )( ) ( )( ) [( )( ) ( )( ) ( ) ( )( ) ( )( ) ( )] ( )( ) ( )( )( ) ( ) Where in ( ) must be replaced by their values from 96. It is easy to see that is a decreasing function in taking into account the hypothesis ( ) ( ) it follows that there exists a unique such that ( ) (f) By the same argument, the equations 92,93 admit solutions if ( ) ( )( ) ( )( ) ( )( ) ( )( ) 137
  • 56. Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.2, No.4, 2012 [( )( ) ( )( ) ( ) ( )( ) ( )( ) ( )] ( )( ) ( )( )( ) ( ) Where in ( )( ) must be replaced by their values from 96. It is easy to see that is a decreasing function in taking into account the hypothesis ( ) ( ) it follows that there exists a unique such that (( ) ) (g) By the same argument, the concatenated equations admit solutions if ( ) ( )( ) ( )( ) ( )( ) ( )( ) [( )( ) ( )( ) ( ) ( )( ) ( )( ) ( )] ( )( ) ( )( )( ) ( ) Where in ( ) must be replaced by their values from 96. It is easy to see that is a decreasing function in taking into account the hypothesis ( ) ( ) it follows that there exists a unique such that (( ) ) (h) By the same argument, the equations of modules admit solutions if ( ) ( )( ) ( )( ) ( )( ) ( )( ) [( )( ) ( )( ) ( ) ( )( ) ( )( ) ( )] ( )( ) ( )( )( ) ( ) Where in ( )( ) must be replaced by their values from 96. It is easy to see that is a decreasing function in taking into account the hypothesis ( ) ( ) it follows that there exists a unique such that (( ) ) (i) By the same argument, the equations (modules) admit solutions if ( ) ( )( ) ( )( ) ( )( ) ( )( ) [( )( ) ( )( ) ( ) ( )( ) ( )( ) ( )] ( )( ) ( )( )( ) ( ) Where in ( )( ) must be replaced by their values from 96. It is easy to see that is a decreasing function in taking into account the hypothesis ( ) ( ) it follows that there exists a unique such that (( ) ) (j) By the same argument, the equations (modules) admit solutions if ( ) ( )( ) ( )( ) ( )( ) ( )( ) [( )( ) ( )( ) ( ) ( )( ) ( )( ) ( )] ( )( ) ( )( )( ) ( ) Where in ( )( ) must be replaced by their values It is easy to see that is a decreasing function in taking into account the hypothesis ( ) ( ) it follows that there exists a unique such that ( ) Finally we obtain the unique solution of 89 to 94 ( ) , ( ) and ( )( ) ( )( ) , [( )( ) ( )( ) ( )] [( )( ) ( )( ) ( )] 138
  • 57. Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.2, No.4, 2012 ( )( ) ( )( ) , [( )( ) ( )( ) ( )] [( )( ) ( )( )( )] Obviously, these values represent an equilibrium solution Finally we obtain the unique solution (( )) , ( ) and ( )( ) ( )( ) , [( )( ) ( )( ) ( )] [( )( ) ( )( ) ( )] ( )( ) ( )( ) , [( )( ) ( )( ) (( ) )] [( )( ) ( )( ) (( ) )] Obviously, these values represent an equilibrium solution Finally we obtain the unique solution (( )) , ( ) and ( )( ) ( )( ) , [( )( ) ( )( ) ( )] [( )( ) ( )( ) ( )] ( )( ) ( )( ) , [( )( ) ( )( ) ( )] [( )( ) ( )( ) ( )] Obviously, these values represent an equilibrium solution Finally we obtain the unique solution ( ) , ( ) and ( )( ) ( )( ) , [( )( ) ( )( ) ( )] [( )( ) ( )( ) ( )] ( )( ) ( )( ) , [( )( ) ( )( ) (( ) )] [( )( ) ( )( ) (( ) )] Obviously, these values represent an equilibrium solution Finally we obtain the unique solution (( )) , ( ) and ( )( ) ( )( ) , [( )( ) ( )( ) ( )] [( )( ) ( )( ) ( )] ( )( ) ( )( ) , [( )( ) ( )( ) (( ) )] [( )( ) ( )( ) (( ) )] Obviously, these values represent an equilibrium solution Finally we obtain the unique solution (( )) , ( ) and 139
  • 58. Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.2, No.4, 2012 ( )( ) ( )( ) , [( )( ) ( )( ) ( )] [( )( ) ( )( ) ( )] ( )( ) ( )( ) , [( )( ) ( )( ) (( ) )] [( )( ) ( )( ) (( ) )] Obviously, these values represent an equilibrium solution ASYMPTOTIC STABILITY ANALYSIS Theorem 4: If the conditions of the previous theorem are satisfied and if the functions ( )( ) ( )( ) Belong to ( ) ( ) then the above equilibrium point is asymptotically stable. Proof: Denote Definition of :- , ( )( ) ( )( ) ( ) ( )( ) , ( ) Then taking into account equations (global) and neglecting the terms of power 2, we obtain (( )( ) ( )( ) ) ( )( ) ( )( ) (( )( ) ( )( ) ) ( )( ) ( )( ) (( )( ) ( )( ) ) ( )( ) ( )( ) (( )( ) ( )( ) ) ( )( ) ∑ ( ( )( ) ) (( )( ) ( )( ) ) ( )( ) ∑ ( ( )( ) ) (( )( ) ( )( ) ) ( )( ) ∑ ( ( )( ) ) If the conditions of the previous theorem are satisfied and if the functions ( )( ) ( )( ) Belong to ( ) ( ) then the above equilibrium point is asymptotically stable Denote Definition of :- , ( )( ) ( )( ) ( ) ( )( ) , (( ) ) taking into account equations (global)and neglecting the terms of power 2, we obtain (( )( ) ( )( ) ) ( )( ) ( )( ) (( )( ) ( )( ) ) ( )( ) ( )( ) 140
  • 59. Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.2, No.4, 2012 (( )( ) ( )( ) ) ( )( ) ( )( ) (( )( ) ( )( ) ) ( )( ) ∑ ( ( )( ) ) (( )( ) ( )( ) ) ( )( ) ∑ ( ( )( ) ) (( )( ) ( )( ) ) ( )( ) ∑ ( ( )( ) ) If the conditions of the previous theorem are satisfied and if the functions ( )( ) ( )( ) Belong to ( ) ( ) then the above equilibrium point is asymptotically stabl Denote Definition of :- , ( )( ) ( )( ) ( ) ( )( ) , (( ) ) Then taking into account equations (global) and neglecting the terms of power 2, we obtain (( )( ) ( )( ) ) ( )( ) ( )( ) (( )( ) ( )( ) ) ( )( ) ( )( ) (( )( ) ( )( ) ) ( )( ) ( )( ) (( )( ) ( )( ) ) ( )( ) ∑ ( ( )( ) ) (( )( ) ( )( ) ) ( )( ) ∑ ( ( )( ) ) (( )( ) ( )( ) ) ( )( ) ∑ ( ( )( ) ) If the conditions of the previous theorem are satisfied and if the functions ( )( ) ( )( ) Belong to ( ) ( ) then the above equilibrium point is asymptotically stabl Denote Definition of :- , ( )( ) ( )( ) ( ) ( )( ) , (( ) ) Then taking into account equations (global) and neglecting the terms of power 2, we obtain (( )( ) ( )( ) ) ( )( ) ( )( ) 141
  • 60. Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.2, No.4, 2012 (( )( ) ( )( ) ) ( )( ) ( )( ) (( )( ) ( )( ) ) ( )( ) ( )( ) (( )( ) ( )( ) ) ( )( ) ∑ ( ( )( ) ) (( )( ) ( )( ) ) ( )( ) ∑ ( ( )( ) ) (( )( ) ( )( ) ) ( )( ) ∑ ( ( )( ) ) If the conditions of the previous theorem are satisfied and if the functions ( )( ) ( )( ) Belong to ( ) ( ) then the above equilibrium point is asymptotically stable Denote Definition of :- , ( )( ) ( )( ) ( ) ( )( ) , (( ) ) Then taking into account equations (global) and neglecting the terms of power 2, we obtain (( )( ) ( )( ) ) ( )( ) ( )( ) (( )( ) ( )( ) ) ( )( ) ( )( ) (( )( ) ( )( ) ) ( )( ) ( )( ) (( )( ) ( )( ) ) ( )( ) ∑ ( ( )( ) ) (( )( ) ( )( ) ) ( )( ) ∑ ( ( )( ) ) (( )( ) ( )( ) ) ( )( ) ∑ ( ( )( ) ) If the conditions of the previous theorem are satisfied and if the functions ( )( ) ( )( ) Belong to ( ) ( ) then the above equilibrium point is asymptotically stable Denote Definition of :- , ( )( ) ( )( ) ( ) ( )( ) , (( ) ) 142
  • 61. Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.2, No.4, 2012 Then taking into account equations(global) and neglecting the terms of power 2, we obtain (( )( ) ( )( ) ) ( )( ) ( )( ) (( )( ) ( )( ) ) ( )( ) ( )( ) (( )( ) ( )( ) ) ( )( ) ( )( ) (( )( ) ( )( ) ) ( )( ) ∑ ( ( )( ) ) (( )( ) ( )( ) ) ( )( ) ∑ ( ( )( ) ) (( )( ) ( )( ) ) ( )( ) ∑ ( ( )( ) ) The characteristic equation of this system is (( )( ) ( )( ) ( )( ) ) (( )( ) ( )( ) ( )( ) ) [((( )( ) ( )( ) ( )( ) )( )( ) ( )( ) ( )( ) )] ((( )( ) ( )( ) ( )( ) ) ( )( ) ( )( ) ( )( ) ) ((( )( ) ( )( ) ( )( ) )( )( ) ( )( ) ( )( ) ) ((( )( ) ( )( ) ( )( ) ) ( )( ) ( )( ) ( )( ) ) ((( )( ) ) (( )( ) ( )( ) ( )( ) ( )( ) ) ( ) ( ) ) ((( )( ) ) (( )( ) ( )( ) ( )( ) ( )( ) ) ( ) ( ) ) ((( )( ) ) (( )( ) ( )( ) ( )( ) ( )( ) ) ( ) ( ) ) ( )( ) (( )( ) ( )( ) ( )( ) ) (( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ) ((( )( ) ( )( ) ( )( ) ) ( )( ) ( )( ) ( )( ) ) + (( )( ) ( )( ) ( )( ) ) (( )( ) ( )( ) ( )( ) ) [((( )( ) ( )( ) ( )( ) )( )( ) ( )( ) ( )( ) )] ((( )( ) ( )( ) ( )( ) ) ( )( ) ( )( ) ( )( ) ) ((( )( ) ( )( ) ( )( ) )( )( ) ( )( ) ( )( ) ) 143
  • 62. Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.2, No.4, 2012 ((( )( ) ( )( ) ( )( ) ) ( )( ) ( )( ) ( )( ) ) ((( )( ) ) (( )( ) ( )( ) ( )( ) ( )( ) ) ( ) ( ) ) ((( )( ) ) (( )( ) ( )( ) ( )( ) ( )( ) ) ( )( ) ) ((( )( ) ) (( )( ) ( )( ) ( )( ) ( )( ) ) ( ) ( ) ) ( )( ) (( )( ) ( )( ) ( )( ) ) (( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ) ((( )( ) ( )( ) ( )( ) ) ( )( ) ( )( ) ( )( ) ) + (( )( ) ( )( ) ( )( ) ) (( )( ) ( )( ) ( )( ) ) [((( )( ) ( )( ) ( )( ) )( )( ) ( )( ) ( )( ) )] ((( )( ) ( )( ) ( )( ) ) ( )( ) ( )( ) ( )( ) ) ((( )( ) ( )( ) ( )( ) )( )( ) ( )( ) ( )( ) ) ((( )( ) ( )( ) ( )( ) ) ( )( ) ( )( ) ( )( ) ) ((( )( ) ) (( )( ) ( )( ) ( )( ) ( )( ) ) ( )( ) ) ((( )( ) ) (( )( ) ( )( ) ( )( ) ( )( ) ) ( )( ) ) ((( )( ) ) (( )( ) ( )( ) ( )( ) ( )( ) ) ( )( ) ) ( )( ) (( )( ) ( )( ) ( )( ) ) (( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ) ((( )( ) ( )( ) ( )( ) ) ( )( ) ( )( ) ( )( ) ) + (( )( ) ( )( ) ( )( ) ) (( )( ) ( )( ) ( )( ) ) [((( )( ) ( )( ) ( )( ) )( )( ) ( )( ) ( )( ) )] ((( )( ) ( )( ) ( )( ) ) ( )( ) ( )( ) ( )( ) ) ((( )( ) ( )( ) ( )( ) )( )( ) ( )( ) ( )( ) ) 144
  • 63. Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.2, No.4, 2012 ((( )( ) ( )( ) ( )( ) ) ( )( ) ( )( ) ( )( ) ) ((( )( ) ) (( )( ) ( )( ) ( )( ) ( )( ) ) ( )( ) ) ((( )( ) ) (( )( ) ( )( ) ( )( ) ( )( ) ) ( ) ( ) ) ((( )( ) ) (( )( ) ( )( ) ( )( ) ( )( ) ) ( )( ) ) ( )( ) (( )( ) ( )( ) ( )( ) ) (( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ) ((( )( ) ( )( ) ( )( ) ) ( )( ) ( )( ) ( )( ) ) + (( )( ) ( )( ) ( )( ) ) (( )( ) ( )( ) ( )( ) ) [((( )( ) ( )( ) ( )( ) )( )( ) ( )( ) ( )( ) )] ((( )( ) ( )( ) ( )( ) ) ( )( ) ( )( ) ( )( ) ) ((( )( ) ( )( ) ( )( ) )( )( ) ( )( ) ( )( ) ) ((( )( ) ( )( ) ( )( ) ) ( )( ) ( )( ) ( )( ) ) ((( )( ) ) (( )( ) ( )( ) ( )( ) ( )( ) ) ( )( ) ) ((( )( ) ) (( )( ) ( )( ) ( )( ) ( )( ) ) ( )( ) ) ((( )( ) ) (( )( ) ( )( ) ( )( ) ( )( ) ) ( )( ) ) ( )( ) (( )( ) ( )( ) ( )( ) ) (( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ) ((( )( ) ( )( ) ( )( ) ) ( )( ) ( )( ) ( )( ) ) + (( )( ) ( )( ) ( )( ) ) (( )( ) ( )( ) ( )( ) ) [((( )( ) ( )( ) ( )( ) )( )( ) ( )( ) ( )( ) )] ((( )( ) ( )( ) ( )( ) ) ( )( ) ( )( ) ( )( ) ) ((( )( ) ( )( ) ( )( ) )( )( ) ( )( ) ( )( ) ) 145
  • 64. Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.2, No.4, 2012 ((( )( ) ( )( ) ( )( ) ) ( )( ) ( )( ) ( )( ) ) ((( )( ) ) (( )( ) ( )( ) ( )( ) ( )( ) ) ( )( ) ) ((( )( ) ) (( )( ) ( )( ) ( )( ) ( )( ) ) ( ) ( ) ) ((( )( ) ) (( )( ) ( )( ) ( )( ) ( )( ) ) ( )( ) ) ( )( ) (( )( ) ( )( ) ( )( ) ) (( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ) ((( )( ) ( )( ) ( )( ) ) ( )( ) ( )( ) ( )( ) ) And as one sees, all the coefficients are positive. It follows that all the roots have negative real part, and this proves the theorem. Acknowledgments: The introduction is a collection of information from various articles, Books, News Paper reports, Home Pages Of authors, Journal Reviews, Nature ‘s L:etters,Article Abstracts, Research papers, Abstracts Of Research Papers, Stanford Encyclopedia, Web Pages, Ask a Physicist Column, Deliberations with Professors, the internet including Wikipedia. We acknowledge all authors who have contributed to the same. In the eventuality of the fact that there has been any act of omission on the part of the authors, we regret with great deal of compunction, contrition, regret, trepidation and remorse. As Newton said, it is only because erudite and eminent people allowed one to piggy ride on their backs; probably an attempt has been made to look slightly further. Once again, it is stated that the references are only illustrative and not comprehensive REFERENCES 1. A HAIMOVICI: “On the growth of a two species ecological system divided on age groups”. Tensor, Vol 37 (1982),Commemoration volume dedicated to Professor Akitsugu Kawaguchi on his 80th birthday 2. FRTJOF CAPRA: “The web of life” Flamingo, Harper Collins See "Dissipative structures” pages 172- 188 3. HEYLIGHEN F. (2001): "The Science of Self-organization and Adaptivity", in L. D. Kiel, (ed) . Knowledge Management, Organizational Intelligence and Learning, and Complexity, in: The Encyclopedia of Life Support Systems ((EOLSS), (Eolss Publishers, Oxford) [http://www.eolss.net 4. MATSUI, T, H. Masunaga, S. M. Kreidenweis, R. A. Pielke Sr., W.-K. Tao, M. Chin, and Y. J Kaufman (2006), “Satellite-based assessment of marine low cloud variability associated with aerosol, atmospheric stability, and the diurnal cycle”, J. Geophys. Res., 111, D17204, doi:10.1029/2005JD006097 5. STEVENS, B, G. Feingold, W.R. Cotton and R.L. Walko, “Elements of the microphysical structure of numerically simulated nonprecipitating stratocumulus” J. Atmos. Sci., 53, 980-1006 6. FEINGOLD, G, Koren, I; Wang, HL; Xue, HW; Brewer, WA (2010), “Precipitation-generated oscillations in open cellular cloud fields” Nature, 466 (7308) 849-852, doi: 10.1038/nature09314, Published 12-Aug 2010 7. Paul Allen Tipler, Ralph A. Llewellyn (2003-01), Modern Physics, W. H. Freeman and Company, 146
  • 65. Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.2, No.4, 2012 pp. 87–88, ISBN 0-7167-4345-0 8. Rainville, S. et al. World Year of Physics: A direct test of E=mc2. Nature 438, 1096-1097 (22 December 2005) | doi: 10.1038/4381096a; Published online 21 December 2005. 9. F. Fernflores. The Equivalence of Mass and Energy. Stanford Encyclopedia of Philosophy 10. Relativity DeMystified, D. McMahon, Mc Graw Hill (USA), 2006, ISBN 0-07-145545-0 11. Dynamics and Relativity, J.R. Forshaw, A.G. Smith, Wiley, 2009, ISBN 978-0-470-01460-8 12. Hans, H. S.; Puri, S. P. (2003). Mechanics (2 ed.). Tata McGraw-Hill. p. 433. ISBN 0-07-047360- 9., Chapter 12 page 433 13. E. F. Taylor and J. A. Wheeler, Spacetime Physics, W.H. Freeman and Co., NY. 1992.ISBN 0-7167- 2327-1, see pp. 248-9 for discussion of mass remaining constant after detonation of nuclear bombs, until heat is allowed to escape. 14. Mould, Richard A. (2002). Basic relativity (2 ed.). Springer. p. 126. ISBN 0-387-95210-1., Chapter 5 page 126 15. Chow, Tail L. (2006). Introduction to electromagnetic theory: a modern perspective. Jones & Bartlett Learning. p. 392. ISBN 0-7637-3827-1., Chapter 10 page 392 16. Cockcroft-Walton experiment 17. Earth's gravitational self-energy is 4.6 × 10-10 that of Earth's total mass, or 2.7 trillion metric tons. Citation: The Apache Point Observatory Lunar Laser-Ranging Operation (APOLLO), T. W. Murphy, Jr. et al. University of Washington, Dept. of Physics (132 kB PDF.). 18. There is usually more than one possible way to define a field energy, because any field can be made to couple to gravity in many different ways. By general scaling arguments, the correct answer at everyday distances, which are long compared to the quantum gravity scale, should be minimal coupling, which means that no powers of the curvature tensor appear. Any non-minimal couplings, along with other higher order terms, are presumably only determined by a theory of quantum gravity, and within string theory, they only start to contribute to experiments at the string scale. 19. G. 't Hooft, "Computation of the quantum effects due to a four-dimensional pseudoparticle", Physical Review D14:3432–3450 (1976). 20. A. Belavin, A. M. Polyakov, A. Schwarz, Yu. Tyupkin, "Pseudoparticle Solutions to Yang Mills Equations", Physics Letters 59B:85 (1975). 21. F. Klinkhammer, N. Manton, "A Saddle Point Solution in the Weinberg Salam Theory", Physical Review D 30:2212. 22. Rubakov V. A. "Monopole Catalysis of Proton Decay", Reports on Progress in Physics 51:189–241 (1988). 23. S.W. Hawking "Black Holes Explosions?" Nature 248:30 (1974). 24. Lev B.Okun, The concept of Mass, Physics Today 42 (6), June 1969, p. 31–36, http://www. Physics today . org/vol-42/iss-6/vol42no6p31_36.pdf 25. Max Jammer (1999), Concepts of mass in contemporary physics and philosophy, Princeton University Press, p. 51, ISBN 0-691-01017-X 147
  • 66. Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.2, No.4, 2012 26. Eriksen, Erik; Vøyenli, Kjell (1976), "The classical and relativistic concepts of mass",Foundations of Physics (Springer) 6: 115–124, Bibcode 1976FoPh....6..115E,DOI:10.1007/BF00708670 27. Jannsen, M., Mecklenburg, M. (2007), From classical to relativistic mechanics: Electromagnetic models of the electron., in V. F. Hendricks, et al., , Interactions: Mathematics, Physics and Philosophy (Dordrecht: Springer): 65–134 28. Whittaker, E.T. (1951–1953), 2. Edition: A History of the theories of aether and electricity, vol. 1: The classical theories / vol. 2: The modern theories 1900–1926, London: Nelson 29. (Miller, Arthur I. (1981), Albert Einstein's special theory of relativity. Emergence (1905) and early interpretation (1905–1911), Reading: Addison–Wesley, ISBN 0-201-04679-2 30. Darrigol, O. (2005), "The Genesis of the theory of relativity." (PDF), Séminaire Poincaré1: 1–22 31. Philip Ball (Aug 23, 2011). "Did Einstein discover E = mc2?". Physics World. 32. Ives, Herbert E. (1952), "Derivation of the mass-energy relation", Journal of the Optical Society of America 42 (8): 540–543, DOI:10.1364/JOSA.42.000540 33. Jammer, Max (1961/1997). Concepts of Mass in Classical and Modern Physics. New York: Dover. ISBN 0-486-29998-8. 34. Stachel, John; Torretti, Roberto (1982), "Einstein's first derivation of mass-energy equivalence", American Journal of Physics 50 (8): 760–763, Bibcode1982AmJPh..50..760S, DOI:10.1119/1.12764 35. Ohanian, Hans (2008), "Did Einstein prove E=mc2?", Studies In History and Philosophy of Science Part B 40 (2): 167–173, arXiv:0805.1400,DOI:10.1016/j.shpsb.2009.03.002 36. Hecht, Eugene (2011), "How Einstein confirmed E0=mc2", American Journal of Physics 79 (6): 591– 600, Bibcode 2011AmJPh..79..591H, DOI:10.1119/1.3549223 37. Rohrlich, Fritz (1990), "An elementary derivation of E=mc2", American Journal of Physics 58 (4): 348–349, Bibcode 1990AmJPh..58..348R, DOI:10.1119/1.16168 38. (1996). Lise Meitner: A Life in Physics. California Studies in the History of Science. 13. Berkeley: University of California Press. pp. 236–237. 39. "consciousness". Merriam-Webster. Retrieved June 4, 2012. 40. Robert van Gulick (2004). "Consciousness". Stanford Encyclopedia of Philosophy. 41. Farthing G (1992). The Psychology of Consciousness. Prentice Hall. ISBN 978-0-13-728668-3. 42. John Searle (2005). "Consciousness". In Honderich T. The Oxford companion to philosophy. Oxford University Press. ISBN 978-0-19-926479-7. 43. Susan Schneider and Max Velmans (2008). "Introduction". In Max Velmans, Susan Schneider. The Blackwell Companion to Consciousness. Wiley. ISBN 978-0-470-75145-9. 44. Güven Güzeldere (1997). Ned Block, Owen Flanagan, Güven Güzeldere. ed. The Nature of Consciousness: Philosophical debates. Cambridge, MA: MIT Press. pp. 1–67. 45. J. J. Fins, N. D. Schiff, and K. M. Foley (2007). "Late recovery from the minimally conscious state: ethical and policy implications". Neurology 68: 304–307.PMID 17242341. 46. Locke, John. "An Essay Concerning Human Understanding (Chapter XXVII)". Australia: University of Adelaide. Retrieved August 20, 2010. 148
  • 67. Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.2, No.4, 2012 47. "Science & Technology: consciousness". Encyclopedia Britannica. Retrieved August 20, 2010. 48. Samuel Johnson (1756). A Dictionary of the English Language. Knapton. 49. (C. S. Lewis (1990). "Ch. 8: Conscience and conscious". Studies in words. Cambridge University Press. ISBN 978-0-521-39831-2. 50. Thomas Hobbes (1904). Leviathan: or, the Matter, Forme & Power of a Commonwealth, Ecclesiastical and Civill. University Press. p. 39. 51. James Ussher, Charles Richard Elrington (1613). The whole works, Volume 2. Hodges and Smith. p. 417. 52. James Hastings and John A. Selbie (2003). Encyclopedia of Religion and Ethics Part 7. Kessinger Publishing. p. 41. ISBN 0-7661-3677-9. 53. G. Melenaar. Mnemosyne, Fourth Series. 22. Brill. pp. 170–180. 54. Boris Hennig (2007). "Cartesian Conscientia". British Journal for the History of Philosophy 15: 455– 484. 55. Sara Heinämaa (2007). Consciousness: from perception to reflection in the history of philosophy. Springer. pp. 205–206. ISBN 978-1-4020-6081-6. 56. Stuart Sutherland (1989). "Consciousness". Macmillan Dictionary of Psychology. Macmillan. ISBN 978-0-333-38829-7. 57. Justin Sytsma and Edouard Machery (2010). "Two conceptions of subjective experience". Philosophical Studies 151: 299–327. DOI: 10.1007/s11098-009-9439-x. 58. Gilbert Ryle (1949). The Concept of Mind. University of Chicago Press. pp. 156–163.ISBN 978-0-226- 73296-1. 59. Michael V. Antony (2001). "Is consciousness ambiguous?". Journal of Consciousness Studies 8: 19–44. 60. Max Velmans (2009). "How to define consciousness—and how not to define consciousness". Journal of Consciousness Studies 16: 139–156. 61. Ned Block (1998). "On a confusion about a function of consciousness". In N. Block, O. Flanagan, G. Guzeldere. The Nature of Consciousness: Philosophical Debates. MIT Press. pp. 375–415. ISBN 978-0- 262-52210-6. 62. Daniel Dennett (2004). Consciousness Explained. Penguin. pp. 375. 149
  • 68. Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.2, No.4, 2012 First Author: 1Mr. K. N.Prasanna Kumar has three doctorates one each in Mathematics, Economics, Political Science. Thesis was based on Mathematical Modeling. He was recently awarded D.litt. for his work on ‘Mathematical Models in Political Science’--- Department of studies in Mathematics, Kuvempu University, Shimoga, Karnataka, India Corresponding Author:drknpkumar@gmail.com Second Author: 2Prof. B.S Kiranagi is the Former Chairman of the Department of Studies in Mathematics, Manasa Gangotri and present Professor Emeritus of UGC in the Department. Professor Kiranagi has guided over 25 students and he has received many encomiums and laurels for his contribution to Co homology Groups and Mathematical Sciences. Known for his prolific writing, and one of the senior most Professors of the country, he has over 150 publications to his credit. A prolific writer and a prodigious thinker, he has to his credit several books on Lie Groups, Co Homology Groups, and other mathematical application topics, and excellent publication history.-- UGC Emeritus Professor (Department of studies in Mathematics), Manasagangotri, University of Mysore, Karnataka, India Third Author: 3Prof. C.S. Bagewadi is the present Chairman of Department of Mathematics and Department of Studies in Computer Science and has guided over 25 students. He has published articles in both national and international journals. Professor Bagewadi specializes in Differential Geometry and its wide-ranging ramifications. He has to his credit more than 159 research papers. Several Books on Differential Geometry, Differential Equations are coauthored by him--- Chairman, Department of studies in Mathematics and Computer science, Jnanasahyadri Kuvempu University, Shankarghatta, Shimoga district, Karnataka, India 150
  • 69. This academic article was published by The International Institute for Science, Technology and Education (IISTE). The IISTE is a pioneer in the Open Access Publishing service based in the U.S. and Europe. The aim of the institute is Accelerating Global Knowledge Sharing. More information about the publisher can be found in the IISTE’s homepage: http://www.iiste.org The IISTE is currently hosting more than 30 peer-reviewed academic journals and collaborating with academic institutions around the world. Prospective authors of IISTE journals can find the submission instruction on the following page: http://www.iiste.org/Journals/ The IISTE editorial team promises to the review and publish all the qualified submissions in a fast manner. All the journals articles are available online to the readers all over the world without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. Printed version of the journals is also available upon request of readers and authors. IISTE Knowledge Sharing Partners EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open Archives Harvester, Bielefeld Academic Search Engine, Elektronische Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digtial Library , NewJour, Google Scholar