Advances in Physics Theories and Applications                                                                            www.iiste.org
ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
Vol 7, 2012



                          SOME CONTRIBUTIONS TO YANG MILLS THEORY

                                 FORTIFICATION –DISSIPATION MODELS
                   1
                    DR K N PRASANNA KUMAR, 2PROF B S KIRANAGI AND 3 PROF C S BAGEWADI




ABSTRACT. We provide a series of Models for the problems that arise in Yang Mills Theory. No claim
is made that the problem is solved. We do factorize the Yang Mills Theory and give a Model for the
values of LHS and RHS of the yang Mills theory. We hope these forms the stepping stone for further
factorizations and solutions to the subatomic denominations at Planck’s scale. Work also throws light on
some important factors like mass acquisition by symmetry breaking, relation between strong interaction
and weak interaction, Lagrangian Invariance despite transformations, Gauge field, Noncommutative
symmetry group of Gauge Theory and Yang Mills Theory itself.

           Key Words: Acquisition of mass, Symmetry Breaking, Strong interaction ,Unified Electroweak interaction,
           Continuous group of local transformations, Lagrangian Variance, Group generator in Gauge Theory, Vector field or
           Gauge field, commutative symmetry group in Gauge Theory, Yang Mills Theory

The outlay of the paper is as follows:

    I.             INTRODUCTION
    II.            FORMULATION OF THE PROBLEM
    III.           STATEMENT OF GOVERNING EQUATIONS
    IV.            THE SOLUTION-BODY FABRIC OF THE THESIS
    V.             ACKNOWLEDGEMENTS
    VI.            REFRENCES



              I.        INTRODUCTION:



We take in to consideration the following parameters, processes and concepts:

    (1) Acquisition of mass
    (2) Symmetry Breaking
    (3) Strong interaction
    (4) Unified Electroweak interaction
    (5) Continuous group of local transformations
    (6) Lagrangian Variance
    (7) Group generator in Gauge Theory
    (8) Vector field or Gauge field
    (9) Non commutative symmetry group in Gauge Theory
    (10)        Yang Mills Theory (We repeat the same Bank’s example. Individual
        debits and Credits are conservative so also the holistic one. Generalized
        theories are applied to various systems which are parameterized. And we live
        in ‘measurement world’. Classification is done on the parameters of various
        systems to which the Theory is applied. ).
    (11)        First Term of the Lagrangian of the Yang Mills Theory(LHS)




                                                                 304
Advances in Physics Theories and Applications                          www.iiste.org
ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
Vol 7, 2012




    (12)            RHS of the Yang Mills Theory




            II.       FORMULATION OF THE PROBLEM

                        SYMMETRY BREAKING AND ACQUISITION OF MASS:

                                          MODULE NUMBERED ONE

NOTATION :

    : CATEGORY ONE OF SYMMETRY BREAKING

    : CATEGORY TWO OF SYMMETRY BREAKING

    : CATEGORY THREE OF SYMMETRY BREAKING

    : CATEGORY ONE OF ACQUISITION OF MASS

    : CATEGORY TWO OF ACQUISITION OF MASS

    :CATEGORY THREE OF ACQUISITION OF MASS



           UNIFIED ELECTROWEAK INTERACTION AND STRONG INTERACTION:

                                       MODULE NUMBERED TWO:

==========================================================================
                                    ===

    : CATEGORY ONE OF UNIFIED ELECTROWEAK INTERACTION

    : CATEGORY TWO OFUNIFIED ELECTROWEAK INTERACTION

    : CATEGORY THREE OFUNIFIED ELECTROWEAK IONTERACTION

    :CATEGORY ONE OF STRONG INTERACTION

    : CATEGORY TWO OF STRONG INTERACTION

    : CATEGORY THREE OF STRONG INTERACTION

              LAGRANGIAN INVARIANCE AND CONTINOUS GROUP OF LOCAL
                              TRANSFORMATIONS:




                                                   305
Advances in Physics Theories and Applications                              www.iiste.org
ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
Vol 7, 2012



                                     MODULE NUMBERED THREE:

==========================================================================
===

    : CATEGORY ONE OF CONTINUOUS GROUP OF LOCAL TRANSFORMATIONS

    :CATEGORY TWO OFCONTINUOUS GROUP OF LOCAL TRANSFORMATIONS

    : CATEGORY THREE OF CONTINUOUS GROUP OF LOCAL TRANSFORMATION

    : CATEGORY ONE OF LAGRANGIAN INVARIANCE

    :CATEGORY TWO OF LAGRANGIAN INVARIANCE

    : CATEGORY THREE OF LAGRANGIAN INVARIANCE




    GROUP GENERATOR OF GAUGE THEORY AND VECTOR FIELD(GAUGE FIELD):

                                     : MODULE NUMBERED FOUR:

==========================================================================
==



    : CATEGORY ONE OF GROUP GENERATOR OF GAUGE THEORY

    : CATEGORY TWO OF GROUP GENERATOR OF GAUGE THEORY

    : CATEGORY THREE OF GROUP GENERATOR OF GAUGE THEORY

    :CATEGORY ONE OF VECTOR FIELD NAMELY GAUGE FIELD

    :CATEGORY TWO OF GAUGE FIELD

    : CATEGORY THREE OFGAUGE FIELD

   YANG MILLS THEORYAND NON COMMUTATIVE SYMMETRY GROUP IN GAUGE
                              THEORY:

                                       MODULE NUMBERED FIVE:

==========================================================================
===

   : CATEGORY ONE OF                   NON COMMUTATIVE SYMMETRY GROUP OF GAUGE
THEORY

   : CATEGORY TWO OF NON COMMUTATIVE SYMMETRY GROUP OPF GAUGE
THEORY

    :CATEGORY THREE OFNON COMMUTATIVE SYMMETRY GROUP OF GAUGE



                                                  306
Advances in Physics Theories and Applications                                                                    www.iiste.org
ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
Vol 7, 2012



THEORY

    : CATEGORY ONE OFYANG MILLS THEORY (Theory is applied to various subatomic
particle systems and the classification is done based on the parametricization of these systems.
There is not a single system known which is not characterized by some properties)

    :CATEGORY TWO OF YANG MILLS THEORY

    :CATEGORY THREE OF YANG MILLS THEORY

 LHS OF THE YANG MILLS THEORY AND RHS OF THE YANG MILLS THEORY.TAKEN
TO THE OTHER SIDE THE LHS WOULD DISSIPATE THE RHS WITH OR WITHOUT TIME
                                 LAG :

                                                      MODULE NUMBERED SIX:




==========================================================================
===

    : CATEGORY ONE OF LHS OF YANG MILLS THEORY

    : CATEGORY TWO OF LHS OF YANG MILLS THEORY

    : CATEGORY THREE OF LHS OF YANG MILLS THEORY

    : CATEGORY ONE OF RHS OF YANG MILLS THEORY

    : CATEGORY TWO OF RHS OF YANG MILLS THEORY

    : CATEGORY THREE OF RHS OF YANG MILLS THEORY (Theory applied to various
characterized systems and the systemic characterizations form the basis for the formulation of the
classification).

==========================================================================
=====

(    )(   )
              (   )(   )
                           (   )( ) (        )(   )
                                                      (   )(   )
                                                                   (   )( ) (  )( ) (  )( ) ( )( )
(    )(   )
              (   )(   )
                           (   )( ) : (      )(   )
                                                      (   )(   )
                                                                   (   ) ( )
                                                                              ( ) (( )    ( )
                                                                                         ) (    )( )
(    )(   )
              (   )(   )
                           (   )( ) (        )(   )
                                                      (   )(   )
                                                                   (    ( )      ( )
                                                                       ) ( ) ( ) (      ( )    ( )
                                                                                              ) ,
(    )(   )
              (   )(   )
                           (   )( ) (        )(   )
                                                      (   )(   )
                                                                   (   )( ) (   )( ) ( )( ) ( )( )

are Accentuation coefficients

(    )(   )
              (   )(   )
                           (   )(   )
                                        (    )( ) (       )( ) (       )( ) (     )( ) (     )( ) (     )( )
(    )(   )
              (   )(   )
                           (   )(   )
                                         (   )( ) (       )( ) (        )( ) (     )( ) (     )( ) (     )( )
(    )(   )
              (   )(   )
                           (   )(   )
                                        (    )( ) (       )( ) (       )( ) (     )( ) (     )( ) (     )( )
(    )(   )
              (   )(   )
                           (   )(   )
                                        ,(    )( ) (       )( ) (        )( ) (     )( ) (     )( ) (     )( )


                                                                          307
Advances in Physics Theories and Applications                                      www.iiste.org
ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
Vol 7, 2012



are Dissipation coefficients



               III.           STATEMENT OF GOVERNING EQUATIONS:



                                SYMMETRY BREAKING AND ACQUISITION OF MASS:                  1

                                                         MODULE NUMBERED ONE

The differential system of this model is now (Module Numbered one)

        (      )(   )
                                [(      )(       )
                                                     (    )( ) (        )]                  2

        (      )(   )
                                [(      )(       )
                                                     (    )( ) (        )]                  3

        (      )(   )
                                [(      )(       )
                                                     (    )( ) (        )]                  4

       (       )(   )
                               [(      )(    )
                                                     (   )( ) (    )]                       5

       (       )(   )
                               [(      )(    )
                                                     (   )( ) (    )]                       6

       (       )(   )
                               [(      )(    )
                                                     (   )( ) (    )]                       7

  (   )( ) (            )      First augmentation factor                                    8

  (   )( ) (        )         First detritions factor

            UNIFIED ELECTROWEAK INTERACTION AND STRONG INTERACTION:                         9

                                                         MODULE NUMBERED TWO



The differential system of this model is now ( Module numbered two)

        (      )(   )
                                [(      )(       )
                                                     (    )( ) (        )]                 10

        (      )(   )
                                [(      )(       )
                                                     (    )( ) (        )]                 11

        (      )(   )
                                [(      )(       )
                                                     (    )( ) (        )]                 12

       (       )(   )
                               [(      )(    )
                                                     (   )( ) ((    ) )]                   13

       (       )(   )
                               [(      )(    )
                                                     (   )( ) ((    ) )]                   14

       (       )(   )
                               [(      )(    )
                                                     (   )( ) ((    ) )]                   15

  (   )( ) (            )      First augmentation factor                                   16

  (   )( ) ((           ) )          First detritions factor                               17




                                                                             308
Advances in Physics Theories and Applications                                     www.iiste.org
ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
Vol 7, 2012



                 LAGRANGIAN INVARIANCE AND CONTINOUS GROUP OF LOCAL                       18
                                 TRANSFORMATIONS:

                                                        MODULE NUMBERED THREE



The differential system of this model is now (Module numbered three)

        (       )(   )
                               [(      )(       )
                                                    (      )( ) (    )]                   19

        (       )(   )
                               [(      )(       )
                                                    (      )( ) (    )]                   20

        (       )(   )
                               [(      )(       )
                                                    (      )( ) (    )]                   21

        (       )(   )
                               [(     )(    )
                                                    (     )( ) (    )]                    22

        (       )(   )
                               [(     )(    )
                                                    (     )( ) (    )]                    23

        (       )(   )
                               [(     )(    )
                                                    (     )( ) (    )]                    24

  (    )( ) (            )     First augmentation factor

  (    )( ) (            )     First detritions factor                                    25

                                                                                          26

      GROUP GENERATOR OF GAUGE THEORY AND VECTOR FIELD(GAUGE FIELD):

                                                        : MODULE NUMBERED FOUR:

==========================================================================
==

The differential system of this model is now (Module numbered Four)

        (       )(   )
                               [(      )(       )
                                                    (      )( ) (    )]                   27


        (       )(   )
                               [(      )(       )
                                                    (      )( ) (    )]                   28


        (       )(   )
                               [(      )(       )
                                                    (      )( ) (    )]                   29


        (       )(   )
                               [(     )(    )
                                                    (     )( ) ((   ) )]                  30


        (       )(   )
                               [(     )(    )
                                                    (     )( ) ((   ) )]                  31


        (       )(   )
                               [(     )(    )
                                                    (     )( ) ((   ) )]                  32

  (    )( ) (            )     First augmentation factor                                  33

  (    )( ) ((           ) )        First detritions factor                               34




                                                                           309
Advances in Physics Theories and Applications                                      www.iiste.org
ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
Vol 7, 2012



      YANG MILLS THEORYAND NON COMMUTATIVE SYMMETRY GROUP IN GAUGE                         35
                                 THEORY:

                                                        MODULE NUMBERED FIVE



The differential system of this model is now (Module number five)

        (       )(   )
                               [(      )(       )
                                                    (    )( ) (    )]                      36


        (       )(   )
                               [(      )(       )
                                                    (    )( ) (    )]                      37


        (       )(   )
                               [(      )(       )
                                                    (    )( ) (    )]                      38


        (       )(   )
                               [(     )(    )
                                                    (   )( ) ((   ) )]                     39


        (       )(   )
                               [(     )(    )
                                                    (   )( ) ((   ) )]                     40


        (       )(   )
                               [(     )(    )
                                                    (   )( ) ((   ) )]                     41

  (    )( ) (            )     First augmentation factor                                   42

  (    )( ) ((           ) )        First detritions factor                                43

 LHS OF THE YANG MILLS THEORY AND RHS OF THE YANG MILLS THEORY.TAKEN                       44
TO THE OTHER SIDE THE LHS WOULD DISSIPATE THE RHS WITH OR WITHOUT TIME
                                                                                           45
                                 LAG :

                                                        MODULE NUMBERED SIX

                                                                         :




The differential system of this model is now (Module numbered Six)

        (       )(   )
                               [(      )(       )
                                                    (    )( ) (    )]                      46


        (       )(   )
                               [(      )(       )
                                                    (    )( ) (    )]                      47


        (       )(   )
                               [(      )(       )
                                                    (    )( ) (    )]                      48


        (       )(   )
                               [(     )(    )
                                                    (   )( ) ((   ) )]                     49


        (       )(   )
                               [(     )(    )
                                                    (   )( ) ((   ) )]                     50




                                                                             310
Advances in Physics Theories and Applications                                                                                                              www.iiste.org
ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
Vol 7, 2012



        (       )(   )
                               [(       )(   )
                                                       (       )( ) ((          ) )]                                                                               51

  (    )( ) (            )     First augmentation factor                                                                                                           52

  (    )( ) ((           ) )        First detritions factor                                                                                                        53

HOLISTIC CONCATENATE SYTEMAL EQUATIONS HENCEFORTH REFERRED TO AS “GLOBAL                                                                                           54
EQUATIONS”

We take in to consideration the following parameters, processes and concepts:

      (1) Acquisition of mass
      (2) Symmetry Breaking
      (3) Strong interaction
      (4) Unified Electroweak interaction
      (5) Continuous group of local transformations
      (6) Lagrangian Variance
      (7) Group generator in Gauge Theory
      (8) Vector field or Gauge field
      (9) Non commutative symmetry group in Gauge Theory
      (10)        Yang Mills Theory (We repeat the same Bank’s example. Individual
          debits and Credits are conservative so also the holistic one. Generalized
          theories are applied to various systems which are parameterized. And we live
          in ‘measurement world’. Classification is done on the parameters of various
          systems to which the Theory is applied. ).
      (11)        First Term of the Lagrangian of the Yang Mills Theory(LHS)




      (12)                   RHS of the Yang Mills Theory




                                    (        )(    )
                                                           (       )( ) (        )     (    )(       )
                                                                                                         (       )       (    )(   )
                                                                                                                                       (       )                   55
        (       )(   )
                               [                                                                                                                       ]
                                        (         )(           )
                                                                   (        )    (     )(        )
                                                                                                     (       )       (       )(        )
                                                                                                                                           (       )

                                    (        )(    )
                                                           (       )( ) (        )     (    )(       )
                                                                                                         (       )       (    )(   )
                                                                                                                                       (       )                   56
        (       )(   )
                               [                                                                                                                       ]
                                        (         )(           )
                                                                   (        )    (     )(        )
                                                                                                     (       )       (       )(        )
                                                                                                                                           (       )

                                    (        )(    )
                                                           (       )( ) (        )     (    )(       )
                                                                                                         (       )       (    )(   )
                                                                                                                                       (       )                   57
        (       )(   )
                               [                                                                                                                       ]
                                        (         )(           )
                                                                   (        )    (     )(        )
                                                                                                     (       )       (       )(        )
                                                                                                                                           (       )




                                                                                       311
Advances in Physics Theories and Applications                                                                                                                                                                                                                                                       www.iiste.org
ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
Vol 7, 2012



Where (              )( ) (                     )         (            )( ) (                        )     (           )( ) (                       ) are first augmentation coefficients for category 1, 2 and 3                                                                                           58

    (   )(           )
                         (                ) ,         (           )(            )
                                                                                    (                ) ,           (           )(           )
                                                                                                                                                (           ) are second augmentation coefficient for category 1, 2 and 3

    (   )(           )
                         (                )           (           )(            )
                                                                                    (                )             (           )(           )
                                                                                                                                                (           ) are third augmentation coefficient for category 1, 2 and 3
                                                                                                                                                                                                                                                                                                            59

    (   )(                   )
                                 (            ) ,             (            )(                    )
                                                                                                     (             ) ,              (            )(                 )
                                                                                                                                                                        (             ) are fourth augmentation coefficient for category 1, 2 and
3

    (   )(                   )
                                 (            )           (            )(                )
                                                                                             (                 )               (         )(                 )
                                                                                                                                                                (                ) are fifth augmentation coefficient for category 1, 2 and 3

    (   )(                   )
                                 (            ),          (            )(                    )
                                                                                                 (             ) ,              (            )(                 )
                                                                                                                                                                    (                ) are sixth augmentation coefficient for category 1, 2 and 3

                                                                                                                                                                                                                                                                                                            60

                                                                       (                )(       )
                                                                                                           (               )( ) (                       )                   (         )(            )
                                                                                                                                                                                                        (               ) –(          )(        )
                                                                                                                                                                                                                                                    (                       )                               61
                                 ( )
             (               )                            [                                                                                                                                                                                                                             ]
                                                                           (             )(                        )
                                                                                                                       (                     )              (                   )(              )
                                                                                                                                                                                                    (               )        (       )(                 )
                                                                                                                                                                                                                                                            (                   )


                                                                       (                )(       )
                                                                                                         (                 )( ) (                       )                   (         )(        )
                                                                                                                                                                                                    (               ) –(             )(         )
                                                                                                                                                                                                                                                    (                   )                                   62
             (               )(       )
                                                          [                                                                                                                                                                                                                         ]
                                                                           (             )(                        )
                                                                                                                       (                    )               (               )(              )
                                                                                                                                                                                                (                   )        (       )(                 )
                                                                                                                                                                                                                                                            (                   )

                                                                       (                )(       )
                                                                                                           (               )( ) (                       )                   (         )(            )
                                                                                                                                                                                                        (           ) –(             )(         )
                                                                                                                                                                                                                                                    (                       )                               63
             (               )(       )
                                                          [                                                                                                                                                                                                                             ]
                                                                           (             )(                        )
                                                                                                                       (                    )               (                   )(          )
                                                                                                                                                                                                    (               )        (       )(                 )
                                                                                                                                                                                                                                                            (                   )

Where        (               )( ) (               )           (            )( ) (                    )             (           )( ) (                ) are first detrition coefficients for category 1, 2 and 3                                                                                             64

    (   )(       )
                     (                )               (           )(        )
                                                                                (                    )         (            )(          )
                                                                                                                                            (               ) are second detritions coefficients for category 1, 2 and 3

    (   )(       )
                     (                )               (           )(           )
                                                                                   (                 )             (           )(        )
                                                                                                                                             (              ) are third detritions coefficients for category 1, 2 and 3

    (   )(                   )
                                 (            )               (         )(                   )
                                                                                                 (             )                (            )(                 )
                                                                                                                                                                    (                ) are fourth detritions coefficients for category 1, 2 and 3

    (   )(                   )
                                 (            ) ,             (            )(                )
                                                                                                 (                 ) ,             (            )(              )
                                                                                                                                                                        (             ) are fifth detritions coefficients for category 1, 2 and 3

    (   )(                   )
                                 (            ) ,             (            )(                )
                                                                                                 (                 ) ,             (            )(                  )
                                                                                                                                                                        (             ) are sixth detritions coefficients for category 1, 2 and 3

                                                                                                                                                                                                                                                                                                            65

                                                                           (             )(          )
                                                                                                               (               )( ) (                           )                (         )(               )
                                                                                                                                                                                                                (        )       (         )(               )
                                                                                                                                                                                                                                                                (                   )                       66
             (                   )(   )
                                                              [                                                                                                                                                                                                                                 ]
                                                                               (             )(                            )
                                                                                                                               (                    )               (                )(                     )
                                                                                                                                                                                                                (        )       (         )(                       )
                                                                                                                                                                                                                                                                        (                   )

                                                                        (               )(           )
                                                                                                           (                )( ) (                          )                    (         )(               )
                                                                                                                                                                                                                (       )        (        )(                )
                                                                                                                                                                                                                                                                (               )                           67
             (                   )(   )
                                                              [                                                                                                                                                                                                                                 ]
                                                                            (                )(                        )
                                                                                                                           (                        )           (                )(                     )
                                                                                                                                                                                                            (           )        (        )(                        )
                                                                                                                                                                                                                                                                        (               )

                                                                           (             )(          )
                                                                                                               (               )( ) (                           )                (         )(               )
                                                                                                                                                                                                                (        )       (         )(               )
                                                                                                                                                                                                                                                                (                   )                       68
             (                   )(   )
                                                              [                                                                                                                                                                                                                                 ]
                                                                               (             )(                            )
                                                                                                                               (                    )               (                )(                     )
                                                                                                                                                                                                                (        )       (         )(                       )
                                                                                                                                                                                                                                                                        (                   )

Where        (               )( ) (                   )            (               )( ) (                  )               (            )( ) (                      ) are first augmentation coefficients for category 1, 2 and 3                                                                           69




                                                                                                                                                                                312
Advances in Physics Theories and Applications                                                                                                                                                                                                                                                      www.iiste.org
ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
Vol 7, 2012



    (    )(              )
                             (                ) ,         (            )(           )
                                                                                        (                 ) ,                 (           )(            )
                                                                                                                                                            (                 ) are second augmentation coefficient for category 1, 2 and 3

    (       )(               )
                                 (                )           (           )(                )
                                                                                                (                 )               (             )(               )
                                                                                                                                                                     (               ) are third augmentation coefficient for category 1, 2 and 3

    (       )(                       )
                                         (            )           (            )(                         )
                                                                                                              (                   )             (               )(                   )
                                                                                                                                                                                         (               ) are fourth augmentation coefficient for category 1, 2 and
3

    (       )(                       )
                                         (            ),          (             )(                        )
                                                                                                              (                   ) ,               (            )(                      )
                                                                                                                                                                                             (            ) are fifth augmentation coefficient for category 1, 2 and
3
                                                                                                                                                                                                                                                                                                           70
    (       )(                       )
                                         (            ),          (             )(                        )
                                                                                                              (                   ) ,               (            )(                      )
                                                                                                                                                                                             (            ) are sixth augmentation coefficient for category 1, 2 and
3

                                                                                                                                                                                                                                                                                                           71

                                                                            (                       )(    )
                                                                                                                          (               )( ) (                              )                      (        )(          )
                                                                                                                                                                                                                              (       ) –(        )(               )
                                                                                                                                                                                                                                                                       (           )                       72
                 (                   )(       )
                                                                  [                                                                                                                                                                                                                            ]
                                                                               (                    )(                            )
                                                                                                                                      (                         )             (                  )(                   )
                                                                                                                                                                                                                          (           )   (       )(                       )
                                                                                                                                                                                                                                                                               (           )

                                                                               (                    )(    )
                                                                                                                          (               )( ) (                                 )                   (        )(          )
                                                                                                                                                                                                                              (       ) –(        )(               )
                                                                                                                                                                                                                                                                       (           )                       73
                 (                   )(       )
                                                                  [                                                                                                                                                                                                                            ]
                                                                               (                    )(                            )
                                                                                                                                      (                         )             (                  )(                   )
                                                                                                                                                                                                                          (           )   (       )(                       )
                                                                                                                                                                                                                                                                               (           )

                                                                            (                       )(    )
                                                                                                                          (               )( ) (                              )                      (        )(          )
                                                                                                                                                                                                                              (       ) –(        )(               )
                                                                                                                                                                                                                                                                       (           )                       74
                 (                   )(       )
                                                                  [                                                                                                                                                                                                                            ]
                                                                               (                    )(                            )
                                                                                                                                      (                         )             (                  )(                   )
                                                                                                                                                                                                                          (           )   (       )(                       )
                                                                                                                                                                                                                                                                               (           )

                     (               )( ) (                ) ,                 (                )( ) (                        ) ,               (           )( ) (                       ) are first detrition coefficients for category 1, 2 and 3                                                        75

    (    )(          )
                         (                )           (           )(        )
                                                                                (                   ) ,           (           )(            )
                                                                                                                                                (               ) are second detrition coefficients for category 1,2 and 3

    (    )(                  )
                                 (                )           (           )(                    )
                                                                                                    (                 )               (             )(               )
                                                                                                                                                                         (               ) are third detrition coefficients for category 1,2 and 3

    (    )(                          )
                                         (            )           (            )(                         )
                                                                                                              (                   )             (               )(                   )
                                                                                                                                                                                         (               ) are fourth detritions coefficients for category 1,2 and 3

    (    )(                          )
                                         (            ) ,             (            )(                         )
                                                                                                                  (                   ) ,           (                )(                      )
                                                                                                                                                                                                 (            ) are fifth detritions coefficients for category 1,2 and 3

    (    )(                          )
                                         (            )           (            )(                         )
                                                                                                              (                   ) ,               (            )(                      )
                                                                                                                                                                                             (            ) are sixth detritions coefficients for category 1,2 and 3




                                                                                                                                                                                                                                                                                                           76

                                                          (               )(        )
                                                                                                     (                )( ) (                                )                (               )(               )
                                                                                                                                                                                                                  (               )   (      )(            )
                                                                                                                                                                                                                                                               (               )
            ( )
(       )                                     [                                                                                                                                                                                                                                            ]
                                                          (            )(                                     )
                                                                                                                  (                       )                 (                 )(                          )
                                                                                                                                                                                                              (                   )   (      )(                    )
                                                                                                                                                                                                                                                                       (           )


                                                                                                                                                                                                                                                                                                           77

                                                      (                )(       )
                                                                                                (                 )( ) (                                )                 (              )(               )
                                                                                                                                                                                                              (               )       (   )(           )
                                                                                                                                                                                                                                                           (               )
(       )(       )
                                              [                                                                                                                                                                                                                                        ]
                                                      (                )(                                 )
                                                                                                                  (                    )                 (                   )(                           )
                                                                                                                                                                                                              (               )       (   )(                       )
                                                                                                                                                                                                                                                                       (           )

                                                                                                                                                                                                                                                                                                           78




                                                                                                                                                                                                 313
Advances in Physics Theories and Applications                                                                                                                                                                                                                 www.iiste.org
ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
Vol 7, 2012




                                                     (            )(      )
                                                                                       (             )( ) (                            )                   (        )(                )
                                                                                                                                                                                          (            )     (     )(     )
                                                                                                                                                                                                                              (               )
(           )(       )
                                         [                                                                                                                                                                                                            ]
                                                   (             )(                             )
                                                                                                    (                     )            (                   )(                         )
                                                                                                                                                                                          (            )     (     )(                 )
                                                                                                                                                                                                                                          (       )

                                                                                                                                                                                                                                                                      79

    (           )( ) (           ),              (             )( ) (                  ),           (               )( ) (                 ) are first augmentation coefficients for category 1, 2 and 3

    (           )(       )
                             (               )             (      )(              )
                                                                                      (             ) ,               (           )(           )
                                                                                                                                                   (               ) are second augmentation coefficients for category 1, 2 and 3

    (           )(       )
                             (               )             (         )(            )
                                                                                       (                )             (           )(               )
                                                                                                                                                       (           ) are third augmentation coefficients for category 1, 2 and 3

   ( )(                          )
                                     (               ) ,          (           )(                            )
                                                                                                                (          )               (               )(                 )
                                                                                                                                                                                  (               ) are fourth augmentation coefficients for category 1,
2 and 3
                                                                                                                                                                                                                                                                      80
  ( )(                           )
                                     (               )           (         )(                        )
                                                                                                         (                )            (               )(                )
                                                                                                                                                                             (                ) are fifth augmentation coefficients for category 1, 2
and 3

  ( )(                           )
                                     (               )            (           )(                        )
                                                                                                            (              )           (               )(                 )
                                                                                                                                                                              (                   ) are sixth augmentation coefficients for category 1, 2
and 3

                                                                                                                                                                                                                                                                      81

                                                                                                                                                                                                                                                                      82

                                                           (          )(      )
                                                                                           (                )( ) (                         ) –(                      )(                   )
                                                                                                                                                                                              (            ) –(     )(        )
                                                                                                                                                                                                                                  (           )
             ( )
(           )                        [                                                                                                                                                                                                                    ]
                                                   (             )(                             )
                                                                                                    (                     )            (                   )(                         )
                                                                                                                                                                                          (             )     (    )(                 )
                                                                                                                                                                                                                                          (       )

                                                                                                                                                                                                                                                                      83

                                                         (           )(       )
                                                                                           (             )( ) (                            ) –(                      )(                   )
                                                                                                                                                                                              (            ) –(    )(      )
                                                                                                                                                                                                                               (              )
(           )(       )
                                     [                                                                                                                                                                                                                    ]
                                                                     (                          )                                                              (                      )                             (                 )
                                                   (             )                                  (                     )            (                   )                              (             )     (    )                      (       )

                                                                                                                                                                                                                                                                      84

                                                           (          )(      )
                                                                                           (                )( ) (                         ) –(                      )(                   )
                                                                                                                                                                                              (            ) –(     )(        )
                                                                                                                                                                                                                                  (           )
(           )(       )
                                     [                                                                                                                                                                                                                    ]
                                                   (             )(                             )
                                                                                                    (                     )            (                   )(                         )
                                                                                                                                                                                          (             )     (    )(                 )
                                                                                                                                                                                                                                          (       )

    (           )( ) (           )                 (           )( ) (                     )             (             )( ) (                   ) are first detritions coefficients for category 1, 2 and 3                                                            85

    (        )(          )
                             (               ) ,           (         )(           )
                                                                                      (              ) ,              (           )(           )
                                                                                                                                                   (               ) are second detritions coefficients for category 1, 2 and 3

    (        )(          )
                             (       )                 (        )(            )
                                                                                  (            ) ,              (         )(           )
                                                                                                                                           (               ) are third detrition coefficients for category 1,2 and 3

    (           )(               )
                                     (                 )         (         )(                           )
                                                                                                            (             )            (               )(                )
                                                                                                                                                                             (                    ) are fourth detritions coefficients for category 1,
2 and 3

        (        )(                  )
                                         (                 )         (        )(                            )
                                                                                                                (             )            (               )(                 )
                                                                                                                                                                                  (                ) are fifth detritions coefficients for category 1, 2
and 3

    (           )(               )
                                     (                 )         (         )(                           )
                                                                                                            (             )            (               )(                )
                                                                                                                                                                             (                    ) are sixth detritions coefficients for category 1, 2
and 3

                                                                                                                                                                                                                                                                      86




                                                                                                                                                                      314
Advances in Physics Theories and Applications                                                                                                                                                                                                                              www.iiste.org
ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
Vol 7, 2012




                                                                  (                )(          )
                                                                                                           (               )( ) (                                )            (       )(               )
                                                                                                                                                                                                           (        )       (         )(       )
                                                                                                                                                                                                                                                   (       )                       87
                 (               )(   )
                                                          [                                                                                                                                                                                                            ]
                                                                           (                   )(                      )
                                                                                                                           (                     )                   (           )(            )
                                                                                                                                                                                                   (            )       (        )(                )
                                                                                                                                                                                                                                                       (       )

                                                                  (                )(          )
                                                                                                           (               )( ) (                                )            (       )(               )
                                                                                                                                                                                                           (        )       (         )(   )
                                                                                                                                                                                                                                               (           )                       88
                 (               )(   )
                                                          [                                                                                                                                                                                                        ]
                                                                           (                   )(                      )
                                                                                                                           (                     )                   (           )(            )
                                                                                                                                                                                                   (           )        (        )(            )
                                                                                                                                                                                                                                                   (           )

                                                                  (                )(          )
                                                                                                           (               )( ) (                                )            (       )(               )
                                                                                                                                                                                                           (        )       (         )(       )
                                                                                                                                                                                                                                                   (       )                       89
                 (               )(   )
                                                          [                                                                                                                                                                                                            ]
                                                                           (                   )(                      )
                                                                                                                           (                     )                   (        )(               )
                                                                                                                                                                                                   (           )        (        )(            )
                                                                                                                                                                                                                                                   (           )

                                                                                                                                                                                                                                                                                  90

             (           )( ) (               )       (           )( ) (                           )       (               )( ) (                    )

                                                                                                                                                                                                                                                                                  91
    (    )(          )
                         (            )           (       )(           )
                                                                           (                    )              (               )(    )
                                                                                                                                         (                       )

    (    )(          )
                         (            )           (       )(           )
                                                                           (                    )                  (           )(        )
                                                                                                                                             (                   )

    (   )(               )
                             (            )           (        )(                  )
                                                                                       (                   )               (        )(                   )
                                                                                                                                                             (               ) are fourth augmentation coefficients for category 1, 2,and
3

    (   )(               )
                             (            ),          (        )(                      )
                                                                                           (               )               (        )(                   )
                                                                                                                                                             (               ) are fifth augmentation coefficients for category 1, 2,and 3

    (   )(               )
                             (            ),          (           )(                   )
                                                                                           (               ),              (         )(                      )
                                                                                                                                                                 (            ) are sixth augmentation coefficients for category 1, 2,and 3

                                                                                                                                                                                                                                                                                  92


                                                              (                )(          )
                                                                                                       (               )( ) (                            )                   (        )(           )
                                                                                                                                                                                                       (            ) –(             )(    )
                                                                                                                                                                                                                                               (           )                       93
                 (               )(   )
                                                          [                                                                                                                                                                                                        ]
                                                                           (                   )(                      )
                                                                                                                           (         )                       (               )(            )
                                                                                                                                                                                               (               ) –(             )(         )
                                                                                                                                                                                                                                               (           )

                                                              (                )(          )
                                                                                                       (               )( ) (                            )                   (        )(           )
                                                                                                                                                                                                       (            ) –(             )(    )
                                                                                                                                                                                                                                               (           )                       94
                 (               )(   )
                                                          [                                                                                                                                                                                                        ]
                                                                           (                   )(                      )
                                                                                                                           (         )                       (               )(            )
                                                                                                                                                                                               (               ) –(             )(         )
                                                                                                                                                                                                                                               (           )

                                                              (                )(          )
                                                                                                       (               )( ) (                                )                (       )(           )
                                                                                                                                                                                                       (            ) –(             )(    )
                                                                                                                                                                                                                                               (           )                       95
                 (               )(   )
                                                          [                                                                                                                                                                                                        ]
                                                                           (                   )(                      )
                                                                                                                           (             )                       (           )(            )
                                                                                                                                                                                               (               ) –(             )(         )
                                                                                                                                                                                                                                               (           )

                 (           )( ) (               )            (               )( ) (                          )               (     )( ) (                              )                                                                                                         96

    (   )(       )
                     (                )           (       )(           )
                                                                           (                   )               (               )(    )
                                                                                                                                         (                       )

    (   )(       )
                     (                )           (       )(           )
                                                                           (                    )              (               )(    )
                                                                                                                                         (                       )

    (   )(               )
                             (        )           (       )(                   )
                                                                                   (            ) ,                (           )(                )
                                                                                                                                                     (               )



    (   )(               )
                             (            ),          (        )(                      )
                                                                                           (               ),              (        )(                       )
                                                                                                                                                                 (            )



–(      )(               )
                             (            ) –(                )(                   )
                                                                                       (                   ) –(                     )(                   )
                                                                                                                                                             (               )




                                                                                                                                                                             315
Advances in Physics Theories and Applications                                                                                                                                                                                                                                                     www.iiste.org
ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
Vol 7, 2012



                                                                                                                                                                                                                                                                                                          97

                                                                                                                                                                                                                                                                                                          98
                                                                                                                                                                                                                                                                                                           99
                                                                       (               )(           )
                                                                                                                (                  )( ) (                               )                   (         )(        )
                                                                                                                                                                                                                    (       )       (        )(       )
                                                                                                                                                                                                                                                          (               )
                                  ( )
             (               )                                [                                                                                                                                                                                                                           ]
                                                                           (                )(                              )
                                                                                                                                (                       )                   (               )(                  )
                                                                                                                                                                                                                    (       )       (        )(               )
                                                                                                                                                                                                                                                                  (               )

                                                                           (                )(          )
                                                                                                                    (                  )( ) (                               )                (         )(           )
                                                                                                                                                                                                                        (       )       (        )(       )
                                                                                                                                                                                                                                                              (           )                               100
             (                    )(      )
                                                                  [                                                                                                                                                                                                                           ]
                                                                               (                )(                                 )
                                                                                                                                       (                    )                   (               )(                  )
                                                                                                                                                                                                                        (    )      (            )(               )
                                                                                                                                                                                                                                                                      (           )

                                                                           (                )(          )
                                                                                                                       (               )( ) (                               )                   (      )(           )
                                                                                                                                                                                                                        (       )       (        )(       )
                                                                                                                                                                                                                                                              (               )                           101
                                      ( )
                 (                )                               [                                                                                                                                                                                                                           ]
                                                                               (                )(                                 )
                                                                                                                                       (                    )                   (               )(                  )
                                                                                                                                                                                                                        (       )       (        )(               )
                                                                                                                                                                                                                                                                      (               )


                 (            )( ) (                      )           (         )( ) (                             )               (            )( ) (                          )                                                                                                                         102

        (            )(           )
                                      (               )           (            )(           )
                                                                                                (                   )                  (        )(              )
                                                                                                                                                                    (                   )

    (   )(           )
                         (                )               (        )(              )
                                                                                       (                   )               (               )(           )
                                                                                                                                                            (                   )

  ( )(                        )
                                  (               )           (           )(                    )
                                                                                                    (                   )               (           )(                          )
                                                                                                                                                                                    (               ) are fourth augmentation coefficients for category 1,2,
and 3

    (   )(                    )
                                  (               )           (           )(                    )
                                                                                                    (                   )               (           )(                          )
                                                                                                                                                                                    (               ) are fifth augmentation coefficients for category 1,2,and
3

    (   )(                    )
                                  (               )           (           )(                       )
                                                                                                       (                )                  (        )(                          )
                                                                                                                                                                                    (               ) are sixth augmentation coefficients for category 1,2, 3



                                                                                                                                                                                                                                                                                                          103
                                                                                                                                                                                                                                                                                                          104
                                                                      (                )(       )
                                                                                                                (               )( ) (                                  )                   (         )(        )
                                                                                                                                                                                                                    (       ) –(             )(       )
                                                                                                                                                                                                                                                          (               )
                                      ( )
             (                   )                            [                                                                                                                                                                                                                       ]
                                                                           (                )(                                 )
                                                                                                                                   (                )                   (               )(                  )
                                                                                                                                                                                                                (           ) –(            )(            )
                                                                                                                                                                                                                                                              (               )

                                                                      (                )(       )
                                                                                                               (               )( ) (                                   )                   (         )(        )
                                                                                                                                                                                                                    (       ) –(             )(       )
                                                                                                                                                                                                                                                          (               )                               105
             (                )(          )
                                                              [                                                                                                                                                                                                                       ]
                                                                           (                )(                                 )
                                                                                                                                   (                )                   (               )(                  )
                                                                                                                                                                                                                (           ) –(            )(            )
                                                                                                                                                                                                                                                              (               )

                                                                       (               )(          )
                                                                                                                (               )( ) (                                  )                   (         )(        )
                                                                                                                                                                                                                    (           ) –(             )(   )
                                                                                                                                                                                                                                                          (               )                               106
             (                   )(       )
                                                              [                                                                                                                                                                                                                       ]
                                                                           (                )(                                  )
                                                                                                                                    (               )                   (                   )(              )
                                                                                                                                                                                                                (           ) –(            )(                )
                                                                                                                                                                                                                                                                  (           )

         –(                  )( ) (                   )                (           )( ) (                           )                  (            )( ) (                          )                                                                                                                     107


    (   )(       )
                     (                    )           (           )(       )
                                                                               (                    )                  (            )(          )
                                                                                                                                                    (                   )

    (   )(           )
                         (                )               (        )(              )
                                                                                       (                    )               (              )(           )
                                                                                                                                                            (                       )

    (   )(                   )
                                 (            )           (        )(                      )
                                                                                               (               )                (              )(                       )
                                                                                                                                                                            (           ) are fourth detrition coefficients for category 1,2, and 3

    (   )(                   )
                                 (                )           (           )(                    )
                                                                                                    (                   )                  (        )(                          )
                                                                                                                                                                                    (               ) are fifth detrition coefficients for category 1,2, and 3




                                                                                                                                                                                        316
Advances in Physics Theories and Applications                                                                                                                                                                                                                   www.iiste.org
ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
Vol 7, 2012



–(    )(               )
                           (           ) , –(                   )(                    )
                                                                                          (                   ) –(                      )(                   )
                                                                                                                                                                 (                   ) are sixth detrition coefficients for category 1,2, and 3

                                                                                                                                                                                                                                                                        108
                                                                                                                                                                                                                                                                        109
           (               )(      )


                                                           (                 )(       )
                                                                                                  (               )( ) (                                 )               (            )(       )
                                                                                                                                                                                                   (       )     (    )(    )
                                                                                                                                                                                                                                (               )
                                               [                                                                                                                                                                                                            ]
                                                           (             )(                                   )
                                                                                                                  (                     )                (               )(                    )
                                                                                                                                                                                                   (       )     (    )(                )
                                                                                                                                                                                                                                            (           )

                                                                                                                                                                                                                                                                        110
           (               )(      )


                                                           (                 )(       )
                                                                                                  (               )( ) (                                 )               (           )(        )
                                                                                                                                                                                                   (       )     (    )(    )
                                                                                                                                                                                                                                (               )
                                               [                                                                                                                                                                                                            ]
                                                           (             )(                                   )
                                                                                                                  (                     )                (               )(                    )
                                                                                                                                                                                                   (       )     (    )(                )
                                                                                                                                                                                                                                            (           )

                                                                                                                                                                                                                                                                        111
           (               )(      )


                                                           (                 )(       )
                                                                                                  (               )( ) (                                 )               (            )(       )
                                                                                                                                                                                                   (       )     (    )(    )
                                                                                                                                                                                                                                (               )
                                               [                                                                                                                                                                                                            ]
                                                           (             )(                                   )
                                                                                                                  (                     )                (               )(                    )
                                                                                                                                                                                                   (       )     (    )(                )
                                                                                                                                                                                                                                            (           )

  (   )( ) (                   )       (           )( ) (                    )            (               )( ) (                       )                                                                                                                                112

  (   )(       )
                   (               )           (           )(            )
                                                                             (                )               (               )(           )
                                                                                                                                               (                 )

  (   )(       )
                   (               )           (           )(                )
                                                                                 (                )            (              )(                )
                                                                                                                                                    (                )

  (   )(                   )
                               (           )           (            )(                        )
                                                                                                  (                )               (            )(                       )
                                                                                                                                                                             (             ) - are fourth augmentation coefficients

  (   )(                   )
                               (           )           (            )(                        )
                                                                                                  (                )               (            )(                       )
                                                                                                                                                                             (             ) - fifth augmentation coefficients

  (   )(                   )
                               (           ),          (            )(                            )
                                                                                                      (               )             (               )(                       )
                                                                                                                                                                                 (         ) sixth augmentation coefficients

                                                                                                                                                                                                                                                                        113
                                                                                                                                                                                                                                                                        114
                                                                (                )(       )
                                                                                                          (            )( ) (                                ) –(                      )(          )
                                                                                                                                                                                                       (       ) –(    )(       )
                                                                                                                                                                                                                                    (               )
                               ( )
           (               )                           [                                                                                                                                                                                                    ]
                                                                (                    )(                               )
                                                                                                                          (                )                 (               )(                    )
                                                                                                                                                                                                       (   ) –(       )(                )
                                                                                                                                                                                                                                            (           )

                                                                (                )(       )
                                                                                                          (            )( ) (                                ) –(                      )(          )
                                                                                                                                                                                                       (       ) –(    )(       )
                                                                                                                                                                                                                                    (               )                   115
           (               )(      )
                                                       [                                                                                                                                                                                                    ]
                                                                (                    )(                               )
                                                                                                                          (                )                 (               )(                    )
                                                                                                                                                                                                       (   ) –(       )(                )
                                                                                                                                                                                                                                            (           )

                                                                (                )(       )
                                                                                                          (            )( ) (                                ) –(                      )(          )
                                                                                                                                                                                                       (       ) –(    )(       )
                                                                                                                                                                                                                                    (               )                   116
           (               )(      )
                                                       [                                                                                                                                                                                                    ]
                                                                (                    )(                               )
                                                                                                                          (                )                 (               )(                    )
                                                                                                                                                                                                       (   ) –(       )(                )
                                                                                                                                                                                                                                            (           )

  (   )( ) (                   )       (           )( ) (                        )                (           )( ) (                        )                                                                                                                           117

  (   )(       )
                   (               )           (           )(            )
                                                                             (                )               (               )(            )
                                                                                                                                                (                )

  (   )(       )
                   (               )           (           )(                )
                                                                                 (                )               (            )(               )
                                                                                                                                                    (                )

  (   )(                   )
                               (       )           (           )(                         )
                                                                                              (           )               (         )(                           )
                                                                                                                                                                     (           ) are fourth detrition coefficients for category 1, 2, and 3




                                                                                                                                                                         317
Advances in Physics Theories and Applications                                                                                                                                                                  www.iiste.org
ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
Vol 7, 2012



    (    )(             )
                            (               ),        (        )(                     )
                                                                                          (         )            (        )(                 )
                                                                                                                                                 (         ) are fifth detrition coefficients for category 1, 2, and
3

–(      )(              )
                            (               ) , –(             )(                    )
                                                                                         (          ) –(                  )(                 )
                                                                                                                                                 (         ) are sixth detrition coefficients for category 1, 2, and
3




                                                                                                                                                                                                                       118

Where we suppose                                                                                                                                                                                                       119

(A)               ( )(          )
                                    ( )(             )
                                                          (         )(       )
                                                                                 ( )(           )
                                                                                                    ( )(              )
                                                                                                                           (        )(   )                                                                             120



(B)               The functions (                                  )(   )
                                                                             (               )( ) are positive continuous increasing and bounded.

Definition of ( )(                           )
                                                     ( )( ) :

              (     )( ) (                       )            ( )(           )
                                                                                             ( ̂        )(       )

                                                                                                                                                                                                                       121
              (     )( ) (                  )                 ( )(       )
                                                                                      ( )(          )
                                                                                                                 ( ̂           )(    )


(C)                                     (        )( ) (                          )            ( )(      )                                                                                                              122

                                (           )( ) (                 )                 ( )(       )


Definition of ( ̂                            )(      )
                                                          ( ̂           )( ) :

              Where ( ̂                          )(       )
                                                              ( ̂            )(       )
                                                                                              ( )(      )
                                                                                                                 ( )(          )
                                                                                                                                    are positive constants and

They satisfy Lipschitz condition:                                                                                                                                                                                      123

                                                                                                                                                                   )( )
    (    )( ) (                     )        (           )( ) (                      )          (̂               )(   )                                     ( ̂                                                        124

                                                                                                                                                            )( )                                                       125
(       )( ) (              )           (        )( ) (                 )                 (̂        )(       )                                       ( ̂


With the Lipschitz condition, we place a restriction on the behavior of functions                                                                                                                                      126
( )( ) (        ) and( )( ) (      ) (       ) and (     ) are points belonging to the interval
[( ̂ )( ) ( ̂ )( ) ] . It is to be noted that ( )( ) (      ) is uniformly continuous. In the eventuality of
the fact, that if ( ̂ )( )     then the function ( ) ( ( )
                                                                 ) , the first augmentation coefficient
WOULD be absolutely continuous.

Definition of ( ̂                            )(       )
                                                              (̂         )( ) :                                                                                                                                        127

(D)               ( ̂           )(      )
                                             (̂               )(    )
                                                                         are positive constants

                ( )( )                    ( )( )
              ( ̂ )( )                  ( ̂ )( )


Definition of ( ̂ )(                              )
                                                          ( ̂           )( ) :                                                                                                                                         128

(E)               There exists two constants ( ̂ )( ) and ( ̂                                                                                    )( ) which together                                                   129
                  with ( ̂ )( ) ( ̂ )( ) ( ̂ )( ) and ( ̂                                                                                        )( ) and the constants
                                                                                                                                                                                                                       130
                  ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )(                                                                                )

                                                                                                                                                                                                                       131
                  satisfy the inequalities


                                                                                                                                         318
Advances in Physics Theories and Applications                                                                                                                                         www.iiste.org
ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
Vol 7, 2012



                       ( )(                )
                                                       ( )(             )
                                                                                         ( ̂        )(   )
                                                                                                                      ( ̂ )( ) ( ̂                          )(   )                            132
      ( ̂      )( )


                        ( )(               )
                                                       ( )(              )
                                                                                         (̂         )(   )
                                                                                                                      ( ̂               )(     )
                                                                                                                                                   (̂           )(   )
      ( ̂      )( )

Where we suppose                                                                                                                                                                             134

(F)           ( )(         )
                                   ( )(            )
                                                       (            )(       )
                                                                                 ( )(          )
                                                                                                    ( )(          )
                                                                                                                      (            )(      )                                                  135

(G)           The functions (                                   )(      )
                                                                             (           )( ) are positive continuous increasing and bounded.                                                 136

Definition of ( )(                         )
                                                   ( )( ) :                                                                                                                                   137
                                                                                                             ( )
              (       )( ) (                       )            ( )(             )
                                                                                           ( ̂           )                                                                                    138

              (       )( ) (                       )                ( )(             )
                                                                                               ( )(       )
                                                                                                                      ( ̂              )(      )                                              139

(H)                                (           )( ) (                        )            ( )(       )                                                                                        140

                                   (           )( ) ((                      ) )                    ( )(       )                                                                               141

Definition of ( ̂                          )(      )
                                                       ( ̂              )( ) :                                                                                                                142

Where ( ̂             )(       )
                                    ( ̂                )(       )
                                                                    ( )(             )
                                                                                           ( )( ) are positive constants and

They satisfy Lipschitz condition:                                                                                                                                                             143

                                                                                                                                                                 )( )
(     )( ) (            )              (        )( ) (                           )         (̂            )(       )                                     ( ̂                                   144

                                                                                                                                                                               )( )
(     )( ) ((          )           )           (        )( ) ((                          ) )             (̂           )(       )       (           )        (        )   ( ̂                  145

With the Lipschitz condition, we place a restriction on the behavior of functions ( )( ) (          )                                                                                         146
and( )   ( )
             (    ) .(      ) And (        ) are points belonging to the interval [( ̂ )( ) ( ̂ )( ) ] . It is
to be noted that ( )( ) (      ) is uniformly continuous. In the eventuality of the fact, that if ( ̂ )( )
                          ( )
  then the function ( ) (           ) , the SECOND augmentation coefficient would be absolutely
continuous.

Definition of ( ̂                          )(      )
                                                       (̂                )( ) :                                                                                                               147

(I)           ( ̂          )(      )
                                           (̂           )(          )
                                                                            are positive constants                                                                                            148

               ( )( )                 ( )( )
             ( ̂ )( )               ( ̂ )( )


Definition of ( ̂ )(                            )
                                                       ( ̂              )( ) :                                                                                                                149

There exists two constants ( ̂ )( ) and ( ̂ )( ) which together
with ( ̂ )( ) ( ̂ )( ) ( ̂ )( )      ( ̂ )( ) and the constants
    ( )    ( )    ( )    ( )    ( )
( ) ( ) ( ) ( ) ( )                  ( )( )

 satisfy the inequalities

               ( )(        )
                                       ( )(             )
                                                                        (̂               )(    )
                                                                                                         ( ̂ )( ) ( ̂                              )(   )                                     150
(̂    )( )


                  ( )(         )
                                           ( )(             )
                                                                            (̂            )(    )
                                                                                                         ( ̂              )(       )
                                                                                                                                        (̂             )(   )                                 151
( ̂   )( )




                                                                                                                                        319
Advances in Physics Theories and Applications                                                                                                                                                           www.iiste.org
      ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
      Vol 7, 2012



      Where we suppose                                                                                                                                                                                                152

      (J)               ( )(           )
                                           ( )(             )
                                                                 (          )(       )
                                                                                          ( )(          )
                                                                                                            ( )(                 )
                                                                                                                                     (        )(   )                                                                  153

      The functions (                      )(      )
                                                       (            )(      )
                                                                                are positive continuous increasing and bounded.

      Definition of ( )(                       )
                                                       ( )( ) :

               (            )( ) (                 )            ( )(             )
                                                                                              ( ̂           )(      )


               (         )( ) (                    )                ( )(          )
                                                                                              ( )(          )
                                                                                                                         ( ̂              )(   )


                   (         )( ) (                    )             ( )(             )                                                                                                                               154

                   (        )( ) (                     )                ( )(          )                                                                                                                               155

      Definition of ( ̂                         )(      )
                                                             ( ̂                )( ) :                                                                                                                                156

      Where ( ̂               )(     )
                                           (̂               )(      )
                                                                         ( )(             )
                                                                                                  ( )(          )
                                                                                                                        are positive constants and

      They satisfy Lipschitz condition:                                                                                                                                                                               157

                                                                                                                                                                     )( )
      (     )( ) (              )          (           )( ) (                        )            (̂            )(       )                                  ( ̂                                                       158

                                                                                                                                                                            )( )                                      159
      (     )( ) (                 )           (           )( ) (                        )         (̂               )(       )                                      ( ̂


      With the Lipschitz condition, we place a restriction on the behavior of functions ( )( ) (          )                                                                                                           160
      and( )( ) (       ) .(      ) And (        ) are points belonging to the interval [( ̂ )( ) ( ̂ )( ) ] . It is
      to be noted that ( )( ) (      ) is uniformly continuous. In the eventuality of the fact, that if ( ̂ )( )
                                ( )
        then the function ( ) (           ) , the THIRD augmentation coefficient, would be absolutely
      continuous.

      Definition of ( ̂                         )(     )
                                                            (̂                  )( ) :                                                                                                                                161

      (K)              ( ̂      )(         )
                                               (̂               )(      )
                                                                                are positive constants

                     ( )( )                  ( )( )
                   ( ̂ )( )                ( ̂ )( )


      There exists two constants There exists two constants ( ̂ )( ) and ( ̂                                                                                                       )( ) which together with           162
      ( ̂ )( ) ( ̂ )( ) ( ̂ )( )        ( ̂ )( ) and the constants
      ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )                                                                                                                                                                       163
      satisfy the inequalities
                                                                                                                                                                                                                      164
                       ( )     ( )
                                               ( )         ( )
                                                                                ( ̂           )   ( )
                                                                                                                ( ̂              )   ( )
                                                                                                                                           (̂          ( )
                                                                                                                                                       )                                                              165
      ( ̂   )( )


                        ( )(        )
                                               ( )(             )
                                                                                (̂            )(    )
                                                                                                                    ( ̂              )(   )
                                                                                                                                               (̂          )(   )                                                     166
      ( ̂   )( )
                                                                                                                                                                                                                      167

      Where we suppose                                                                                                                                                                                                168

(L)         ( )(        )
                             ( )(          )
                                               (           )(       )
                                                                        ( )(              )
                                                                                              ( )(          )
                                                                                                                    (        )(      )                                                                               169

      (M)              The functions (                               )(     )
                                                                                 (            )( ) are positive continuous increasing and bounded.




                                                                                                                                               320
Advances in Physics Theories and Applications                                                                                                                                         www.iiste.org
      ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
      Vol 7, 2012



      Definition of ( )(                     )
                                                      ( )( ) :

                  (     )( ) (                    )        ( )(              )
                                                                                          ( ̂       )(       )


                  (     )( ) ((                  ) )                 ( )(            )
                                                                                                ( )(         )
                                                                                                                     ( ̂       )(   )



                                                                                                                                                                                                   170

      (N)                             ( )( ) (                               ( )( )
                                                                             )
                                     ( )( ) ((                           ) )   ( )(                          )



      Definition of ( ̂                      )(       )
                                                          ( ̂        )( ) :

      Where ( ̂              )(      )
                                         ( ̂              )(    )
                                                                    ( )(              )
                                                                                            ( )(         )
                                                                                                                 are positive constants and

        They satisfy Lipschitz condition:                                                                                                                                                          171

                                                                                                                                                      )( )
      (     )( ) (           )           (            )( ) (                     )          (̂           )(      )                           ( ̂


                                                                                                                                                                    )( )
      (     )( ) ((          )           )           (         )( ) ((                ) )                (̂          )(    )   (        )        (        )   ( ̂



      With the Lipschitz condition, we place a restriction on the behavior of functions (                                                                                  )( ) (   )              172
      and( )( ) (       ) .(     ) And (      ) are points belonging to the interval [( ̂                                                                                  )( ) ( ̂ )( ) ] . It
      is to be noted that ( )( ) (     ) is uniformly continuous. In the eventuality of the fact, that if
      ( ̂ )   ( )
                      then the function ( )( ) (      ) , the FOURTH augmentation coefficient WOULD be
      absolutely continuous.
                                                                                                                                                                                                   173

      Defi174nition of ( ̂                                )(    )
                                                                    (̂               )( ) :                                                                                                        174

(O)         ( ̂        )                     ( )
                                                      (̂            )(   )
                                                                                 are positive constants
(P)
              ( )( )           ( )( )
            ( ̂ )( )         ( ̂ )( )


      Definition of ( ̂                      )(      )
                                                          ( ̂        )( ) :                                                                                                                        175

      (Q)             There exists two constants ( ̂ )( ) and ( ̂ )( ) which together with
                      ( ̂ )( ) ( ̂ )( ) ( ̂ )( )      ( ̂ )( ) and the constants
                      ( ) ( ) ( ) ( ) ( )( ) ( )( )
                           ( )     ( )     ( )   ( )

                      satisfy the inequalities

                      ( )(       )
                                             ( )(          )
                                                                         ( ̂              )(    )
                                                                                                         ( ̂         )( ) ( ̂           )(   )
      ( ̂   )( )


                             ( )(                )
                                                          ( )(           )
                                                                                      (̂            )(   )
                                                                                                                     ( ̂       )(   )
                                                                                                                                        (̂           )(   )
            ( ̂       )( )


      Where we suppose                                                                                                                                                                             176

(R)       ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )                                                                                                                                                177
      (S)      The functions ( )( ) ( )( ) are positive continuous increasing and bounded.
      Definition of ( )( ) ( )( ) :


                                                                                                                               321
Advances in Physics Theories and Applications                                                                                                                        www.iiste.org
      ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
      Vol 7, 2012



                   (    )( ) (                    )           ( )(        )
                                                                                      ( ̂       )(       )


                   (    )( ) ((               ) )                     ( )(        )
                                                                                            ( )(         )
                                                                                                                  ( ̂          )(   )



                                                                                                                                                                                  178

      (T)                                (     )( ) (                     )        ( )(          )
                                              ( )
                                 (           ) (                      )           ( )( )

      Definition of ( ̂                      )(       )
                                                          ( ̂         )( ) :

      Where ( ̂              )(      )
                                         ( ̂              )(      )
                                                                      ( )(        )
                                                                                        ( )(         )
                                                                                                             are positive constants and

      They satisfy Lipschitz condition:                                                                                                                                           179

                                                                                                                                                       )( )
          (    )( ) (             )          (            )( ) (              )             (̂           )(   )                                  ( ̂


                                                                                                                                                                    )( )
      (       )( ) ((        )           )        (           )( ) ((             ) )                (̂           )(   )       (        )        (     )      ( ̂



      With the Lipschitz condition, we place a restriction on the behavior of functions ( )( ) (  )                                                                               180
      and( ) (( )
                       ) .(      ) and (     ) are points belonging to the interval [( ̂ )( ) ( ̂ )( ) ] . It is
      to be noted that ( )( ) (     ) is uniformly continuous. In the eventuality of the fact, that if
      ( ̂ )( )      then the function ( )( ) (       ) , theFIFTH augmentation coefficient attributable
      would be absolutely continuous.

      Definition of ( ̂                      )(       )
                                                           (̂          )( ) :                                                                                                     181

(U)           ( ̂       )(   )
                                 (̂              )(       )
                                                                  are positive constants
                       ( )( )              ( )( )
                     ( ̂ )( )            ( ̂ )( )


      Definition of ( ̂                      )(   )
                                                          ( ̂         )( ) :                                                                                                      182

(V)           There exists two constants ( ̂ )( ) and ( ̂ )( ) which together with
              ( ̂ )( ) ( ̂ )( ) ( ̂ )( )      ( ̂ )( ) and the constants
              ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )                    satisfy the inequalities

                       ( )(      )
                                             ( )(             )
                                                                       ( ̂            )(    )
                                                                                                     ( ̂          )( ) ( ̂              )(   )
      ( ̂     )( )


                       ( )(       )
                                             ( )(             )
                                                                          (̂           )(   )
                                                                                                     ( ̂          )(       )
                                                                                                                               (̂           )(   )
      ( ̂     )( )


      Where we suppose                                                                                                                                                            183

      ( )(     )
                     ( )( ) ( )( ) ( )( ) ( )( ) ( )( )                                                                                                                           184
      (W)             The functions ( )( ) ( )( ) are positive continuous increasing and bounded.
                      Definition of ( )( ) ( )( ) :

                   (    )( ) (                    )           ( )(        )
                                                                                      ( ̂       )(       )



                   (    )( ) ((               ) )                     ( )(     )
                                                                                            ( )(         )
                                                                                                                  (̂           )(   )




                                                                                                                               322
Advances in Physics Theories and Applications                                                                                                            www.iiste.org
ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
Vol 7, 2012



                                                                                                                                                                185

(X)                                  (      )( ) ( )                          ( )( )
                                          ( )
                              (          ) (( ) )                              ( )( )

Definition of ( ̂                        )(     )
                                                      ( ̂        )( ) :

            Where ( ̂                        )(       )
                                                          ( ̂     )(      )
                                                                              ( )(      )
                                                                                             ( )(     )
                                                                                                          are positive constants and

They satisfy Lipschitz condition:                                                                                                                               186

                                                                                                                                     )( )
(      )( ) (                )         (          )( ) (              )         (̂          )(   )                           ( ̂


                                                                                                                                                  )( )
(      )( ) ((            )          )          (          )( ) ((            ) )           (̂       )(   )       (     )        (    )     ( ̂



With the Lipschitz condition, we place a restriction on the behavior of functions ( )( ) (   )                                                                  187
and( ) (( )
                  ) .(     ) and (      ) are points belonging to the interval [( ̂ )( ) ( ̂ )( ) ] . It is
to be noted that ( )( ) (     ) is uniformly continuous. In the eventuality of the fact, that if
( ̂ )  ( )
              then the function ( )( ) (       ) , the SIXTH augmentation coefficient would be
absolutely continuous.

Definition of ( ̂                          )(     )
                                                          (̂     )( ) :                                                                                         188

( ̂         )(   )
                     (̂           )(     )
                                                are positive constants
                (     )( )             ( )( )
              ( ̂      )( )          ( ̂ )( )


Definition of ( ̂                        )(     )
                                                      ( ̂        )( ) :                                                                                         189

There exists two constants ( ̂ )( ) and ( ̂ )( ) which together with
( ̂ )( ) ( ̂ )( ) ( ̂ )( )      ( ̂ )( ) and the constants
( ) ( ) ( ) ( ) ( )( ) ( )( )
     ( )     ( )     ( )   ( )

satisfy the inequalities

                 ( )(         )
                                         ( )(              )
                                                                 ( ̂          )(    )
                                                                                            ( ̂      )( ) ( ̂           )(   )
( ̂    )( )


                     ( )(        )
                                           ( )(            )
                                                                  (̂           )(   )
                                                                                            ( ̂      )(       )
                                                                                                                  (̂        )(   )
( ̂    )( )


                                                                                                                                                              190

Theorem 1: if the conditions IN THE FOREGOING above are fulfilled, there exists a solution                                                                    191
satisfying the conditions

Definition of                        ( )              ( ):
                                  ( ) ( ̂                 )( )
      ( )        ( ̂ )                                            ,             ( )

                                     ) ( ̂                )( )
    ( )          ( ̂         )(                                   ,                ( )

                                                                                                                                                              192

                                                                                                                                                              193


                                                                                                                  323
Advances in Physics Theories and Applications                                                                                                                www.iiste.org
ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
Vol 7, 2012



Definition of              ( )      ( )

                           ) ( ̂    )( )
   ( )         ( ̂ )(                          ,               ( )

                           ) ( ̂    )( )
  ( )      ( ̂       )(                            ,              ( )

                                                                                                                                                                  194

                                                                                                                                                                  195

                           ) ( ̂    )( )
   ( )         ( ̂   )(                        ,               ( )

                           ) ( ̂    )( )
  ( )      ( ̂       )(                            ,              ( )

Definition of             ( )       ( ):                                                                                                                        196

                          ( ) ( ̂    )( )
   ( )         ( ̂   )                         ,                  ( )

                           ) ( ̂    )( )
  ( )      ( ̂       )(                            ,               ( )

                                                                                                                                                                197

Definition of             ( )       ( ):

                          ( ) ( ̂    )( )
   ( )         ( ̂   )                         ,                  ( )

                           ) ( ̂    )( )
  ( )      ( ̂       )(                            ,               ( )



                                                                                                                                                                198

Definition of             ( )       ( ):                                                                                                                        199

                          ( ) ( ̂    )( )
   ( )         ( ̂   )                         ,                  ( )

                           ) ( ̂    )( )
  ( )      ( ̂       )(                            ,               ( )

Proof: Consider operator ( ) defined on the space of sextuples of continuous functions                                                                            200
                 which satisfy


  ( )                 ( )                              ( ̂ )(           )
                                                                                      ( ̂       )(   )                                                            201

                                          ) ( ̂            )( )
         ( )                ( ̂ )(                                                                                                                                202

                                          ) ( ̂            )( )
         ( )                ( ̂     )(                                                                                                                            203

By                                                                                                                                                                204

 ̅ ( )                    ∫ [(       )(    )
                                                       (   (      ))        ((   )(    )
                                                                                                     )( ) (   (   (   ))   (   ) ))   (   (   ) )]   (   )


  ̅ ( )                   ∫ [(       )(    )
                                                       (   (      ))     ((      )(   )
                                                                                            (        )( ) (   (   (   ))   (   ) ))   (   (   ) )]   (   )
                                                                                                                                                                  205



                                                                                            324
Advances in Physics Theories and Applications                                                                                                                                                     www.iiste.org
ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
Vol 7, 2012



 ̅ ( )                ∫ [(         )(       )
                                                    (       (    ))        ((       )(        )
                                                                                                      (        )( ) (     (   (        ))       (     ) ))       (   (     ) )]       (       )
                                                                                                                                                                                                       206

̅ ( )                ∫ [(      )(       )
                                                (       (       ))         ((       )(    )
                                                                                                      (        )( ) ( (   (       ))        (       ) ))     (   (       ) )]     (       )
                                                                                                                                                                                                       207

̅ ( )                ∫ [(      )(       )
                                                (       (       ))         ((       )(    )
                                                                                                      (        )( ) ( (   (       ))        (       ) ))     (   (       ) )]     (       )
                                                                                                                                                                                                       208

̅ ()                 ∫ [(      )(       )
                                                (   (           ))         ((       )(    )
                                                                                                      (        )( ) ( (   (       ))        (       ) ))     (   (   ) )]         (   )
                                                                                                                                                                                                       209

Where     (    )   is the integrand that is integrated over an interval (                                                          )

                                                                                                                                                                                                       210

Proof:                                                                                                                                                                                                 211
                             ( )
Consider operator                  defined on the space of sextuples of continuous functions
which satisfy

  ( )                ( )                                ( ̂ )(             )
                                                                                          ( ̂             )(   )                                                                                       212

                                            ) ( ̂           )( )
         ( )             ( ̂ )(                                                                                                                                                                        213

                                            ) ( ̂           )( )
        ( )             ( ̂        )(                                                                                                                                                                  214

By                                                                                                                                                                                                     215

 ̅ ( )                 ∫ [(        )(       )
                                                    (       (      ))          ((        )(       )
                                                                                                               )( ) (     (   (    ))           (     ) ))       (   (     ) )]       (       )


 ̅ ( )                ∫ [(         )(       )
                                                (           (    ))        ((       )(    )
                                                                                                      (        )( ) (     (   (    ))           (     ) ))       (   (     ) )]       (       )
                                                                                                                                                                                                       216

 ̅ ( )                ∫ [(         )(       )
                                                (           (    ))        ((       )(    )
                                                                                                      (        )( ) (     (   (    ))           (     ) ))       (   (     ) )]       (       )
                                                                                                                                                                                                       217

̅ ( )                ∫ [(      )(       )
                                                (       (       ))         ((       )(    )
                                                                                                      (        )( ) ( (   (       ))        (       ) ))     (   (       ) )]     (       )
                                                                                                                                                                                                       218

̅ ( )                ∫ [(      )(       )
                                                (       (       ))         ((       )(    )
                                                                                                      (        )( ) ( (   (       ))        (       ) ))     (   (       ) )]     (       )
                                                                                                                                                                                                       219

̅ ( )                ∫ [(      )(       )
                                                (       (       ))         ((       )(    )
                                                                                                      (        )( ) ( (   (       ))        (       ) ))     (   (       ) )]     (       )
                                                                                                                                                                                                       220

Where     (    )   is the integrand that is integrated over an interval (                                                 )



Proof:                                                                                                                                                                                                 221
                             ( )
Consider operator                  defined on the space of sextuples of continuous functions
which satisfy

  ( )                ( )                                ( ̂           )(   )
                                                                                          ( ̂             )(   )                                                                                       222

                                            ) ( ̂           )( )
         ( )             ( ̂       )(                                                                                                                                                                  223

                                            ) ( ̂           )( )
        ( )             ( ̂        )(                                                                                                                                                                  224

By                                                                                                                                                                                                     225



                                                                                                      325
Advances in Physics Theories and Applications                                                                                                                                                  www.iiste.org
ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
Vol 7, 2012



 ̅ ( )                 ∫ [(          )(      )
                                                     (       (      ))         ((        )(       )
                                                                                                               )( ) (       (   (        ))       (     ) ))        (   (   ) )]       (   )


  ̅ ( )                ∫ [(          )(      )
                                                     (       (      ))         ((    )(       )
                                                                                                      (            )( ) (   (       (    ))       (      ) ))       (   (   ) )]       (   )
                                                                                                                                                                                                    226

 ̅ ( )                ∫ [(          )(       )
                                                     (       (    ))       ((       )(        )
                                                                                                      (        )( ) (       (   (        ))       (     ) ))        (   (   ) )]       (   )
                                                                                                                                                                                                    227

̅ ( )                 ∫ [(      )(       )
                                                 (       (       ))        ((       )(    )
                                                                                                      (        )( ) ( (     (       ))        (       ) ))      (   (   ) )]       (   )
                                                                                                                                                                                                    228

̅ ( )                 ∫ [(      )(       )
                                                 (       (       ))        ((       )(    )
                                                                                                      (        )( ) ( (     (       ))        (       ) ))      (   (   ) )]       (   )
                                                                                                                                                                                                    229

̅ ()                 ∫ [(       )(       )
                                                 (       (       ))        ((       )(    )
                                                                                                      (        )( ) ( (     (       ))        (       ) ))      (   (   ) )]       (   )
                                                                                                                                                                                                    230

Where     (    )   is the integrand that is integrated over an interval (                                                   )

                               ( )                                                                                                                                                                  231
Consider operator                    defined on the space of sextuples of continuous functions
  which satisfy

  ( )                ( )                                 ( ̂          )(   )
                                                                                          ( ̂             )(   )                                                                                    232

                                          ) ( ̂              )( )
         ( )             ( ̂        )(                                                                                                                                                              233

                                          ) ( ̂              )( )
        ( )             ( ̂         )(                                                                                                                                                              234

By                                                                                                                                                                                                  235

 ̅ ( )                 ∫ [(          )(      )
                                                     (       (      ))         ((        )(       )
                                                                                                               )( ) (       (   (        ))       (     ) ))        (   (   ) )]       (   )


  ̅ ( )                ∫ [(          )(      )
                                                     (       (      ))         ((    )(       )
                                                                                                      (            )( ) (   (       (    ))       (      ) ))       (   (   ) )]       (   )
                                                                                                                                                                                                    236


 ̅ ( )                ∫ [(          )(       )
                                                     (       (    ))       ((       )(    )
                                                                                                      (        )( ) (       (   (       ))        (     ) ))        (   (   ) )]       (   )
                                                                                                                                                                                                    237


̅ ( )                 ∫ [(      )(       )
                                                 (       (       ))        ((       )(    )
                                                                                                      (        )( ) ( (     (       ))        (       ) ))      (   (   ) )]       (   )
                                                                                                                                                                                                    238


̅ ( )                 ∫ [(      )(       )
                                                 (       (       ))        ((       )(    )
                                                                                                      (        )( ) ( (     (       ))        (       ) ))      (   (   ) )]       (   )
                                                                                                                                                                                                    239


̅ ()                 ∫ [(       )(       )
                                                 (       (       ))        ((       )(    )
                                                                                                      (        )( ) ( (     (       ))        (       ) ))      (   (   ) )]       (   )
                                                                                                                                                                                                    240


Where     (    )   is the integrand that is integrated over an interval (                                                       )

                              ( )                                                                                                                                                                   241
Consider operator                    defined on the space of sextuples of continuous functions
which satisfy
                                                                                                                                                                                                  242

  ( )                ( )                                 ( ̂          )(   )
                                                                                          ( ̂             )(   )                                                                                    243

                                          ) ( ̂              )( )
         ( )             ( ̂        )(                                                                                                                                                              244

                                          ) ( ̂              )( )
        ( )             ( ̂         )(                                                                                                                                                              245



                                                                                                      326
Advances in Physics Theories and Applications                                                                                                                                                      www.iiste.org
ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
Vol 7, 2012



By                                                                                                                                                                                                      246

 ̅ ( )                ∫ [(          )(       )
                                                     (       (      ))          ((        )(   )
                                                                                                            )( ) (       (   (        ))       (     ) ))        (   (     ) )]        (       )


  ̅ ( )               ∫ [(          )(       )
                                                     (       (      ))      ((        )(       )
                                                                                                   (        )( ) (       (   (        ))       (     ) ))        (   (      ) )]       (       )
                                                                                                                                                                                                        247


 ̅ ( )                ∫ [(          )(       )
                                                 (           (    ))        ((       )(    )
                                                                                                   (        )( ) (       (   (       ))        (     ) ))        (   (     ) )]        (       )
                                                                                                                                                                                                        248


̅ ( )                ∫ [(       )(       )
                                                 (       (       ))         ((       )(    )
                                                                                                   (        )( ) ( (     (       ))        (       ) ))      (   (       ) )]      (       )
                                                                                                                                                                                                        249


̅ ( )                ∫ [(       )(       )
                                                 (       (       ))         ((       )(    )
                                                                                                   (        )( ) ( (     (       ))        (       ) ))      (   (   ) )]          (   )
                                                                                                                                                                                                        250


̅ ()                 ∫ [(       )(       )
                                                 (   (           ))         ((       )(    )
                                                                                                   (        )( ) ( (     (       ))        (       ) ))      (   (   ) )]          (   )
                                                                                                                                                                                                        251


Where     (    )   is the integrand that is integrated over an interval (                                                    )

                                                                                                                                                                                                        252

                              ( )
Consider operator                    defined on the space of sextuples of continuous functions
which satisfy

  ( )                ( )                                 ( ̂           )(   )
                                                                                           ( ̂         )(   )                                                                                           253

                                         ) ( ̂               )( )
         ( )             ( ̂        )(                                                                                                                                                                  254

                                         ) ( ̂               )( )
        ( )             ( ̂         )(                                                                                                                                                                  255

By                                                                                                                                                                                                      256

 ̅ ( )                ∫ [(          )(       )
                                                     (       (      ))          ((        )(   )
                                                                                                            )( ) (       (   (        ))       (     ) ))        (   (      ) )]       (       )


  ̅ ( )                ∫ [(         )(       )
                                                     (       (      ))          ((    )(       )
                                                                                                   (            )( ) (   (       (    ))       (      ) ))       (   (      ) )]       (       )
                                                                                                                                                                                                        257


 ̅ ( )                ∫ [(          )(       )
                                                     (       (    ))        ((       )(    )
                                                                                                   (        )( ) (       (   (        ))       (     ) ))        (   (     ) )]        (       )
                                                                                                                                                                                                        258


̅ ( )                ∫ [(       )(       )
                                                 (       (       ))         ((       )(    )
                                                                                                   (        )( ) ( (     (       ))        (       ) ))      (   (       ) )]      (       )
                                                                                                                                                                                                        259


̅ ( )                ∫ [(       )(       )
                                                 (       (       ))         ((       )(    )
                                                                                                   (        )( ) ( (     (       ))        (       ) ))      (   (       ) )]      (       )
                                                                                                                                                                                                        260


̅ ()                 ∫ [(       )(       )
                                                 (       (       ))         ((       )(    )
                                                                                                   (        )( ) ( (     (       ))        (       ) ))      (   (   ) )]          (   )
                                                                                                                                                                                                        261


Where     (    )   is the integrand that is integrated over an interval (                                                    )

                                                                                                                                                                                                        262

(a) The operator ( ) maps the space of functions satisfying GLOBAL EQUATIONS into itself                                                                                                                263
    .Indeed it is obvious that




                                                                                                   327
Advances in Physics Theories and Applications                                                                                                        www.iiste.org
ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
Vol 7, 2012



                                                                          ) ( ̂     )( ) (
     ( )             ∫ [(               )( ) (             ( ̂ )(                                )   )]        (     )


                                                     (      )( ) ( ̂ )( )               )( )
            (        (         )(   )
                                        )                                 ( (̂                             )
                                                           ( ̂ )( )

From which it follows that                                                                                                                                264

                                                                                                          (̂       )( )
                                                 (       )( )                                        (                        )
                         ( ̂        )( )                             ̂ )
(    ( )         )                                            [((           ( )
                                                                                             )                                    ( ̂ )( ) ]
                                             ( ̂         )( )


(   ) is as defined in the statement of theorem 1

Analogous inequalities hold also for                                                                                                                      265

(b) The operator ( ) maps the space of functions satisfying GLOBAL EQUATIONS into itself                                                                  266
    .Indeed it is obvious that

                                                                          ) ( ̂     )( ) (
     ( )             ∫ [(               )( ) (             ( ̂ )(                                )   )]        (     )    (       (     )(   )
                                                                                                                                                 )        267
(    )( ) ( ̂ )( )              )( )
                   ( (̂                      )
    ( ̂ )( )

From which it follows that                                                                                                                                268

                                                                                                          (̂       )( )
                                                 (       )( )                                        (                        )
                         ( ̂        )( )                            ̂ )(
(    ( )         )                                            ) [((
                                                                                )
                                                                                             )                                    ( ̂ )( ) ]
                                             ( ̂         )(


Analogous inequalities hold also for                                                                                                                      269

(a) The operator ( ) maps the space of functions satisfying GLOBAL EQUATIONS into itself                                                                  270
    .Indeed it is obvious that

                                                                          ) ( ̂     )( ) (
     ( )                 ∫ [(           )( ) (                ( ̂    )(                          )   )]        (     )


                                                     (      )( ) ( ̂ )( )               )( )
            (        (         )(   )
                                        )                                 ( (̂                             )
                                                           ( ̂ )( )

From which it follows that                                                                                                                                271

                                                                                                          (̂       )( )
                                                 (       )( )                                        (                        )
                         ( ̂        )( )                              ̂
(    ( )         )                                              ) [((      )(   )
                                                                                             )                                    ( ̂    )( ) ]
                                             ( ̂         )(


Analogous inequalities hold also for                                                                                                                      272

(b) The operator ( ) maps the space of functions satisfying GLOBAL EQUATIONS into itself                                                                  273
    .Indeed it is obvious that
                                            ̂ )( ) ( )
    ( )           ∫ [( )( ) (   ( ̂ )( ) (             )] ( )

                                                     (      )( ) ( ̂ )( )               )( )
            (        (         )(   )
                                        )                                 ( (̂                             )
                                                           ( ̂ )( )


From which it follows that                                                                                                                                274

                                                                                                          (̂       )( )
                                                 (       )( )                                        (                        )
                         ( ̂        )( )                              ̂
(    ( )         )                                              ) [((      )(   )
                                                                                             )                                    ( ̂    )( ) ]
                                             ( ̂         )(




                                                                                        328
Advances in Physics Theories and Applications                                                                                                            www.iiste.org
ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
Vol 7, 2012



      (      ) is as defined in the statement of theorem 1

(c) The operator ( ) maps the space of functions satisfying GLOBAL EQUATIONS into itself                                                                      275
    .Indeed it is obvious that
                                            ̂ )( ) ( )
    ( )           ∫ [( )( ) (   ( ̂ )( ) (             )] ( )

                                                           (      )( ) ( ̂ )( )                 )( )
                 (         (       )(   )
                                            )                                   ( (̂                             )
                                                                 ( ̂ )( )


From which it follows that                                                                                                                                    276

                                                                                                                (̂       )( )
                                                       (       )( )                                        (                    )
                               ( ̂      )( )                               ̂
(      ( )             )                                            [((          )( )
                                                                                                  )                                 (̂    )( ) ]
                                                     ( ̂       )( )



(    ) is as defined in the statement of theorem 1

(d) The operator ( ) maps the space of functions satisfying GLOBAL EQUATIONS into itself                                                                      277
    .Indeed it is obvious that


                                                                                ) ( ̂    )( ) (
      ( )                      ∫ [(         )( ) (               ( ̂       )(                          )   )]        (     )


                                                           (      )( ) ( ̂ )( )                 )( )
                 (         (       )(   )
                                            )                                   ( (̂                             )
                                                                 ( ̂ )( )


From which it follows that                                                                                                                                    278

                                                                                                                (̂       )( )
                                                       (       )( )                                        (                    )
                               ( ̂      )( )                               ̂
(      ( )             )                                            [((          )( )
                                                                                                  )                                 ( ̂   )( ) ]
                                                     ( ̂       )( )



      (      ) is as defined in the statement of theorem 6

Analogous inequalities hold also for

                                                                                                                                                              279

                                                                                                                                                              280

                                                  ( )( )            ( )( )                                                                                    281
It is now sufficient to take                                                            and to choose
                                                ( ̂ )( )          ( ̂ )( )


( ̂ )(       )
                      (̂           )( ) large to have
                                                                                                                                                              282

                                                                       (̂       )( )                                                                          283
                                                                       (                )
 (   )( )
           [(    ̂ )  ( )
                                   (( ̂ )       ( )
                                                                 )                          ]     ( ̂ )          ( )
(̂    )( )



                                                      (̂       )( )                                                                                           284
                                                 (                     )
 ( )( )
         [((      ̂    )(      )
                                            )                                   ( ̂     )( ) ]             ( ̂       )(    )
( ̂ )( )


                                                 ( )                                                                                                          285
In order that the operator                             transforms the space of sextuples of functions                                       satisfying



                                                                                                329
Advances in Physics Theories and Applications                                                                                                                                                    www.iiste.org
ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
Vol 7, 2012



GLOBAL EQUATIONS into itself
                                  ( )                                                                                                                                                                 286
The operator                             is a contraction with respect to the metric

            ( )      ( )                ( )          ( )
    ((                       )(                            ))

                         ( )
                                  ( )             ( )
                                                          ( )|           (̂      )( )                            ( )
                                                                                                                       ( )               ( )
                                                                                                                                               ( )|        (̂        )( )
                    |                                                                                    |


Indeed if we denote                                                                                                                                                                                   287

Definition of ̃ ̃ :

                                                                                               ( ̃ ̃)                          ( )
                                                                                                                                     (           )

It results
     ( )          ̃ ( )|                                           ( )             ( )          (̂           )( ) (             (̂           )( ) (
|̃                                    ∫(          )( ) |                                 |                                 )                          )
                                                                                                                                                                 (   )

                             ( )               ( )            (̂        )( ) (                (̂        )( ) (
∫ (            )( ) |                                |                             )                                   )



                    ( )                         ( )                ( )           (̂          )( ) (              (̂        )( ) (
(         )( ) (                  (     ) )|                             |                               )                               )


    ( )                           ( )                                                  ( )                                 (̂    )( ) (               (̂     )( ) (
           (       )( ) (                  (      ))          (          )( ) (                    (     ))
                                                                                                                                                 )                          )
                                                                                                                                                                                  (   )


Where          (     )   represents integrand that is integrated over the interval

From the hypotheses it follows

     ( )           ( )            (̂       )( )                                                                                                                                                       288
|                        |
               ((            )(   )
                                           (             )(   )
                                                                        ( ̂ )(           )
                                                                                                 ( ̂ )( ) ( ̂ )( ) ) ((                                    ( )       ( )        ( )   ( )
                                                                                                                                                                                            ))
(̂        )( )


And analogous inequalities for                                                               . Taking into account the hypothesis the result follows

Remark 1: The fact that we supposed ( )( )        ( )( ) depending also on can be considered as                                                                                                       289
not conformal with the reality, however we have put this hypothesis ,in order that we can postulate
condition necessary to prove the uniqueness of the solution bounded by
              ( )                    ( )
( ̂ )( ) ( ̂ )        ( ̂ )( ) ( ̂ )     respectively of

If instead of proving the existence of the solution on   , we have to prove it only on a compact then
                                 ( )          ( )
it suffices to consider that ( )         ( )                   depend only on      and respectively on
  (               ) and hypothesis can replaced by a usual Lipschitz condition.

Remark 2: There does not exist any                                                      where                    ( )                                 ( )                                              290

From 19 to 24 it results

                             [ ∫ {(        )( ) (             )( ) (         ( (    )) (         ) )}             )]                                                                                  291
     ( )                                                                                                     (



     ( )                 ( (          )( ) )
                                                                  for

Definition of (( ̂ )( ) )                                                 (( ̂ )( ) ) :                                                                                                               292

Remark 3: if                            is bounded, the same property have also                                                                                      . indeed if



                                                                                                                               330
Advances in Physics Theories and Applications                                                                                                                                      www.iiste.org
ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
Vol 7, 2012



           ( ̂ )( ) it follows                                           (( ̂ )( ) )             (           )(   )
                                                                                                                             and by integrating

           (( ̂ )( ) )                                       (           )( ) (( ̂ )( ) ) (                       )(   )



In the same way , one can obtain

           (( ̂ )( ) )                                       (           )( ) (( ̂ )( ) ) (                       )(   )



If                              is bounded, the same property follows for                                                             and                         respectively.

Remark 4: If         bounded, from below, the same property holds for               The proof is                                                                                        293
analogous with the preceding one. An analogous property is true if   is bounded from below.

Remark 5: If                            is bounded from below and                                             ((       )( ) ( ( ) ))                      (       )( ) then             294

Definition of ( )(                       )
                                                         :

Indeed let                 be so that for

(     )(   )
                    (          )( ) ( ( ) )                                   ( )        ( )(    )



Then                        (          )( ) ( )(     )
                                                                                which leads to                                                                                          295

               (       )( ) ( )( )
           (                            )(                           )                      If we take                 such that                              it results

               (       )( ) ( )( )
           (                            )                                 By taking now                       sufficiently small one sees that                                is
                                                                                                                           ( )                                ( )
unbounded. The same property holds for                                                    if                  (        )         ( ( ) )              (       )

We now state a more precise theorem about the behaviors at infinity of the solutions

                                                                                                                                                                                        296

                                                     ( )( )                   ( )( )                                                                                                    297
It is now sufficient to take                                                                         and to choose
                                                   ( ̂ )( )                 ( ̂ )( )


( ̂ )(         )
                               ( ̂       )( ) large to have

                                                                                    (̂    )( )                                                                                          298
                                                                                  (                  )
 ( )( )
         [( ̂              )( )
                                        (( ̂ )      ( )
                                                                          )                              ]        ( ̂ )(         )
( ̂ )( )



                                                                                                                                                                                        299

                                                             (̂          )( )
                                                     (                              )
 ( )( )
         [((           ̂        )( )
                                              )                                           ( ̂        )( ) ]           ( ̂        )(   )
( ̂ )( )


                                                     ( )                                                                                                                                300
In order that the operator                                    transforms the space of sextuples of functions                                                        satisfying
                                 ( )                                                                                                                                                    301
The operator                           is a contraction with respect to the metric

    (((        )(      )
                           (        )( ) ) ((            )(      )
                                                                     (          )( ) ))

                           ( )
                                 ( )         ( )
                                                   ( )|           (̂       )( )                  ( )
                                                                                                       ( )             ( )
                                                                                                                             ( )|         (̂   )( )
                   |                                                                        |



                                                                                                             331
Advances in Physics Theories and Applications                                                                                                                                                      www.iiste.org
ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
Vol 7, 2012



Indeed if we denote                                                                                                                                                                                     302

Definition of ̃ ̃ : ( ̃ ̃ )                                                                       ( )
                                                                                                        (                         )

It results                                                                                                                                                                                              303
     ( )          ̃ ( )|                                          ( )               ( )              (̂          )( ) (                (̂           )( ) (
|̃                                    ∫(        )( ) |                                       |                                    )                          )
                                                                                                                                                                  (   )

                                ( )           ( )            (̂       )( ) (                      (̂        )( ) (
∫ (             )( ) |                              |                                )                                        )



                       ( )                     ( )                ( )           (̂               )( ) (              (̂           )( ) (
(         )( ) (                  (    ) )|                               |                                  )                                  )


    ( )                           ( )                                                    ( )                                      (̂       )( ) (            (̂   )( ) (
           (          )( ) (               (    ))            (           )( ) (                       (     ))
                                                                                                                                                        )                  )
                                                                                                                                                                               (    )


Where             (     )   represents integrand that is integrated over the interval                                                                                                                   304

From the hypotheses it follows

           )(   )
                            (      )( ) |       (̂           )( )                                                                                                                                       305
|(
                ((              )( ) (                  )(   )
                                                                      ( ̂ )(                 )
(̂        )( )

(̂ )        ( )
                  ( ̂ )( ) ) (((                         )(       )
                                                                      (         )(       )
                                                                                                 (          )(       )
                                                                                                                         (            )( ) ))

And analogous inequalities for                                                                   . Taking into account the hypothesis the result follows                                                306

Remark 1: The fact that we supposed ( )( )         ( )( ) depending also on can be considered as                                                                                                        307
not conformal with the reality, however we have put this hypothesis ,in order that we can postulate
condition necessary to prove the uniqueness of the solution bounded by
           ̂ )( )                 ̂ )( )
( ̂ )( ) (            ( ̂ )( ) (         respectively of

If instead of proving the existence of the solution on   , we have to prove it only on a compact then
it suffices to consider that ( )( )      ( )( )                depend only on      and respectively on
( )(                 ) and hypothesis can replaced by a usual Lipschitz condition.

Remark 2: There does not exist any                                                           where                   ()                                 ()                                              308

From 19 to 24 it results

                            [ ∫ {(         )( ) (            )( ) (           ( (    )) (            ) )}                )]
     ()                                                                                                          (



     ()                     ( (       )( ) )
                                                              for

Definition of (( ̂ )( ) ) (( ̂ )( ) )                                                                       (( ̂ )( ) ) :                                                                               309

Remark 3: if                            is bounded, the same property have also                                                                                       . indeed if

               ( ̂ )( ) it follows                                            (( ̂ )( ) )                                (            )(   )
                                                                                                                                                      and by integrating

               (( ̂ )( ) )                                            (        )( ) (( ̂ )( ) ) (                                          )(   )



In the same way , one can obtain

               (( ̂ )( ) )                                            (        )( ) (( ̂ )( ) ) (                                          )(   )
                                                                                                                                                                                                        310
If                               is bounded, the same property follows for                                                                                   and                   respectively.


                                                                                                                                      332
Advances in Physics Theories and Applications                                                                                                                                                              www.iiste.org
ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
Vol 7, 2012



Remark 4: If         bounded, from below, the same property holds for               The proof is                                                                                                                311
analogous with the preceding one. An analogous property is true if is bounded from below.

Remark 5: If                               is bounded from below and                                                               ((            )( ) ((            )( ) ))              (    )( ) then         312


Definition of ( )(                          )
                                                                     :

Indeed let                  be so that for

(     )(   )
                        (       )( ) ((              )( ) )                                   ()              ( )(             )



Then                         (          )( ) ( ) (               )
                                                                                          which leads to                                                                                                        313

               (        )( ) ( )( )
           (                                )(                                )                              If we take                      such that                               it results

               (        )( ) ( )( )                                                                                                                                                                             314
           (                               )                                          By taking now                                sufficiently small one sees that                                   is
unbounded. The same property holds for                                                                      if                         (         )( ) ((            )( ) )           (       )(   )


We now state a more precise theorem about the behaviors at infinity of the solutions

                                                                                                                                                                                                                315

                                                               ( )( )                     ( )( )                                                                                                                316
It is now sufficient to take                                                                                           and to choose
                                                             ( ̂ )( )                   ( ̂ )( )


( ̂ )(         )
                             (̂             )( ) large to have

                                                                                              (̂            )( )                                                                                                317
                                                                                              (                        )
 ( )( )
         [( ̂               )( )
                                            (( ̂             )( )
                                                                                      )                                    ]               ( ̂        )(   )
( ̂ )( )



                                                                         (̂        )( )                                                                                                                         318
                                                                 (                            )
 ( )( )
         [((            ̂        )   ( )
                                                         )                                              ( ̂            ( )
                                                                                                                       )           ]        ( ̂            ( )
                                                                                                                                                           )
( ̂ )( )


                                                                 ( )                                                                                                                                            319
In order that the operator                                                transforms the space of sextuples of functions                                                                     into itself
                                  ( )                                                                                                                                                                           320
The operator                               is a contraction with respect to the metric

    (((            )(   )
                            (         )( ) ) ((                      )(   )
                                                                                  (       )( ) ))

                            ( )
                                  ( )            ( )
                                                             ( )|             (̂       )( )                        ( )
                                                                                                                           ( )                  ( )
                                                                                                                                                      ( )|       (̂       )( )
                    |                                                                                         |


Indeed if we denote                                                                                                                                                                                             321

Definition of ̃ ̃ :( (̃) ( ) )
                         ̃                                                                              ( )
                                                                                                              ((               )(               ))

It results                                                                                                                                                                                                      322
           ( )              ̃ ( )|                                                ( )             ( )             (̂       )( ) (                (̂        )( ) (
      |̃                                     ∫(                  )( ) |                                 |                                   )                         )
                                                                                                                                                                             (   )

                             ( )               ( )            (̂          )( ) (                  (̂        )( ) (
∫ (            )( ) |                                |                                    )                                )




                                                                                                                                   333
Advances in Physics Theories and Applications                                                                                                                                       www.iiste.org
ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
Vol 7, 2012



                     ( )                        ( )         ( )           (̂           )( ) (              (̂       )( ) (
(         )( ) (                   (    ) )|                        |                              )                           )                                                         323

    ( )                            ( )                                             ( )                              (̂     )( ) (            (̂   )( ) (
           (        )( ) (                 (     ))     (           )( ) (                  (      ))
                                                                                                                                        )                  )
                                                                                                                                                               (    )


Where           (    )    represents integrand that is integrated over the interval

From the hypotheses it follows

     ( )            ( )            (̂     )( )                                                                                                                                           324
|                         |
               ((             )(   )
                                           (      )(   )
                                                                    (̂        )(   )
(̂        )( )
            ( ) ̂
(̂ )            (             )( ) ) (((               )(       )
                                                                    (     )(       )
                                                                                        (          )(      )
                                                                                                                (     )( ) ))

And analogous inequalities for                                                         . Taking into account the hypothesis the result follows

Remark 1: The fact that we supposed ( )( )        ( )( ) depending also on can be considered as                                                                                          325
not conformal with the reality, however we have put this hypothesis ,in order that we can postulate
condition necessary to prove the uniqueness of the solution bounded by
              ( )                    ( )
( ̂ )( ) ( ̂ )        ( ̂ )( ) ( ̂ )     respectively of

If instead of proving the existence of the solution on    , we have to prove it only on a compact then
it suffices to consider that ( )( )      ( )( )                depend only on       and respectively on
( )(                  ) and hypothesis can replaced by a usual Lipschitz condition.

Remark 2: There does not exist any                                                 where                   ( )                              ( )                                          326

From 19 to 24 it results

                              [ ∫ {(       )( ) (      )( ) (           ( (    )) (         ) )}               )]
     ( )                                                                                               (



     ( )                  ( (          )( ) )
                                                        for

Definition of (( ̂ )( ) ) (( ̂ )( ) )                                                              (( ̂ )( ) ) :                                                                         327

Remark 3: if                             is bounded, the same property have also                                                                     . indeed if

               ( ̂ )( ) it follows                                      (( ̂ )( ) )                            (     )(   )
                                                                                                                                       and by integrating

               (( ̂ )( ) )                                      (        )( ) (( ̂ )( ) ) (                               )(       )



In the same way , one can obtain

               (( ̂ )( ) )                                      (        )( ) (( ̂ )( ) ) (                               )(       )



If                             is bounded, the same property follows for                                                                      and                  respectively.

Remark 4: If         bounded, from below, the same property holds for               The proof is                                                                                         328
analogous with the preceding one. An analogous property is true if   is bounded from below.

Remark 5: If                              is bounded from below and                                                   ((           )( ) ((        )( ) ))      (        )( ) then        329


Definition of ( )(                         )
                                                            :
                                                                                                                                                                                         330
Indeed let                    be so that for



                                                                                                                     334
Advances in Physics Theories and Applications                                                                                                                                                                          www.iiste.org
ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
Vol 7, 2012



(     )(   )
                        (        )( ) ((             )( ) )                                     ( )            ( )(          )



Then                          (         )( ) ( ) (           )
                                                                                       which leads to                                                                                                                       331

               (        )( ) ( )( )
           (                                )(                             )                              If we take                         such that                                      it results

               (        )( ) ( )( )
           (                                )                                      By taking now                                 sufficiently small one sees that                                                is
                                                                                                                                                 ( )                                                   ( )
unbounded. The same property holds for                                                                  if                       (           )         ((           )( ) )                 (       )

We now state a more precise theorem about the behaviors at infinity of the solutions

                                                                                                                                                                                                                            332

                                                           ( )( )                      ( )( )                                                                                                                               333
It is now sufficient to take                                                                                         and to choose
                                                         ( ̂ )( )                    ( ̂ )( )


( ̂ )(         )
                              (̂            )( ) large to have

                                                                                            (̂          )( )                                                                                                                334
                                                                                          (                          )
 ( )( )
         [( ̂                )( )
                                            (( ̂         ) ( )
                                                                                   )                                     ]           ( ̂           )   ( )
( ̂ )( )



                                                                      (̂        )( )                                                                                                                                        335
                                                              (                             )
 ( )( )
         [((            ̂         )   ( )
                                                     )                                              ( ̂              )( ) ]              ( ̂            )(      )
( ̂ )( )



                                                                  ( )                                                                                                                                                       336
In order that the operator                                                 transforms the space of sextuples of functions                                                                               satisfying IN to
itself

                                  ( )                                                                                                                                                                                       337
The operator                                is a contraction with respect to the metric

    (((            )(   )
                             (         )( ) ) ((                  )(    )
                                                                               (         )( ) ))

                            ( )
                                  ( )            ( )
                                                         ( )|              (̂      )( )                         ( )
                                                                                                                      ( )                    ( )
                                                                                                                                                   ( )|             (̂       )( )
                    |                                                                                     |


Indeed if we denote

Definition of (̃) ( ) : ( (̃) ( ) )
                  ̃           ̃                                                                                    ( )
                                                                                                                         ((              )(                ))

It results

           ( )               ̃ ( )|                                            ( )            ( )             (̂         )( ) (               (̂           )( ) (
      |̃                                        ∫(           )( ) |                                 |                                    )                               )
                                                                                                                                                                                 (    )


                                        ( )             ( )            (̂          )( ) (                (̂        )( ) (
      ∫ (                   )( ) |                            |                                 )                                    )



                                  ( )                      ( )                 ( )          (̂          )( ) (               (̂          )( ) (
      (            )( ) (                   (    ) )|                                |                               )                                 )



                    ( )                              ( )                                                       ( )                                 (̂        )( ) (              (̂       )( ) (
                              (         )( ) (                    (     ))           (          )( ) (                   (       ))
                                                                                                                                                                             )                     )
                                                                                                                                                                                                             (    )


Where          (        )   represents integrand that is integrated over the interval


                                                                                                                             335
Advances in Physics Theories and Applications                                                                                                              www.iiste.org
ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
Vol 7, 2012



From the hypotheses it follows

                                                                                                                                                                338

        )(   )
                 (        )( ) |       (̂    )( )                                                                                                               339
|(
            ((       )(   )
                                  (     )(   )
                                                         (̂        )(   )
(̂     )( )

( ̂ )( ) ( ̂ )( ) ) (((                      )(      )
                                                         (     )(       )
                                                                            (          )(   )
                                                                                                 (    )( ) ))

And analogous inequalities for                                              . Taking into account the hypothesis the result follows

Remark 1: The fact that we supposed ( )( )     ( )( ) depending also on can be considered                                                                       340
as not conformal with the reality, however we have put this hypothesis ,in order that we can
postulate condition necessary to prove the uniqueness of the solution bounded by
              ( )                   ( )
( ̂ )( ) ( ̂ )        ( ̂ )( ) ( ̂ ) respectively of

If instead of proving the existence of the solution on                                                    , we have to prove it only on a compact then
                                                         ( )                     ( )
it suffices to consider that ( )        ( )                   depend only on        and respectively on
( )(                  ) and hypothesis can replaced by a usual Lipschitz condition.

Remark 2: There does not exist any                                  where                   ( )                     ( )                                         341

From 19 to 24 it results

                     [ ∫ {(      )( ) (      )( ) (          ( (    )) (        ) )}            )]
     ( )                                                                                (



     ( )         ( (          )( ) )
                                              for

Definition of (( ̂ )( ) ) (( ̂ )( ) )                                                  (( ̂ )( ) ) :                                                            342

Remark 3: if                  is bounded, the same property have also                                                           . indeed if

           ( ̂ )( ) it follows                               (( ̂ )( ) )                     (       )(   )
                                                                                                                   and by integrating

           (( ̂ )( ) )                               (         )( ) (( ̂ )( ) ) (                         )(   )



In the same way , one can obtain

           (( ̂ )( ) )                               (         )( ) (( ̂ )( ) ) (                         )(   )



If                    is bounded, the same property follows for                                                           and              respectively.

Remark 4: If        bounded, from below, the same property holds for               The proof is                                                                 343
analogous with the preceding one. An analogous property is true if is bounded from below.

Remark 5: If                  is bounded from below and                                              ((       )( ) ((     )( ) ))      (      )( ) then         344


Definition of ( )(               )
                                                 :

Indeed let           be so that for


                                                                                                     336
Advances in Physics Theories and Applications                                                                                                                                                   www.iiste.org
ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
Vol 7, 2012



(      )(   )
                         (         )( ) ((            )( ) )                                      ( )           ( )(         )



Then                           (         )( ) ( )(                )
                                                                                         which leads to                                                                                              345

                (         )( ) ( )( )
            (                                )(                              )                              If we take                 such that                            it results

                (         )( ) ( )( )
            (                                )                                       By taking now                               sufficiently small one sees that                        is
unbounded. The same property holds for                                                                      if                    (        )( ) ((               )( ) )     (   )(   )



We now state a more precise theorem about the behaviors at infinity of the solutions ANALOGOUS
inequalities hold also for

                                                                                                                                                                                                     346

                                                                              ( )( )                   ( )( )                                                                                        347
           It is now sufficient to take                                                                                           and to choose
                                                                            ( ̂ )( )                 ( ̂ )( )


( ̂ )(          )
                               (̂            )( ) large to have



                                                                                                 (̂       )( )                                                                                       348
                                                                                             (                       )
 ( )( )
         [( ̂                  ( )
                               )             (( ̂             )( )
                                                                                     )                                   ]        ( ̂        )(     )
( ̂ )( )



                                                                       (̂        )( )                                                                                                                349
                                                                  (                              )
 ( )( )
         [((             ̂         )   ( )
                                                          )                                             ( ̂         )( ) ]             ( ̂        )(        )
( ̂ )( )



                                                                      ( )                                                                                                                            350
In order that the operator                                                  transforms the space of sextuples of functions                                                        into itself

                                    ( )                                                                                                                                                              351
The operator                                 is a contraction with respect to the metric

    (((             )(   )
                               (        )( ) ) ((                     )(    )
                                                                                 (       )( ) ))

                             ( )
                                   ( )            ( )
                                                              ( )|          (̂       )( )                         ( )
                                                                                                                        ( )            ( )
                                                                                                                                             ( )|               (̂   )( )
                     |                                                                                      |


Indeed if we denote

Definition of (̃) ( ) : ( (̃) ( ) )
                  ̃           ̃                                                                                     ( )
                                                                                                                            ((         )(           ))

It results

     ( )        ̃ ( )|                                                ( )             ( )             (̂        )( ) (            (̂       )( ) (
|̃                                     ∫(         )( ) |                                     |                               )                          )
                                                                                                                                                                 (   )


                               ( )              ( )            (̂          )( ) (                 (̂       )( ) (
∫ (          )( ) |                                   |                                  )                              )



                         ( )                     ( )                   ( )           (̂          )( ) (          (̂         )( ) (
(      )( ) (                      (     ) )|                                |                              )                          )




                                                                                                                             337
Advances in Physics Theories and Applications                                                                                                                  www.iiste.org
ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
Vol 7, 2012



 ( )                         ( )                                        ( )                          (̂   )( ) (        (̂    )( ) (
       (         )( ) (              (    ))     (        )( ) (                (      ))
                                                                                                                    )                  )
                                                                                                                                           (    )


Where        (     )   represents integrand that is integrated over the interval

From the hypotheses it follows
                                                                                                                                                                    352

        )(   )
                    (        )( ) |       (̂    )( )                                                                                                                353
|(
            ((          )(   )
                                     (     )(   )
                                                         (̂        )(   )
(̂     )( )

( ̂ )( ) ( ̂ )( ) ) (((                         )(   )
                                                         (      )(      )
                                                                            (          )(   )
                                                                                                 (    )( ) ))

And analogous inequalities for                                              . Taking into account the hypothesis (35,35,36) the result
follows

Remark 1: The fact that we supposed ( )( )     ( )( ) depending also on can be considered                                                                           354
as not conformal with the reality, however we have put this hypothesis ,in order that we can
postulate condition necessary to prove the uniqueness of the solution bounded by
              ( )                   ( )
( ̂ )( ) ( ̂ )        ( ̂ )( ) ( ̂ ) respectively of

If instead of proving the existence of the solution on                                                    , we have to prove it only on a compact then
                                                         ( )                     ( )
it suffices to consider that ( )        ( )                   depend only on        and respectively on
( )(                  ) and hypothesis can replaced by a usual Lipschitz condition.

Remark 2: There does not exist any                                   where                  ( )                      ( )                                            355

From GLOBAL EQUATIONS it results

                        [ ∫ {(      )( ) (      )( ) (       ( (     )) (       ) )}            )]
     ( )                                                                                (



     ( )               ( (       )( ) )
                                                 for

Definition of (( ̂ )( ) ) (( ̂ )( ) )                                                  (( ̂ )( ) ) :                                                                356

Remark 3: if                     is bounded, the same property have also                                                         . indeed if

           ( ̂ )( ) it follows                               (( ̂ )( ) )                     (       )(   )
                                                                                                                   and by integrating

           (( ̂ )( ) )                               (         )( ) (( ̂ )( ) ) (                         )(   )



In the same way , one can obtain

           (( ̂ )( ) )                               (         )( ) (( ̂ )( ) ) (                         )(   )



If                        is bounded, the same property follows for                                                        and                 respectively.

Remark 4: If        bounded, from below, the same property holds for               The proof is                                                                     357
analogous with the preceding one. An analogous property is true if is bounded from below.

Remark 5: If                     is bounded from below and                                           ((       )( ) ((        )( ) ))       (     )( ) then          358



                                                                                                     338
Advances in Physics Theories and Applications                                                                                                                                 www.iiste.org
ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
Vol 7, 2012




Definition of ( )(                         )
                                                              :

Indeed let                    be so that for


                                                                                                                                                                                   359
                                                (         )(      )
                                                                            (        )( ) ((         )( ) )                         ( )        ( )(   )



Then                         (         )( ) ( ) (         )
                                                                                    which leads to                                                                                 360

                (        )( ) ( )( )
            (                              )(                          )                        If we take              such that                         it results

                (        )( ) ( )( )
            (                              )                                    By taking now                   sufficiently small one sees that                       is
unbounded. The same property holds for                                                           if                 (     )( ) ((          )( ) )         (   )(   )



We now state a more precise theorem about the behaviors at infinity of the solutions

Analogous inequalities hold also for

                                                                                                                                                                                   361

                                                        ( )( )                     ( )( )                                                                                          362
It is now sufficient to take                                                                           and to choose
                                                      ( ̂ )( )                   ( ̂ )( )


( ̂ )(      )
                              (̂           )( ) large to have

                                                                                       (̂      )( )                                                                                363
                                                                                       (                )
 (   )( )
           [(       ̂ )       ( )
                                           (( ̂       )( )
                                                                                )                           ]       ( ̂       )   ( )
(̂    )( )



                                                                  (̂        )( )                                                                                                   364
                                                              (                        )
 ( )( )
         [((             ̂       )   ( )
                                                  )                                            ( ̂     )( )
                                                                                                                ]       ( ̂        )( )
( ̂ )( )



                                                              ( )                                                                                                                  365
In order that the operator                                             transforms the space of sextuples of functions                                           into itself

                                   ( )                                                                                                                                             366
The operator                               is a contraction with respect to the metric

  (((               )(   )
                             (        )( ) ) ((               )(      )
                                                                           (        )( ) ))

                             ( )
                                   ( )          ( )
                                                      ( )|             (̂       )( )                  ( )
                                                                                                            ( )         ( )
                                                                                                                              ( )|        (̂   )( )
                     |                                                                           |


Indeed if we denote

Definition of (̃) ( ) : ( (̃) ( ) )
                  ̃           ̃                                                                        ( )
                                                                                                             ((         )(          ))

It results




                                                                                                                339
Advances in Physics Theories and Applications                                                                                                                                                www.iiste.org
ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
Vol 7, 2012



     ( )         ̃ ( )|                                           ( )             ( )            (̂          )( ) (                (̂        )( ) (
|̃                                   ∫(         )( ) |                                  |                                     )                       )
                                                                                                                                                            (   )


                            ( )               ( )            (̂       )( ) (                 (̂         )( ) (
∫ (             )( ) |                              |                             )                                       )



                      ( )                      ( )                ( )          (̂           )( ) (               (̂           )( ) (
(         )( ) (                 (     ) )|                             |                                )                               )



    ( )                          ( )                                                   ( )                                    (̂    )( ) (            (̂    )( ) (
           (         )( ) (               (     ))            (         )( ) (                    (      ))
                                                                                                                                                  )                  )
                                                                                                                                                                         (    )

                                                                                                                                                                                                  367
Where            (     )   represents integrand that is integrated over the interval

From the hypotheses it follows

           )(   )
                        (            )( ) |         (̂       )( )                                                                                                                                 368
|(
               ((           )(   )
                                          (             )(   )
                                                                      (̂          )(    )
(̂        )( )

( ̂ )( ) ( ̂ )( ) ) (((                                      )(   )
                                                                       (       )(      )
                                                                                             (          )(       )
                                                                                                                      (           )( ) ))

And analogous inequalities for                                                              . Taking into account the hypothesis the result follows

Remark 1: The fact that we supposed ( )( )     ( )( ) depending also on can be considered                                                                                                         369
as not conformal with the reality, however we have put this hypothesis ,in order that we can
postulate condition necessary to prove the uniqueness of the solution bounded by
              ( )                   ( )
( ̂ )( ) ( ̂ )        ( ̂ )( ) ( ̂ ) respectively of

If instead of proving the existence of the solution on                                                                              , we have to prove it only on a compact then
it suffices to consider that ( )( )     ( )( )                depend only on        and respectively on
( )(                  ) and hypothesis can replaced by a usual Lipschitz condition.

Remark 2: There does not exist any                                                    where                      ( )                              ( )                                             370

From 69 to 32 it results

                            [ ∫ {(        )( ) (             )( ) (         ( (     )) (         ) )}                )]
     ( )                                                                                                     (



     ( )                   ( (        )( ) )
                                                              for

Definition of (( ̂ )( ) ) (( ̂ )( ) )                                                                   (( ̂ )( ) ) :                                                                             371

Remark 3: if                         is bounded, the same property have also                                                                                    . indeed if

               ( ̂ )( ) it follows                                          (( ̂ )( ) )                           (            )(   )
                                                                                                                                                 and by integrating

               (( ̂ )( ) )                                         (         )( ) (( ̂ )( ) ) (                                     )(       )



In the same way , one can obtain

               (( ̂ )( ) )                                         (         )( ) (( ̂ )( ) ) (                                     )(       )



If                            is bounded, the same property follows for                                                                                   and                respectively.



                                                                                                                               340
Advances in Physics Theories and Applications                                                                                                                                                                                        www.iiste.org
ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
Vol 7, 2012



Remark 4: If        bounded, from below, the same property holds for               The proof is                                                                                                                                           372
analogous with the preceding one. An analogous property is true if is bounded from below.

Remark 5: If                           is bounded from below and                                                                            ((           )( ) ((             )( ) ))                  (        )( ) then                  373


Definition of ( )(                         )
                                                                      :

Indeed let                     be so that for



                                                      (           )(          )
                                                                                           (           )( ) ((         )( ) )                                        ( )              ( )(       )

                                                                                                                                                                                                                                          374

Then                           (       )( ) ( )(                  )
                                                                                                   which leads to                                                                                                                         375

                 (           )( ) ( )( )
            (                              )(                                      )                                  If we take                         such that                                        it results

                 (           )( ) ( )( )
            (                              )                                                   By taking now                                sufficiently small one sees that                                                is
unbounded. The same property holds for                                                                                if                         (            )( ) ((             )( ) ( ) )                       (        )(   )



We now state a more precise theorem about the behaviors at infinity of the solutions

                                                                                                                                                                                                                                          376

Behavior of the solutions                                                                                                                                                                                                                 377

If we denote and define

Definition of ( )(                             )
                                                      ( )(                )
                                                                                  ( )(             )
                                                                                                            ( )( ) :

(a)         )(       )
                             ( )(      )
                                            ( )(              )
                                                                      ( )(                 )
                                                                                                   four constants satisfying

    ( )(         )
                               (       )(      )
                                                          (               )(      )
                                                                                               (            )( ) (                  )        (            )( ) (                 )              ( )(       )


     ( )(        )
                                   (    )(       )
                                                          (               )(       )
                                                                                               (            )( ) (          )           (            )( ) (              )               ( )(     )


Definition of ( )(                           )
                                                     ( )(             )
                                                                              (        )(      )
                                                                                                       (     )(   )        ( )          ( )
                                                                                                                                                 :                                                                                        378

(b) By ( )(                        )
                                                     ( )(         )
                                                                                           and respectively (                                )(      )
                                                                                                                                                                     (       )(      )
                                                                                                                                                                                                 the roots of                the
                                               ( )        ( )                                      ( ) ( )                              ( )                                           ( )       ( )                    ( ) ( )
       equations (                         )         (                )                ( )                             (                )                     and (               )         (         )        ( )
       ( )( )

Definition of ( ̅ )(                         )
                                                     ( ̅ )(               )
                                                                              ( ̅ )(               )
                                                                                                        ( ̅ )( ) :                                                                                                                        379

    By ( ̅ )(            )
                                       ( ̅ )(         )
                                                                          and respectively ( ̅ )(                                           )
                                                                                                                                                               ( ̅ )(        )
                                                                                                                                                                                            the roots of the equations
           ( )           ( )                         ( ) ( )                                       ( )                                              ( )        ( )
(      )         (             )       ( )                                        (            )                      and (                     )         (          )           ( )(           ) ( )
                                                                                                                                                                                                               (       )(   )


Definition of (                         )(       )
                                                      (           )(          )
                                                                                      ( )(              )
                                                                                                            ( )(       )
                                                                                                                            ( )( ) :-                                                                                                     380

(c) If we define (                             )(     )
                                                              (               )(       )
                                                                                               ( )(          )
                                                                                                                 ( )(           )
                                                                                                                                            by



                                                                                                                                            341
Advances in Physics Theories and Applications                                                                                                                                                                                                  www.iiste.org
ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
Vol 7, 2012



            (             )(       )
                                               ( )(                 )
                                                                        (               )(    )
                                                                                                          ( )(                    )
                                                                                                                                                   ( )(              )
                                                                                                                                                                                     ( )(          )


             (              )(     )
                                                ( )(                )
                                                                            (           )(    )
                                                                                                          ( ̅ )(                  )
                                                                                                                                                   ( )(              )
                                                                                                                                                                                     ( )(            )
                                                                                                                                                                                                         ( ̅ )(         )



            and ( )(                           )



    (                 )(       )
                                           ( )(                 )
                                                                    (               )(   )
                                                                                                     ( )(                     )
                                                                                                                                                  ( ̅ )(         )
                                                                                                                                                                                 ( )(          )


and analogously                                                                                                                                                                                                                                     381

    ( )(                )
                                       (       )(       )
                                                               ( )(                 )
                                                                                              (       )(          )
                                                                                                                                      (            )(    )
                                                                                                                                                                         (           )(    )


(           )(      )
                                 (         )(      )
                                                        ( )(                    )
                                                                                             ( ̅ )(           )
                                                                                                                                  (           )(    )
                                                                                                                                                                 (            )(      )
                                                                                                                                                                                                 ( ̅ )(   )



and (                       )(     )



(            )(       )
                                   ( )(             )
                                                            ( )(                )
                                                                                             (       )(       )
                                                                                                                                  ( ̅ )(            )
                                                                                                                                                                 (            )(      )
                                                                                                                                                                                           where (                )(    )
                                                                                                                                                                                                                            ( ̅ )(   )
                                                                                                                                                                                                                                                    382
are defined respectively

Then the solution satisfies the inequalities                                                                                                                                                                                                        383

                 ((         )( ) (                 )( ) )                                                                     (           )( )
                                                                                         ( )

where ( )( ) is defined

                                           ((       )( ) (                      )( ) )                                                                                           (    )( )
                                                                                                                      ( )
        (        )( )                                                                                                                         (     )( )

                                   (   )( )                                                          ((       )( ) (                          )( ) )                         (       )( )                          (        )( )                    384
(                                                                                          [                                                                                                     ]                                       ( )
    (           )( ) ((            )( ) (   )( ) (                                  )( ) )
                  (          )( )                                           (       )( )                          (           )( )                                            (           )( )
                                                                                                                                                                                                     )
(           )( ) ((          )( ) (                    )( ) )


                (         )( )                                                               ((       )( ) (                      )( ) )                                                                                                            385
                                                        ( )

                                   (       )( )                                                                                       ((          )( ) (                 )( ) )                                                                     386
                                                                            ( )
(       )( )                                                                                     (    )( )

             (               )( )                                           (       )( )                          (           )( )                                        (           )( )                                                          387
                                                           [                                                                                  ]                                                           ( )
(       )( ) ((              )( ) (                 )( ) )

                            (    )( )                                                         ((          )( ) (                      )( ) )                         (           )( )                         (        )( )
                                                                                   [                                                                                                      ]
(       )( ) ((              )( ) ( )( ) (                                  )( ) )




Definition of ( )(                                              )
                                                                        ( )(             )
                                                                                              (       )(          )
                                                                                                                          (           )( ) :-                                                                                                       388

             Where ( )(                                )
                                                                        (           )( ) (                )(          )
                                                                                                                                      (            )(    )


                                       ( )(                )
                                                                        (               )(    )
                                                                                                          (               )(          )


                                           (       )(          )
                                                                            (            )( ) (               )(          )
                                                                                                                                          (         )(       )


                                       (           )(       )
                                                                            (           )(    )
                                                                                                          (               )(          )




                                                                                                                                                                              342
Advances in Physics Theories and Applications                                                                                                                                                                                   www.iiste.org
ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
Vol 7, 2012



Behavior of the solutions                                                                                                                                                                                                            389

If we denote and define

Definition of (                             )(    )
                                                          (              )(       )
                                                                                          ( )(              )
                                                                                                                        ( )( ) :                                                                                                     390

(d)           )(      )
                              (       )(    )
                                                 ( )(                    )
                                                                              ( )(                 )
                                                                                                            four constants satisfying

    (        )(   )
                                  (         )(       )
                                                                 (                )(       )
                                                                                                       (                )( ) (                         )       (            )( ) (                   )         (   )(   )            391

    ( )(          )
                                  (         )(       )
                                                                 (            )(          )
                                                                                                    (                   )( ) ((                ) )                  (            )( ) ((             ) )           ( )(     )        392

Definition of ( )(                               )
                                                         ( )(                 )
                                                                                      (        )(       )
                                                                                                                (           )( ) :                                                                                                   393

By ( )(                   )
                                            ( )(             )
                                                                                  and respectively (                                               )(      )
                                                                                                                                                                                (       )(   )
                                                                                                                                                                                                         the roots                   394

(e) of                the equations (                                        )( ) (            ( )
                                                                                                        )                   (        )(       ) ( )
                                                                                                                                                                   (            )(      )                                            395

         and (                    )( ) (         ( )
                                                         )                   ( )(              ) ( )
                                                                                                                            (         )(       )
                                                                                                                                                               and                                                                   396

Definition of ( ̅ )(                             )
                                                          ( ̅ )(                  )
                                                                                      ( ̅ )(                )
                                                                                                                ( ̅ )( ) :                                                                                                           397

By ( ̅ )(             )
                                        ( ̅ )(           )
                                                                              and respectively ( ̅ )(                                                      )
                                                                                                                                                                                ( ̅ )(       )
                                                                                                                                                                                                         the                         398

roots of the equations (                                                 )( ) (               ( )
                                                                                                    )                   (        )(    ) ( )
                                                                                                                                                               (            )(      )                                                399

and (                 )( ) (          ( )
                                            )             ( )(                ) ( )
                                                                                                           (             )(      )                                                                                                   400

Definition of (                             )(       )
                                                             (               )(       )
                                                                                              ( )(                  )
                                                                                                                         ( )( ) :-                                                                                                   401

(f) If we define (                                   )(      )
                                                                     (                )(       )
                                                                                                    ( )(                    )
                                                                                                                                 ( )(              )
                                                                                                                                                           by                                                                        402

(       )(    )
                          ( )(          )
                                            (             )(         )
                                                                                  ( )(                 )
                                                                                                                            ( )(           )
                                                                                                                                                       ( )(             )                                                            403

(       )(    )
                          ( )(          )
                                            (            )(          )
                                                                                  ( ̅ )(               )
                                                                                                                         ( )(             )
                                                                                                                                                       ( )(            )
                                                                                                                                                                                    ( ̅ )(       )                                   404

and ( )(                      )



(            )(   )
                              ( )(          )
                                                 (           )(          )
                                                                                      ( )(                 )
                                                                                                                                ( ̅ )(         )
                                                                                                                                                           ( )(             )                                                        405

and analogously                                                                                                                                                                                                                      406

(       )(    )
                          (       )(    )
                                            ( )(                 )
                                                                              (           )(       )
                                                                                                                        (        )(    )
                                                                                                                                                       (       )(      )


( )(          )
                          (        )(   )
                                                ( )(             )
                                                                                  ( ̅ )(            )
                                                                                                                        (         )(   )
                                                                                                                                                       (       )(      )
                                                                                                                                                                                    ( ̅ )(       )



and (             )(      )



(       )(    )
                          ( )(          )
                                            ( )(                 )
                                                                              (               )(    )
                                                                                                                         ( ̅ )(           )
                                                                                                                                                       (       )(       )                                                            407

Then the solution satisfies the inequalities                                                                                                                                                                                         408

             ((       )( ) (            )( ) )                                ( )                                   (       )( )


( )( ) is defined                                                                                                                                                                                                                    409


                                                                                                                                                               343
Advances in Physics Theories and Applications                                                                                                                                                                                                       www.iiste.org
ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
Vol 7, 2012



                                   ((       )( ) (                     )( ) )                                                                                                (        )( )                                                               410
                                                                                                                 ( )
        (      )( )                                                                                                                  (       )( )

                              (     )( )                                                           ((        )( ) (                      )( ) )                          (        )( )                            (   )( )                               411
(                                                                                [                                                                                                            ]                                         ( )
    (         )( ) ((        )( ) (              )( ) (                   )( ) )
                           ( )
               (          )                                       (           )( )                           (           )( )                                            (            )( )
                                                                                                                                                                                               )
(           )( ) ((       )( ) (            )( ) )


              (       )( )                                                                ((        )( ) (                   )( ) )                                                                                                                      412
                                                ( )

                              (    )( )                                                                                      ((           )( ) (                 )( ) )                                                                                  413
                                                                      ( )
(       )( )                                                                               (        )( )

               (          )( )                                    (           )( )                           (           )( )                                        (               )( )                                                                414
                                                   [                                                                                 ]                                                                      ( )
(       )( ) ((           )( ) (            )( ) )

                          (       )( )                                                     ((           )( ) (                   )( ) )                          (           )( )                            (    )( )
                                                                             [                                                                                                            ]
(       )( ) ((           )( ) (            )( ) (                    )( ) )


             Definition of ( )(                                       )
                                                                              ( )(                 )
                                                                                                        (            )(      )
                                                                                                                                     (          )( ) :-                                                                                                  415

                          Where ( )(                          )
                                                                              (                )( ) (                 )(         )
                                                                                                                                           (                )(       )                                                                                   416

                                            ( )(                  )
                                                                                  (                )(   )
                                                                                                                     (               )(     )


                                             (            )(          )
                                                                                      (             )( ) ( )(                        )
                                                                                                                                                (            )(          )                                                                               417

                                            (         )(          )
                                                                                  (                )(    )
                                                                                                                         (           )(     )


                                                                                                                                                                                                                                                         418

Behavior of the solutions                                                                                                                                                                                                                                419

If we denote and define

Definition of ( )(                                    )
                                                                  ( )(                    )
                                                                                                   ( )(              )
                                                                                                                             ( )( ) :

(a)                )(     )
                                  ( )(       )
                                                     ( )(                     )
                                                                                      ( )(               )
                                                                                                                     four constants satisfying

    ( )(              )
                                    (           )(    )
                                                                          (               )(       )
                                                                                                             (               )( ) (                          )                   (            )( ) (              )          ( )(   )


        ( )(          )
                                    (            )(       )
                                                                          (               )(        )
                                                                                                                 (           )( ) (                     )            (                )( ) ((               ) )              ( )(   )


Definition of ( )(                                    )
                                                              ( )(                    )
                                                                                           (            )(       )
                                                                                                                     (           )( ) :                                                                                                                  420

(b) By ( )(                             )
                                                          ( )(                        )
                                                                                                        and respectively (                                                       )(    )
                                                                                                                                                                                                        (    )(   )
                                                                                                                                                                                                                             the roots of     the
                                                      ( )                 ( )                                        ( ) ( )                                         ( )
             equations (                          )               (                   )                 ( )                                         (            )

             and (                 )( ) (         ( )
                                                              )                   ( )(                  ) ( )
                                                                                                                                 (           )(         )
                                                                                                                                                                             and

             By ( ̅ )(              )
                                                      ( ̅ )(                   )
                                                                                                    and respectively ( ̅ )(                                                           )
                                                                                                                                                                                                       ( ̅ )(     )
                                                                                                                                                                                                                             the

            roots of the equations (                                                       )( ) (                ( )
                                                                                                                         )                ( )(              ) ( )
                                                                                                                                                                                       (           )(   )



            and (                 )( ) (        ( )
                                                      )                       ( )(                 ) ( )
                                                                                                                             (            )(      )


Definition of (                                 )(        )
                                                                  (                )(          )
                                                                                                       ( )(              )
                                                                                                                              ( )( ) :-                                                                                                                  421




                                                                                                                                                                             344
Advances in Physics Theories and Applications                                                                                                                                                                                               www.iiste.org
ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
Vol 7, 2012



(c) If we define (                                              )(          )
                                                                                    (            )(       )
                                                                                                               ( )(                        )
                                                                                                                                                    ( )(           )
                                                                                                                                                                            by

            (            )(       )
                                              ( )(              )
                                                                        (               )(   )
                                                                                                           ( )(                    )
                                                                                                                                                     ( )(              )
                                                                                                                                                                                    ( )(            )


             (            )(      )
                                              ( )(                  )
                                                                        (               )(    )
                                                                                                              ( ̅ )(                   )
                                                                                                                                                     ( )(              )
                                                                                                                                                                                    ( )(            )
                                                                                                                                                                                                        ( ̅ )(       )



            and ( )(                          )



    (                )(       )
                                          ( )(              )
                                                                    (               )(   )
                                                                                                         ( )(                  )
                                                                                                                                                    ( ̅ )(         )
                                                                                                                                                                                ( )(            )


and analogously                                                                                                                                                                                                                                  422

    ( )(              )
                                      (       )(    )
                                                            ( )(                    )
                                                                                              (           )(       )
                                                                                                                                           (         )(    )
                                                                                                                                                                           ( )(           )



    ( )(              )
                                      (       )(    )
                                                            ( )(                    )
                                                                                             ( ̅ )(                )
                                                                                                                                           (        )(    )
                                                                                                                                                                       (           )(    )
                                                                                                                                                                                                    ( ̅ )(   )
                                                                                                                                                                                                                         and (   )(   )



(             )(      )
                                  (           )(    )
                                                            ( )(                    )
                                                                                             (            )(       )
                                                                                                                                           ( ̅ )(         )
                                                                                                                                                                       (            )(   )


Then the solution satisfies the inequalities

                 ((       )( ) (                  )( ) )                                                                           (        )( )
                                                                                         ( )

( )( ) is defined                                                                                                                                                                                                                                423

                                          ((       )( ) (                       )( ) )                                                                                          (       )( )                                                     424
                                                                                                                    ( )
        (        )( )                                                                                                                           (     )( )

                                  (   )( )                                                            ((       )( ) (                           )( ) )                      (       )( )                         (       )( )                    425
(                                                                                          [                                                                                                    ]                                     ( )
    (           )( ) ((           )( ) (   )( ) (                                   )( ) )
                 (         )( )                                             (       )( )                        (              )( )                                            (         )( )
                                                                                                                                                                                                    )
(           )( ) ((        )( ) (                  )( ) )


                     (        )( )                                                                   ((        )( ) (                       )( ) )                                                                                               426
                                                            ( )

                                  (       )( )                                                                                             ((       )( ) (                 )( ) )                                                                427
                                                                            ( )
(       )( )                                                                                     (        )( )

             (            )( )                                          (           )( )                        (              )( )                                        (         )( )                                                        428
                                                          [                                                                                     ]                                                        ( )
(       )( ) ((           )( ) (                   )( ) )

                          (   )( )                                                            ((           )( ) (                          )( ) )                      (        )( )                         (   )( )
                                                                                   [                                                                                                     ]
(       )( ) ((           )( ) ( )( ) (                                     )( ) )


Definition of ( )(                                          )
                                                                    ( )(                 )
                                                                                             (            )(       )
                                                                                                                           (               )( ) :-                                                                                               429

             Where ( )(                             )
                                                                    (                )( ) (                   )(       )
                                                                                                                                       (             )(    )


                                      ( )(              )
                                                                        (               )(    )
                                                                                                           (               )(          )


                                          (        )(       )
                                                                        (                )( ) (                )(          )
                                                                                                                                           (          )(       )


                                          (         )(          )
                                                                                (            )(      )
                                                                                                                   (               )(           )


                                                                                                                                                                                                                                                 430

                                                                                                                                                                                                                                                 431

Behavior of the solutions                                                                                                                                                                                                                     432

                                                                                                                                                                               345
Advances in Physics Theories and Applications                                                                                                                                                                                    www.iiste.org
ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
Vol 7, 2012



If we denote and define

Definition of ( )(                                 )
                                                           ( )(                    )
                                                                                        ( )(                )
                                                                                                                        ( )( ) :

(d) ( )(             )
                         ( )(              )
                                                    ( )(                   )
                                                                                   ( )(                 )
                                                                                                                four constants satisfying

  ( )(       )
                             (         )(          )
                                                                   (               )(       )
                                                                                                        (                   )( ) (                  )         (         )( ) (                  )             ( )(     )



  ( )(       )
                             (             )(          )
                                                                   (               )(       )
                                                                                                        (                   )( ) ((             ) )                (            )( ) ((             ) )             ( )(   )



Definition of ( )(                             )
                                                       ( )(                )
                                                                                   (            )(      )
                                                                                                                (           )(    )       ( )           ( )
                                                                                                                                                              :                                                                    433

(e) By ( )(                  )
                                                       ( )(                )
                                                                                                and respectively (                                           )(   )
                                                                                                                                                                                    (      )(    )
                                                                                                                                                                                                              the roots of the
                                                   ( )                 ( )                                      ( ) ( )                                     ( )
          equations (                          )               (               )                    ( )                                    (            )
                                 ( )           ( )                                         ( ) ( )                                        ( )
          and (              )         (                   )               ( )                                               (        )                       and

Definition of ( ̅ )(                           )
                                                           ( ̅ )(              )
                                                                                       ( ̅ )(               )
                                                                                                                ( ̅ )( ) :                                                                                                         434
                                                                                                                                                                                                                                   435
      By ( ̅ )(          )
                                               ( ̅ )(              )
                                                                                           and respectively ( ̅ )(                                                )
                                                                                                                                                                                    ( ̅ )(      )
                                                                                                                                                                                                              the
                                                                                        ( )                 ( )                                ( ) ( )                              ( )
      roots of the equations (                                                         )            (               )                ( )                               (            )
  and ( )( ) ( ( ) )   ( )( ) ( ) (                                                                                               )( )                                                                                             436
Definition of ( )( ) ( )( ) ( )( ) (                                                                                              )( ) ( )( ) :-

(f) If we define (                                 )(          )
                                                                       (               )(       )
                                                                                                     ( )(                    )
                                                                                                                                 (      )(      )
                                                                                                                                                        by

      (     )(    )
                             ( )(               )
                                                           (           )(          )
                                                                                                ( )(                )
                                                                                                                                     ( )(           )
                                                                                                                                                              ( )(          )



      (      )(      )
                                 ( )(              )
                                                           (           )(          )
                                                                                                ( ̅ )(                  )
                                                                                                                                      ( )(          )
                                                                                                                                                              ( )(              )
                                                                                                                                                                                        ( ̅ )(       )


      and ( )(                   )




  (         )(   )
                             ( )(              )
                                                       (           )(          )
                                                                                            ( )(                )
                                                                                                                                  ( ̅ )(        )
                                                                                                                                                             ( )(           )



and analogously                                                                                                                                                                                                                    437
                                                                                                                                                                                                                                   438
      ( )(        )
                             (         )(       )
                                                           ( )(                )
                                                                                            (           )(          )
                                                                                                                                  (        )(       )
                                                                                                                                                              (        )(   )



      ( )(        )
                             (         )(      )
                                                           ( )(                )
                                                                                            ( ̅ )(              )
                                                                                                                                 (        )(    )
                                                                                                                                                             (        )(    )
                                                                                                                                                                                        ( ̅ )(      )


   and (              )(     )




  ( )( ) ( )( ) ( )( ) ( )( )                                                                                                   ( ̅ )(     )
                                                                                                                                                        (         )(   )
                                                                                                                                                                            where (                  )(   )
                                                                                                                                                                                                              ( ̅ )(   )

are defined by 59 and 64 respectively

Then the solution satisfies the inequalities                                                                                                                                                                                       439
                                                                                                                                                                                                                                   440
            ((       )( ) (            )( ) )                                      ( )                                      (    )( )                                                                                              441
                                                                                                                                                                                                                                   442
          where ( )( ) is defined                                                                                                                                                                                                  443
                                                                                                                                                                                                                                   444
                                                                                                                                                                                                                                   445



                                                                                                                                                            346
Advances in Physics Theories and Applications                                                                                                                                                                                                  www.iiste.org
ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
Vol 7, 2012



                                          ((        )( ) (                    )( ) )                                  ( )                                              (       )( )                                                              446
        (      )( )                                                                                                                     (        )( )
                                                                                                                                                                                                                                                 447
                              (   )( )                                                             ((          )( ) (                   )( ) )                     (       )( )                                 (    )( )                        448
(                                                                                    [                                                                                                  ]                                              ( )
    (        )( ) ((          )( ) (   )( ) (                                 )( ) )
               (          )( )                                            (       )( )                            (           )( )                                     (           )( )
                                                           [                                                                            ]                                                   )
(           )( ) ((       )( ) (                    )( ) )


               (      )( )                           ( )                                  ((              )( ) (               )( ) )                                                                                                            449


                              (       )( )                                                                                         ((       )( ) (                )( ) )                                                                         450
                                                                          ( )
(       )( )                                                                                  (           )( )


               (          )( )                                            (       )( )                            (           )( )                                (            )( )                                                              451
                                                       [                                                                                ]                                                                 ( )
(       )( ) ((           )( ) (                )( ) )


                          (   )( )                                                            ((          )( ) (                   )( ) )                     (        )( )                                (       )( )
                                                                                 [                                                                                                 ]
(       )( ) ((           )( ) ( )( ) (                                   )( ) )


Definition of ( )(                                       )
                                                                 ( )(                 )
                                                                                          (            )(         )
                                                                                                                       (           )( ) :-                                                                                                       452

             Where ( )(                             )
                                                                     (            )( ) (                      )(      )
                                                                                                                                   (            )(    )



                                  ( )(              )
                                                                  (               )(      )
                                                                                                       (               )(      )



                                          (         )(       )
                                                                              (           )( ) ( )(                        )
                                                                                                                                        (         )(      )



                                  (            )(    )
                                                                      (           )(      )
                                                                                                          (            )(      )                                                                                                                 453

Behavior of the solutions                                                                                                                                                                                                                        454
If we denote and define

Definition of ( )(                                            )
                                                                         ( )(             )
                                                                                                  ( )(                 )
                                                                                                                               ( )( ) :

(g) ( )(                      )
                                      ( )(               )
                                                                 ( )(                 )
                                                                                          ( )(                    )
                                                                                                                          four constants satisfying

    ( )(              )
                                          (             )(       )
                                                                              (           )(          )
                                                                                                                  (             )( ) (                        )            (           )( ) (                  )            ( )(   )



        ( )(          )
                                          (             )(        )
                                                                              (           )(          )
                                                                                                                   (               )( ) ((                 ) )                 (            )( ) ((                ) )            ( )(   )



Definition of ( )(                                           )
                                                                  ( )(                )
                                                                                              (           )(      )
                                                                                                                          (        )(       )        ( )          ( )
                                                                                                                                                                           :                                                                     455

(h) By ( )(                                )
                                                                  ( )(                )
                                                                                                          and respectively (                                           )(      )
                                                                                                                                                                                                (         )(    )
                                                                                                                                                                                                                            the roots of the
                                                                 ( )              ( )                                      ( ) ( )                                 ( )
             equations (                                     )            (               )                   ( )                                     (           )
                                           ( )               ( )                                      ( ) ( )                                     ( )
             and (                    )             (                 )               ( )                                           (            )                     and

Definition of ( ̅ )(                                         )
                                                                      ( ̅ )(              )
                                                                                              ( ̅ )(                  )
                                                                                                                           ( ̅ )( ) :                                                                                                            456

             By ( ̅ )(                )
                                                             ( ̅ )(               )
                                                                                                      and respectively ( ̅ )(                                                  )
                                                                                                                                                                                                ( ̅ )(         )
                                                                                                                                                                                                                            the
                                                                                                      ( )             ( )                                 ( ) ( )                                   ( )
            roots of the equations (                                                              )           (                )            ( )                                     (           )
                                      ( )            ( )                                      ( ) ( )                                           ( )
  and ( ) (        )   ( )        (                                                                                                         )
Definition of ( )( ) ( )( ) ( )( ) (                                                                                                        )(   )
                                                                                                                                                      ( )( ) :-

(i) If we define (                                               )(       )
                                                                                  (           )(          )
                                                                                                               ( )(                 )
                                                                                                                                        (         )(      )
                                                                                                                                                                  by

                                                                                                                                                                       347
Advances in Physics Theories and Applications                                                                                                                                                                                           www.iiste.org
ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
Vol 7, 2012




            (         )(      )
                                        ( )(              )
                                                              (           )(        )
                                                                                                  ( )(          )
                                                                                                                                    ( )(              )
                                                                                                                                                                       ( )(              )



            (         )(       )
                                           ( )(           )
                                                                  (        )(       )
                                                                                                    ( ̅ )(         )
                                                                                                                                     ( )(             )
                                                                                                                                                                       ( )(              )
                                                                                                                                                                                             ( ̅ )(       )


            and ( )(                       )




        (            )(    )
                                       ( )(           )
                                                              (           )(    )
                                                                                                ( )(           )
                                                                                                                                    ( ̅ )(        )
                                                                                                                                                                   ( )(              )



and analogously                                                                                                                                                                                                                           457

            ( )(              )
                                       (         )(       )
                                                              ( )(              )
                                                                                                (        )(    )
                                                                                                                                    (        )(       )
                                                                                                                                                                       (        )(       )



            ( )(              )
                                       (         )(       )
                                                              ( )(              )
                                                                                                ( ̅ )(         )
                                                                                                                                    (        )(   )
                                                                                                                                                                   (         )(      )
                                                                                                                                                                                             ( ̅ )(       )


        and (                     )(   )




  ( )( ) ( )( ) ( )(                                                        )
                                                                                            (         )(   )
                                                                                                                            ( ̅ )(            )
                                                                                                                                                              (            )(   )
                                                                                                                                                                                     where (              )(    )
                                                                                                                                                                                                                     ( ̅ )(   )

are defined respectively

Then the solution satisfies the inequalities                                                                                                                                                                                              458

                 ((       )( ) (               )( ) )                                                              (        )( )
                                                                                ( )

where ( )( ) is defined
                                       ((        )( ) (               )( ) )                                                                                       (       )( )                                                           459
                                                                                                          ( )
        (        )( )                                                                                                           (       )( )

                                                                                                                                                                                                                                          460
                              (        )( )                                                  ((       )( ) (                    )( ) )                         (       )( )                           (       )( )                        461
(                                                                             [                                                                                                      ]                                            ( )
    (           )( ) ((        )( ) (                )( ) (            )( ) )
               (           )( )                                   (       )( )                        (            )( )                                            (        )( )
                                                        [                                                                       ]                                                        )
(           )( ) ((        )( ) (                )( ) )


                 (    )( )                                                          ((          )( ) (                 )( ) )                                                                                                             462
                                                  ( )

                               (       )( )                                                                                ((       )( ) (                    )( ) )                                                                      463
                                                                      ( )
(       )( )                                                                            (       )( )


                 (         )( )                                   (       )( )                        (        )( )                                           (            )( )                                                           464
                                                      [                                                                         ]                                                              ( )
(       )( ) ((           )( ) (               )( ) )


                          (   )( )                                                      ((          )( ) (                 )( ) )                         (        )( )                         (     )( )
                                                                         [                                                                                                      ]
(       )( ) ((           )( ) ( )( ) (                           )( ) )


Definition of ( )(                                    )
                                                              ( )(          )
                                                                                 (              )(    )
                                                                                                           (               )( ) :-                                                                                                        465

                Where ( )(                       )
                                                              (           )( ) (                    )(     )
                                                                                                                       (                )(   )



                                   ( )(          )
                                                              (           )(        )
                                                                                                (          )(          )



                                       (         )(       )
                                                                      (         )( ) ( )(                      )
                                                                                                                             (           )(       )



                                   (        )(    )
                                                              (            )(       )
                                                                                                  (        )(          )



Behavior of the solutions                                                                                                                                                                                                                 466

                                                                                                                                                                   348
Advances in Physics Theories and Applications                                                                                                                                                                                                 www.iiste.org
ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
Vol 7, 2012



If we denote and define

Definition of ( )(                                     )
                                                               ( )(                    )
                                                                                                ( )(                )
                                                                                                                               ( )( ) :

(j) ( )(                 )
                             ( )(              )
                                                           ( )(                )
                                                                                       ( )(                    )
                                                                                                                       four constants satisfying

  ( )(        )
                                 (          )(         )
                                                                       (               )(          )
                                                                                                               (                   )( ) (                     )         (            )( ) (                  )             ( )(     )



  ( )(           )
                                 (             )(          )
                                                                       (                   )(      )
                                                                                                               (                   )( ) ((                ) )                   (            )( ) ((             ) )             ( )(   )



Definition of ( )(                                 )
                                                           ( )(                    )
                                                                                           (           )(      )
                                                                                                                       (           )(       )       ( )           ( )
                                                                                                                                                                           :                                                                    467

(k) By ( )(                       )
                                                           ( )(                )
                                                                                                       and respectively (                                              )(      )
                                                                                                                                                                                                 (      )(    )
                                                                                                                                                                                                                           the roots of the
                                                       ( )                 ( )                                          ( ) ( )                                       ( )
          equations (                              )               (                   )                   ( )                                       (            )
                                     ( )           ( )                                             ( ) ( )                                          ( )
          and (                  )         (                   )               ( )                                                  (           )                       and

Definition of ( ̅ )(                               )
                                                               ( ̅ )(                  )
                                                                                               ( ̅ )(              )
                                                                                                                        ( ̅ )( ) :                                                                                                              468

      By ( ̅ )(              )
                                                   ( ̅ )(               )
                                                                                                   and respectively ( ̅ )(                                                     )
                                                                                                                                                                                                 ( ̅ )(      )
                                                                                                                                                                                                                           the
                                                                                                ( )                ( )                                   ( ) ( )                                 ( )
      roots of the equations (                                                                 )           (                )               ( )                                     (            )
  and ( )( ) ( ( ) )   ( )( ) ( ) (                                                                                                         )( )
Definition of ( )( ) ( )( ) ( )( ) (                                                                                                        )( ) ( )( ) :-

(l) If we define (                                     )(          )
                                                                           (               )(          )
                                                                                                            ( )(                    )
                                                                                                                                        (        )(       )
                                                                                                                                                                  by

      (      )(       )
                                 ( )(               )
                                                               (           )(          )
                                                                                                       ( )(                )
                                                                                                                                            ( )(              )
                                                                                                                                                                        ( )(             )

                                                                                                                                                                                                                                                470
      (          )(      )
                                     ( )(              )
                                                               (            )(             )
                                                                                                       ( ̅ )(                  )
                                                                                                                                                ( )(          )
                                                                                                                                                                        ( )(                 )
                                                                                                                                                                                                     ( ̅ )(       )


      and ( )(                       )




  (         )(       )
                                 ( )(              )
                                                           (            )(         )
                                                                                                   ( )(                 )
                                                                                                                                            ( ̅ )(        )
                                                                                                                                                                       ( )(              )



and analogously                                                                                                                                                                                                                                 471

      ( )(            )
                                 (         )(          )
                                                               ( )(                )
                                                                                                   (           )(          )
                                                                                                                                            (        )(       )
                                                                                                                                                                        (           )(   )



      ( )(            )
                                 (         )(      )
                                                               ( )(                )
                                                                                                   ( ̅ )(               )
                                                                                                                                            (       )(    )
                                                                                                                                                                       (           )(    )
                                                                                                                                                                                                     ( ̅ )(      )


   and (                  )(     )




  ( )( ) ( )( ) ( )(                                                           )
                                                                                               (           )(       )
                                                                                                                                     ( ̅ )(          )
                                                                                                                                                                  (            )(   )
                                                                                                                                                                                         where (                  )(   )
                                                                                                                                                                                                                           ( ̅ )(   )

are defined respectively

Then the solution satisfies the inequalities                                                                                                                                                                                                    472

            ((        )( ) (               )( ) )                                                                              (        )( )
                                                                                       ( )

where ( )( ) is defined
                                 ((      )( ) (                        )( ) )                                                                                          (       )( )                                                             473
                                                                                                                   ( )
  (        )( )                                                                                                                         (       )( )




                                                                                                                                                                      349
Advances in Physics Theories and Applications                                                                                                                                                                                            www.iiste.org
ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
Vol 7, 2012



                            (        )( )                                                ((       )( ) (                  )( ) )                  (       )( )                         (       )( )                                          474
(                                                                           [                                                                                     ]                                             ( )
    (         )( ) ((     )( ) (                   )( ) (            )( ) )
            (           )( )                                    (        )( )                      (            )( )                                  (      )( )
                                                     [                                                                    ]                                           )
(        )( ) ((        )( ) (                )( ) )


               (    )( )                                                        ((        )( ) (                 )( ) )                                                                                                                      475
                                                  ( )

                            (       )( )                                                                             ((       )( ) (             )( ) )                                                                                      476
                                                                ( )
(       )( )                                                                        (     )( )


             (          )( )                                    (        )( )                      (            )( )                             (         )( )                                                                              477
                                                    [                                                                     ]                                                  ( )
(       )( ) ((         )( ) (               )( ) )


                        (       )( )                                                ((        )( ) (                 )( ) )                  (        )( )                     (       )( )
                                                                       [                                                                                     ]
(       )( ) ((         )( ) (               )( ) (             )( ) )


Definition of ( )(                                     )
                                                           ( )(           )
                                                                                (         )(       )
                                                                                                           (         )( ) :-                                                                                                                 478

              Where ( )(                       )
                                                           (             )( ) (               )(       )
                                                                                                                  (           )(       )



                                ( )(           )
                                                           (             )(     )
                                                                                          (                )(    )



                                (        )(    )
                                                            (            )( ) (               )(       )
                                                                                                                 (            )(   )



                                (        )(    )
                                                            (            )(     )
                                                                                              (            )(    )

                                                                                                                                                                                                                                               479

Proof : From GLOBAL EQUATIONS we obtain                                                                                                                                                                                                        480
        ( )
                    (           )(       )
                                                   ((               )(    )
                                                                                     (            )(        )
                                                                                                                      (         )( ) (                    ))          (      )( ) (                   )   ( )
                                                                                                                                                                                                                   (   )(   ) ( )

                                         ( )                              ( )                                                                                                                                                                  481
Definition of                                     :-

              It follows
                                                                                                                                            ( )
        ((          )( ) (           ( )
                                              )             ( )(              ) ( )
                                                                                                       (          )( ) )                                         ((        )( ) (      ( )
                                                                                                                                                                                               )          ( )(     ) ( )
                                                                                                                                                                                                                            (       )( ) )



              From which one obtains

Definition of ( ̅ )(                                   )
                                                           ( )( ) :-




(a) For                         ( )(               )
                                                                                ( )(               )
                                                                                                                ( ̅ )(         )



                                                                                   [ (                     )( ) ((        )( ) (           )( ) ) ]
              ( )                    (       )( ) ( )( ) (                    )( )                                                                                                         (    )( ) (      )( )
                    ( )                                                                  )( ) ((               )( ) (         )( ) ) ]
                                                                                                                                                             ,        ( )(    )
                                                                  [ (                                                                                                                      (    )( ) (      )( )
                                                           ( )( )


                                                                                                                       ( )(            )              ( )
                                                                                                                                                            ( )           ( )(     )


 In the same manner , we get                                                                                                                                                                                                                   482




                                                                                                                                                      350
Advances in Physics Theories and Applications                                                                                                                      www.iiste.org
 ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
 Vol 7, 2012



                                                       [ (                       )( )((̅ )( ) (̅ )( ) ) ]
                              (̅ )( ) ( ̅ )( ) (̅ )( )                                                                                    (̅ )( ) (   )( )
          ( )
                ( )                                                  )( )((̅ )( ) (̅ )( ) ) ]
                                                                                                                         , ( ̅ )(    )
                                                        [ (                                                                               (   )( ) (̅ )( )
                                               ( ̅ )( )


          From which we deduce ( )(                                        )             ( )
                                                                                               ( )        ( ̅ )(     )




(b) If              ( )(        )
                                          ( )(        )
                                                                               ( ̅ )(      )
                                                                                               we find like in the previous case,                                        483




                                                               [ (             )( ) ((     )( ) (        )( ) ) ]
                         (     )( ) ( )( ) (              )( )
     ( )(       )
                                                 [ (             )( ) ((        )( ) (         )( ) ) ]
                                                                                                                         ( )
                                                                                                                               ( )
                                          ( )( )

                                   [ (                        )( )((̅ )( ) (̅ )( ) ) ]
          (̅ )( ) ( ̅ )( ) (̅ )( )
                                  [ (              )( )((̅ )( ) (̅ )( ) ) ]
                                                                                                           ( ̅ )(    )
                         ( ̅ )( )

                                                                                                                                                                         484
 (c) If             ( )(            )
                                           ( ̅ )(         )
                                                                  ( )(           )
                                                                                                     , we obtain

                                                                              [ (                         )( ) ((̅ )( ) (̅ )( )) ]
                                                     (̅ )( ) ( ̅ )( ) (̅ )( )
          ( )(      )               ( )
                                          ( )                                 [ (              )( ) ((̅ )( ) (̅ )( )) ]
                                                                                                                                         ( )(   )
                                                                     ( ̅ )( )

      And so with the notation of the first part of condition (c) , we have
                              ( )
 Definition of                      ( ) :-

                                                                                                           ( )
      (       )(    )           ( )
                                        ( )         (         )( ) ,              ( )
                                                                                         ( )
                                                                                                           ( )


 In a completely analogous way, we obtain
                               ( )
 Definition of                       ( ) :-

                                                                                               ( )
 (   )(   )             ( )
                              ( )         ( )( ) ,                   ( )
                                                                           ( )
                                                                                               ( )


 Now, using this result and replacing it in GLOBAL E486QUATIONS we get easily the result stated
 in the theorem.

 Particular case :                                                                                                                                                       485

 If ( )( ) ( )( )           ( )( ) ( )( ) and in this case ( )( )                                                                         ( ̅ )( ) if in addition
     ( )       ( )     ( )
 ( )       ( ) then        ( ) ( )( ) and as a consequence    ( )                                                                         ( )( ) ( ) this also
            ( )
 defines ( ) for the special case

 Analogously if (                         )(   )
                                                      (         )(    )
                                                                                         ( )(        )
                                                                                                            ( )( ) and then

  ( )( ) ( ̅ )( ) if in addition ( )( ) ( )( ) then                                                                   ( ) ( )( ) ( ) This is an important
 consequence of the relation between ( )( ) and ( ̅ )(                                                           )
                                                                                                                     and definition of ( )( )

                                                                                                                                                                         486

 we obtain                                                                                                                                                               487




                                                                                                                 351
Advances in Physics Theories and Applications                                                                                                                                                         www.iiste.org
 ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
 Vol 7, 2012



     ( )
                (        )(    )
                                         ((          )(    )
                                                                        (      )(       )
                                                                                               (            )( ) (           ))         (       )( ) (                 )   ( )
                                                                                                                                                                                   (      )(   ) ( )



                               ( )                          ( )                                                                                                                                             488
 Definition of                           :-

 It follows                                                                                                                                                                                                 489
                                                                                                                      ( )
      ((            )( ) (     ( )
                                     )           (     )(      ) ( )
                                                                                   (         )( ) )                                ((       )( ) (           ( )
                                                                                                                                                                   )       ( )(        ) ( )


 (         )( ) )

 From which one obtains                                                                                                                                                                                     490

 Definition of ( ̅ )(                       )
                                                ( )( ) :-

(d) For                  ( )(           )
                                                               ( )(           )
                                                                                        ( ̅ )(         )



                                                               [ (                )( )((      )( ) (          )( ) ) ]
      ( )                (     )( ) ( )( ) (              )( )                                                                                           (    )( ) (        )( )
            ( )                                                     )( )((         )( ) (          )( ) ) ]
                                                                                                                             ,     ( )(         )
                                                   [ (                                                                                                   (    )( ) (        )( )
                                            ( )( )


                         ( )(       )            ( )
                                                       ( )              ( )(        )


 In the same manner , we get                                                                                                                                                                                491

                                               [ (                            )( ) ((̅ )( ) (̅ )( ) ) ]
                      (̅ )( ) ( ̅ )( ) (̅ )( )                                                                                                       (̅ )( ) (       )( )
     ( )
           ( )                                                     )( ) ((̅ )( ) (̅ )( ) ) ]
                                                                                                                             , ( ̅ )(       )
                                                 [ (                                                                                                 (       )( ) (̅ )( )
                                        ( ̅ )( )


 From which we deduce ( )(                                          )             ( )
                                                                                        ( )            ( ̅ )(     )                                                                                         492

(e) If                   ( )(       )
                                                ( )(       )
                                                                                    ( ̅ )(         )
                                                                                                       we find like in the previous case,                                                                   493
                                                          [ (                )( ) ((        )( ) (         )( ) ) ]
                     (    )( ) ( )( ) (              )( )
 ( )(       )
                                            [ (                )( ) ((        )( ) (         )( ) ) ]
                                                                                                                             ( )
                                                                                                                                   ( )
                                     ( )( )

                              [ (                      )( )((̅ )( ) (̅ )( ) ) ]
     (̅ )( ) ( ̅ )( ) (̅ )( )
                              [ (             )( )((̅ )( ) (̅ )( ) ) ]
                                                                                                            ( ̅ )(     )
                     ( ̅ )( )


 (f) If                  ( )(           )
                                                ( ̅ )(         )
                                                                            ( )(        )
                                                                                                            , we obtain                                                                                     494



                                                                         [ (                               )( )((̅ )( ) (̅ )( ) ) ]
                                                (̅ )( ) ( ̅ )( ) (̅ )( )
     ( )(       )            ( )
                                   ( )                                      [ (              )( )((̅ )( ) (̅ )( ) ) ]
                                                                                                                                                    ( )(       )
                                                                   ( ̅ )( )

 And so with the notation of the first part of condition (c) , we have
                                   ( )
 Definition of                           ( ) :-                                                                                                                                                             495

                                                                                                            ( )
 (     )(       )            ( )
                                   ( )          (         )( ) ,              ( )
                                                                                    ( )
                                                                                                            ( )


 In a completely analogous way, we obtain                                                                                                                                                                   496
                                   ( )
 Definition of                           ( ) :-




                                                                                                                            352
Advances in Physics Theories and Applications                                                                                                                                                       www.iiste.org
 ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
 Vol 7, 2012



                                                                                                         ( )
 (     )(     )           ( )
                                ( )           ( )( ) ,                      ( )
                                                                                  ( )
                                                                                                         ( )


 .                                                                                                                                                                                                        497

 Particular case :                                                                                                                                                                                        498

 If ( )( ) ( )( )                                             ( )( ) ( )( ) and in this case ( )( )                                                               ( ̅ )( ) if in addition
 ( )( ) ( )( ) then                                    ( )
                                                             ( ) ( )( ) and as a consequence   ( )                                                                ( )( ) ( )

 Analogously if (                             )(   )
                                                             (         )(    )
                                                                                                ( )(           )
                                                                                                                        ( )( ) and then

  ( )( ) ( ̅ )( ) if in addition ( )( ) ( )( ) then                                                                                ( )             (     )(   )
                                                                                                                                                                        ( ) This is an important
 consequence of the relation between ( )( ) and ( ̅ )(                                                                       )


                                                                                                                                                                                                          499

 From GLOBAL EQUATIONS we obtain                                                                                                                                                                          500
      ( )
                  (       )(    )
                                         ((            )(    )
                                                                       (         )(       )
                                                                                                 (           )( ) (              ))        (           )( ) (            )   ( )
                                                                                                                                                                                    (   )(   ) ( )



 Definition of                  ( )
                                         :-                  ( )                                                                                                                                          501


 It follows
                                                                                                                       ( )
       ((         )( ) (       ( )
                                     )             ( )(          ) ( )
                                                                                  (            )( ) )                                 ((           )( ) (     ( )
                                                                                                                                                                    )        ( )(   ) ( )


 (          )( ) )

                                                                                                                                                                                                          502
     From which one obtains

(a) For                   ( )(          )
                                                                 ( )(        )
                                                                                          ( ̅ )(         )




                                                            [ (             )( ) ((           )( ) (         )( ) ) ]
     ( )              (   )( ) ( )( ) (                )( )                                                                                             (     )( ) (      )( )
           ( )                                                   )( ) ((     )( ) (            )( ) ) ]
                                                                                                                             ,     ( )(        )
                                            [ (                                                                                                         (     )( ) (      )( )
                                     ( )( )


                      ( )(          )              ( )
                                                         ( )           ( )(           )


     In the same manner , we get                                                                                                                                                                          503

                                               [ (                           )( )((̅ )( ) (̅ )( ) ) ]
                      (̅ )( ) ( ̅ )( ) (̅ )( )                                                                                                           (̅ )( ) (    )( )
      ( )
            ( )                                                  )( )((̅ )( ) (̅ )( ) ) ]
                                                                                                                                 , ( ̅ )(      )
                                                 [ (                                                                                                     (    )( ) (̅ )( )
                                        ( ̅ )( )


 Definition of ( ̅ )( ) :-

 From which we deduce ( )(                                         )             ( )
                                                                                       ( )               ( ̅ )(    )



(b) If                ( )(          )
                                              ( )(           )
                                                                                   ( ̅ )(            )
                                                                                                         we find like in the previous case,                                                               504



                                                              [ (           )( ) ((           )( ) (         )( ) ) ]
            ( )       (    )( ) ( )( ) (                 )( )                                                                     ( )
     ( )                                                         )( ) ((
                                                                                                                                        ( )
                                               [ (                               )( ) (         )( ) ) ]
                                        ( )( )




                                                                                                                             353
Advances in Physics Theories and Applications                                                                                                                                              www.iiste.org
 ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
 Vol 7, 2012



                          [ (                           )( ) ((̅ )( ) (̅ )( ) ) ]
 (̅ )( ) ( ̅ )( ) (̅ )( )
                             [ (          )( ) ((̅ )( ) (̅ )( ) ) ]
                                                                                                        ( ̅ )(    )
                    ( ̅ )( )




(c) If                  ( )(         )
                                                  ( ̅ )(        )
                                                                        ( )(           )
                                                                                                        , we obtain                                                                              505
                                                                           [ (                        )( ) ((̅ )( ) (̅ )( ) ) ]
                                                  (̅ )( ) ( ̅ )( ) (̅ )( )
 ( )(       )             ( )
                                ( )                                           [ (              )( ) ((̅ )( ) (̅ )( ) ) ]
                                                                                                                                          ( )(         )
                                                                     ( ̅ )( )

 And so with the notation of the first part of condition (c) , we have
                                    ( )
 Definition of                            ( ) :-

                                                                                                            ( )
 (     )(       )          ( )
                                 ( )               (        )( ) ,             ( )
                                                                                       ( )
                                                                                                            ( )


 In a completely analogous way, we obtain
                                    ( )
 Definition of                            ( ) :-

                                                                                                        ( )
 (    )(     )            ( )
                                ( )               ( )( ) ,                   ( )
                                                                                   ( )
                                                                                                        ( )


 Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in
 the theorem.

 Particular case :

 If ( )( ) ( )( )                                                 ( )( ) ( )( ) and in this case ( )( )                                                    ( ̅ )( ) if in addition
 ( )( ) ( )( ) then                                        ( )
                                                                 ( ) ( )( ) and as a consequence    ( )                                                    ( )( ) ( )

 Analogously if (                                 )(   )
                                                                 (        )(   )
                                                                                                  ( )(        )
                                                                                                                      ( )( ) and then

  ( )( ) ( ̅ )( ) if in addition ( )( ) ( )( ) then                                                                           ( )         (     )(   )
                                                                                                                                                               ( ) This is an important
 consequence of the relation between ( )( ) and ( ̅ )(                                                                  )


                                                                                                                                                                                                 506

 : From GLOBAL EQUATIONS we obtain                                                                                                                                                             507

     ( )
                 (        )(    )
                                          ((               )(    )
                                                                        (          )(      )
                                                                                                  (         )( ) (          ))        (       )( ) (            )   ( )
                                                                                                                                                                           (   )(   ) ( )




                                ( )                             ( )
 Definition of                           :-                                                                                                                                                    508


           It follows
                                                                                                                  ( )
     ((             )( ) (      ( )
                                      )                ( )(          ) ( )
                                                                                       (         )( ) )                          ((       )( ) (     ( )
                                                                                                                                                           )        ( )(   ) ( )


 (         )( ) )
 From which one obtains

 Definition of ( ̅ )(                         )
                                                  ( )( ) :-


(d) For                   ( )(            )
                                                                      ( )(         )
                                                                                               ( ̅ )(   )



                                                                                                                        354
Advances in Physics Theories and Applications                                                                                                            www.iiste.org
 ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
 Vol 7, 2012




                                                         [ (           )( ) ((     )( ) (       )( ) ) ]
     ( )               (     )( ) ( )( ) (          )( )                                                                          (   )( ) (       )( )
           ( )                                              )( ) ((
                                                                                                              ,       ( )(   )
                                               [ (                       )( ) (       )( ) ) ]                                    (   )( ) (       )( )
                                        ( )( )


                       ( )(        )          ( )
                                                    ( )       ( )(          )



 In the same manner , we get                                                                                                                                 509

                                                [ (                   )( )((̅ )( ) (̅ )( ) ) ]
                       (̅ )( ) ( ̅ )( ) (̅ )( )                                                                                   (̅ )( ) (   )( )
     ( )
           ( )                                             )( )((̅ )( ) (̅ )( ) ) ]
                                                                                                              , ( ̅ )(       )
                                       ( ̅ )( )
                                                [ (                                                                               (   )( ) (̅ )( )


     From which we deduce ( )(                                 )            ( )
                                                                                  ( )       ( ̅ )(     )



(e) If                 ( )(       )
                                            ( )(      )
                                                                            ( ̅ )( ) we find like in the previous case,                                      510


                                                               [ (          )( ) ((     )( ) (     )( ) ) ]
                 ( )        (     )( ) ( )( ) (           )( )                                                        ( )
      ( )                                                      )( ) ((
                                                                                                                            ( )
                                                   [ (                       )( ) (      )( ) ) ]
                                            ( )( )


                                      [ (                   )( )((̅ )( ) (̅ )( ) ) ]
             (̅ )( ) ( ̅ )( ) (̅ )( )
                                      [ (         )( )((̅ )( ) (̅ )( ) ) ]
                                                                                                     ( ̅ )(       )
                             ( ̅ )( )
                                                                                                                                                             511
                                  ( )                ( )                  ( )                                                                                512
 (f) If                 ( )                  ( ̅ )              ( )                             , we obtain

                                                                               [ (                  )( ) ((̅ )( ) (̅ )( )) ]
                                                      (̅ )( ) ( ̅ )( ) (̅ )( )
            ( )(        )             ( )
                                            ( )                                [ (        )( ) ((̅ )( ) (̅ )( )) ]
                                                                                                                                      ( )(     )
                                                                      ( ̅ )( )


     And so with the notation of the first part of condition (c) , we have
 Definition of ( ) ( ) :-

                                                                                            ( )
 (     )(    )              ( )
                                  ( )        (       )( ) ,           ( )
                                                                            ( )
                                                                                            ( )
 In a completely analogous way, we obtain
 Definition of ( ) ( ) :-

                                                                                          ( )
 (    )(    )              ( )
                                 ( )         ( )( ) ,              ( )
                                                                         ( )
                                                                                          ( )


 Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the
 theorem.

 Particular case :

 If ( )( ) ( )( )        ( )( ) ( )( ) and in this case ( )( ) ( ̅ )( ) if in addition
                                                                                                                                                             513
 ( )( ) ( )( ) then ( ) ( ) ( )( ) and as a consequence     ( ) ( )( )        ( ) this also
            ( )
 defines ( ) for the special case .

 Analogously if ( )( ) ( )( )          ( )( ) ( )( ) and then
     ( )        ( )               ( )
  ( )     ( ̅ ) if in addition ( )      ( )( ) then      ( ) ( )( ) ( ) This is an important
 consequence of the relation between ( )( ) and ( ̅ )( ) and definition of ( )( )
                                                                                                                                                             514


                                                                                                           355
Advances in Physics Theories and Applications                                                                                                                                                          www.iiste.org
 ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
 Vol 7, 2012



           From GLOBAL EQUATIONS we obtain                                                                                                                                                                  515

     ( )
                 (         )(   )
                                            ((           )(   )
                                                                        (       )(          )
                                                                                                   (          )( ) (           ))        (      )( ) (               )    ( )
                                                                                                                                                                                  (   )(   ) ( )




                                ( )                           ( )
 Definition of                           :-


           It follows
                                                                                                                      ( )
     ((           )( ) (        ( )
                                      )              ( )(             ) ( )
                                                                                    (            )( ) )                             ((       )( ) (     ( )
                                                                                                                                                                )         ( )(    ) ( )
                                                                                                                                                                                            (      )( ) )


           From which one obtains

 Definition of ( ̅ )(                           )
                                                    ( )( ) :-


(g) For                    ( )(             )
                                                                      ( )(      )
                                                                                                ( ̅ )(    )



                                                                       [ (           )( ) ((           )( ) (       )( ) ) ]
           ( )              (       )( ) ( )( ) (                 )( )                                                                                  (       )( ) (     )( )
                 ( )                                                     )( ) ((        )( ) (          )( ) ) ]
                                                                                                                               ,     ( )(       )
                                                           [ (                                                                                          (       )( ) (     )( )
                                                    ( )( )


                       ( )(          )               ( )
                                                           ( )           ( )(           )



 In the same manner , we get                                                                                                                                                                                516

                                                         [ (                                )( )((̅ )( ) (̅ )( ) ) ]
                                (̅ )( ) ( ̅ )( ) (̅ )( )                                                                                                    (̅ )( ) (       )( )
             ( )
                     ( )                                                      )( )((̅ )( ) (̅ )( ) ) ]
                                                                                                                                    , ( ̅ )(        )
                                                               [ (                                                                                          (       )( ) (̅ )( )
                                                      ( ̅ )( )


     From which we deduce ( )(                                           )           ( )
                                                                                                ( )        ( ̅ )(       )



(h) If                 ( )(         )
                                                    ( )(      )
                                                                                     ( ̅ )( ) we find like in the previous case,                                                                            517


                                                                       [ (           )( ) ((          )( ) (        )( ) ) ]
                 ( )        (       )( ) ( )( ) (                 )( )                                                              ( )
      ( )                                                                )( ) ((
                                                                                                                                          ( )
                                                           [ (                          )( ) (          )( ) ) ]
                                                    ( )( )


                                      [ (                              )( )((̅ )( ) (̅ )( ) ) ]
             (̅ )( ) ( ̅ )( ) (̅ )( )
                                     [ (                 )( )((̅ )( ) (̅ )( ) ) ]
                                                                                                                      ( ̅ )(   )
                            ( ̅ )( )
                                                                                                                                                                                                            518
 (i) If                ( )(             )
                                                     ( ̅ )(       )
                                                                            ( )(            )
                                                                                                               , we obtain

                                                                                       [ (                          )( ) ((̅ )( ) (̅ )( )) ]
                                                              (̅ )( ) ( ̅ )( ) (̅ )( )
            ( )(       )                ( )
                                                ( )                                    [ (               )( ) ((̅ )( ) (̅ )( )) ]
                                                                                                                                                         ( )(         )
                                                                              ( ̅ )( )
                                                                                                                                                                                                            519
     And so with the notation of the first part of condition (c) , we have
 Definition of ( ) ( ) :-

                                                                                                              ( )
 (     )(    )             ( )
                                 ( )                 (      )( ) ,             ( )
                                                                                     ( )
                                                                                                              ( )
 In a completely analogous way, we obtain
 Definition of ( ) ( ) :-

                                                                                                                            356
Advances in Physics Theories and Applications                                                                                                                                              www.iiste.org
 ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
 Vol 7, 2012




                                                                                                   ( )
 (    )(     )             ( )
                                 ( )              ( )( ) ,             ( )
                                                                             ( )
                                                                                                   ( )


 Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the
 theorem.

 Particular case :

 If ( )( ) ( )( )         ( )( ) ( )( ) and in this case ( )( ) ( ̅ )( ) if in addition
     ( )      ( )     ( )
 ( )      ( ) then        ( ) ( )( ) and as a consequence    ( ) ( )( ) ( ) this also
            ( )
 defines ( ) for the special case .

 Analogously if ( )( ) ( )( )          ( )( ) ( )( ) and then
     ( )        ( )                ( )
  ( )     ( ̅ ) if in addition ( )      ( )( ) then     ( ) ( )( ) ( ) This is an important
 consequence of the relation between ( ) and ( ̅ ) and definition of ( )( )
                                         ( )        ( )



                                                                                                                                                                                               520
 we obtain                                                                                                                                                                                     521

     ( )
                 (         )(    )
                                          ((          )(   )
                                                                   (      )(          )
                                                                                             (         )( ) (        ))        (     )( ) (               )   ( )
                                                                                                                                                                       (       )(   ) ( )




                                 ( )                       ( )
 Definition of                           :-


           It follows
                                                                                                            ( )
     ((           )( ) (        ( )
                                      )            ( )(        ) ( )
                                                                              (            )( ) )                         ((       )( ) (    ( )
                                                                                                                                                     )        ( )(         ) ( )


 (         )( ) )


           From which one obtains

 Definition of ( ̅ )(                         )
                                                  ( )( ) :-


(j) For                    ( )(           )
                                                                 ( )(     )
                                                                                          ( ̅ )(   )



                                                                    [ (       )( ) ((           )( ) (    )( ) ) ]
           ( )              (        )( ) ( )( ) (             )( )                                                                          (       )( ) (    )( )
                 ( )                                                )( ) ((       )( ) (         )( ) ) ]
                                                                                                                      ,    ( )(      )
                                                         [ (                                                                                 (       )( ) (    )( )
                                                  ( )( )


                       ( )(          )             ( )
                                                         ( )       ( )(           )



 In the same manner , we get                                                                                                                                                                   522

                                                          [ (                         )( )((̅ )( ) (̅ )( ) ) ]                                                                                 523
                                 (̅ )( ) ( ̅ )( ) (̅ )( )                                                                                        (̅ )( ) (          )( )
             ( )
                     ( )                                               )( )((̅ )( ) (̅ )( ) ) ]
                                                                                                                          , ( ̅ )(       )
                                                             [ (                                                                                 (       )( ) (̅ )( )
                                                    ( ̅ )( )


     From which we deduce ( )(                                     )          ( )
                                                                                          ( )       ( ̅ )(      )



(k) If                 ( )(          )
                                                  ( )(     )
                                                                              ( ̅ )( ) we find like in the previous case,                                                                      524


                                                                                                                    357
Advances in Physics Theories and Applications                                                                                                                                            www.iiste.org
ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
Vol 7, 2012




                                                                      [ (         )( ) ((    )( ) (    )( ) ) ]
                                (        )( ) ( )( ) (           )( )
       ( )(           )
                                                          [ (         )( ) ((      )( ) (     )( ) ) ]
                                                                                                                              ( )
                                                                                                                                    ( )
                                                   ( )( )


                             [ (                         )( ) ((̅ )( ) (̅ )( )) ]
    (̅ )( ) ( ̅ )( ) (̅ )( )
                              [ (             )( ) ((̅ )( ) (̅ )( )) ]
                                                                                                ( ̅ )(        )
                     ( ̅ )( )
                                                                                                                                                                                            525
(l) If                     ( )(           )
                                                    ( ̅ )(   )
                                                                       ( )(         )
                                                                                                     , we obtain

                                                                             [ (                )( ) ((̅ )( ) (̅ )( )) ]
                                                    (̅ )( ) ( ̅ )( ) (̅ )( )
    ( )(         )              ( )
                                      ( )                                   [ (         )( ) ((̅ )( ) (̅ )( )) ]
                                                                                                                                          ( )(      )
                                                                   ( ̅ )( )


    And so with the notation of the first part of condition (c) , we have
Definition of ( ) ( ) :-

                                                                                                 ( )
(       )(   )                 ( )
                                     ( )            (      )( ) ,           ( )
                                                                                  ( )
                                                                                                 ( )
In a completely analogous way, we obtain
Definition of ( ) ( ) :-

                                                                                               ( )
(      )(    )                 ( )
                                     ( )           ( )( ) ,               ( )
                                                                                ( )
                                                                                               ( )


Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the
theorem.

Particular case :

If ( )( ) ( )( )             ( )( ) ( )( ) and in this case ( )( ) ( ̅ )( ) if in addition
    ( )       ( )       ( )
( )      ( ) then           ( ) ( )( ) and as a consequence     ( ) ( )( )        ( ) this also
            ( )
defines ( ) for the special case .
Analogously if ( )( ) ( )( )           ( )( ) ( )( ) and then
     ( )        ( )                ( )
 ( )      ( ̅ ) if in addition ( )     ( )( ) then      ( ) ( )( ) ( ) This is an important
consequence of the relation between ( ) and ( ̅ ) and definition of ( )( )
                                        ( )         ( )

                                                                                                                                                                                            526
       527                                                                                                                                                                                   527

We can prove the following                                                                                                                                                                    528

Theorem 3: If (                               )(    )
                                                             (       )( ) are independent on , and the conditions

(       )( ) (                 )(    )
                                              (         )( ) (        )(    )


(       )( ) (                 )(    )
                                              (         )( ) (        )(    )
                                                                                    (       )( ) (        )(          )
                                                                                                                          (     )( ) (      )(      )
                                                                                                                                                            (     )( ) (        )(   )


(       )( ) (                 )(    )
                                              (         )( ) (       )(    )
                                                                                        ,

(       )( ) (                 )(    )
                                              (         )( ) (       )(    )
                                                                                   (        )( ) (       )(       )
                                                                                                                          (   )( ) (       )(   )
                                                                                                                                                        (       )( ) (     )(   )


             (            )(    )
                                     (        )( ) as defined, then the system
                                                                                                                                                                                              529

If (         )(       )
                                     (        )( ) are independent on , and the conditions                                                                                                    530.



                                                                                                                      358
Advances in Physics Theories and Applications                                                                                                                                    www.iiste.org
ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
Vol 7, 2012



(      )( ) (                 )(       )
                                           (    )( ) (        )(    )                                                                                                                 531

(      )( ) (                 )(       )
                                           (    )( ) (        )(    )
                                                                        (       )( ) (      )(       )
                                                                                                         (        )( ) (           )(    )
                                                                                                                                                 (       )( ) (         )(   )        532

(      )( ) (                 )(   )
                                           (    )( ) (        )(   )
                                                                            ,                                                                                                         533

(      )( ) (                 )(   )
                                           (    )( ) (        )(   )
                                                                        (       )( ) (     )(   )
                                                                                                         (       )( ) (        )(    )
                                                                                                                                             (       )( ) (        )(   )             534

           (             )(    )
                                   (       )( ) as defined are satisfied , then the system

If (        )(       )
                                   (       )( ) are independent on , and the conditions                                                                                               535

(      )( ) (                 )(       )
                                            (   )( ) (        )(    )


(      )( ) (                 )(       )
                                            (   )( ) (        )(    )
                                                                        (        )( ) (     )(       )
                                                                                                             (       )( ) (         )(   )
                                                                                                                                                 (        )( ) (        )(   )


(      )( ) (                 )(   )
                                           (    )( ) (        )(    )
                                                                            ,

(      )( ) (                 )(   )
                                           (    )( ) (        )(    )
                                                                        (       )( ) (     )(    )
                                                                                                         (       )( ) (        )(    )
                                                                                                                                             (       )( ) (        )(    )


           (             )(    )
                                   (        )( ) as defined are satisfied , then the system

If (       )(    )
                                   (       )( ) are independent on , and the conditions                                                                                               536

(      )( ) (                 )(       )
                                            (   )( ) (        )(    )



(      )( ) (                 )(       )
                                            (   )( ) (        )(    )
                                                                        (        )( ) (     )(       )
                                                                                                             (       )( ) (         )(   )
                                                                                                                                                 (        )( ) (        )(   )



(      )( ) (                 )(   )
                                           (    )( ) (        )(    )
                                                                            ,

(      )( ) (                 )(   )
                                           (    )( ) (        )(    )
                                                                        (       )( ) (     )(    )
                                                                                                         (       )( ) (        )(    )
                                                                                                                                             (       )( ) (        )(    )



           (             )(    )
                                   (        )( ) as defined are satisfied , then the system

If (       )(    )
                                   (       )( ) are independent on , and the conditions                                                                                               537

(      )( ) (                 )(       )
                                            (   )( ) (        )(    )



(      )( ) (                 )(       )
                                            (   )( ) (        )(    )
                                                                        (        )( ) (     )(       )
                                                                                                             (    )( ) (            )(   )
                                                                                                                                                 (       )( ) (         )(   )



(      )( ) (                 )(   )
                                           (    )( ) (        )(    )
                                                                            ,

(      )( ) (                 )(   )
                                           (    )( ) (        )(    )
                                                                        (       )( ) (     )(    )
                                                                                                         (       )( ) (        )(    )
                                                                                                                                             (       )( ) (        )(   )



           (             )(    )
                                   (       )( ) as defined satisfied , then the system

If (       )(    )
                                   (       )( ) are independent on , and the conditions                                                                                               538

(      )( ) (                 )(       )
                                            (   )( ) (        )(    )



(      )( ) (                 )(       )
                                            (   )( ) (        )(    )
                                                                        (        )( ) (     )(       )
                                                                                                             (       )( ) (         )(   )
                                                                                                                                                 (        )( ) (        )(   )



(      )( ) (                 )(   )
                                           (    )( ) (        )(    )
                                                                            ,
                                                                                                                                                                                      539
        ( )                    ( )                  ( )           ( )            ( )        ( )                      ( )           ( )                   ( )           ( )
(      )        (             )            (    )         (   )         (       )      (   )             (       )         (   )             (       )         (   )



                                                                                                     359
Advances in Physics Theories and Applications                                      www.iiste.org
ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
Vol 7, 2012



      (       )(   )
                       (    )( ) as defined are satisfied , then the system

(   )(    )
                       [(   )(   )
                                     (   )( ) (     )]                                  540

(   )(    )
                       [(   )(   )
                                     (   )( ) (     )]                                  541

(   )(    )
                       [(   )(   )
                                     (   )( ) (     )]                                  542

(   )(   )
                       (    )(   )
                                     (   )( ) ( )                                       543

(   )(   )
                       (    )(   )
                                     (   )( ) ( )                                       544

(   )(   )
                       (    )(   )
                                     (   )( ) ( )                                       545

has a unique positive solution , which is an equilibrium solution for the system        546

(   )(    )
                       [(   )(   )
                                     (   )( ) (     )]                                  547

(   )(    )
                       [(   )(   )
                                     (   )( ) (     )]                                  548

(   )(    )
                       [(   )(   )
                                     (   )( ) (     )]                                  549

(   )(   )
                       (    )(   )
                                     (   )( ) (     )                                   550

(   )(   )
                       (    )(   )
                                     (   )( ) (     )                                   551

(   )(   )
                       (    )(   )
                                     (   )( ) (     )                                   552

has a unique positive solution , which is an equilibrium solution for                   553

(   )(    )
                       [(   )(   )
                                     (    )( ) (    )]                                  554

(   )(    )
                       [(   )(   )
                                     (    )( ) (    )]                                  555

(   )(    )
                       [(   )(   )
                                     (    )( ) (    )]                                  556

(   )(    )
                       (    )(   )
                                     (   )( ) (     )                                   557

(   )(    )
                       (    )(   )
                                     (   )( ) (     )                                   558

(   )(    )
                       (    )(   )
                                     (   )( ) (     )                                   559

has a unique positive solution , which is an equilibrium solution                       560

(   )(    )
                       [(   )(   )
                                     (    )( ) (    )]                                561

(   )(    )
                       [(   )(   )
                                     (    )( ) (    )]                                563

(   )(    )
                       [(   )(   )
                                     (    )( ) (    )]                                564

(   )(    )
                       (    )(   )
                                     (   )( ) ((        ))                            565

(   )(    )
                       (    )(   )
                                     (   )( ) ((        ))                            566

(   )(    )
                       (    )(   )
                                     (   )( ) ((        ))                            567

                                                                360
Advances in Physics Theories and Applications                                                                                                                  www.iiste.org
ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
Vol 7, 2012




has a unique positive solution , which is an equilibrium solution for the system                                                                                  568


(       )(      )
                              [(   )(    )
                                                 (       )( ) (      )]                                                                                           569


(       )(      )
                              [(   )(    )
                                                 (       )( ) (      )]                                                                                           570

(       )(      )
                              [(   )(    )
                                                 (       )( ) (      )]                                                                                           571


(       )(      )
                              (    )(   )
                                                 (       )( ) (      )                                                                                            572


(       )(      )
                              (    )(   )
                                                 (       )( ) (      )                                                                                            573


(       )(      )
                              (    )(   )
                                                 (       )( ) (      )                                                                                            574


has a unique positive solution , which is an equilibrium solution for the system                                                                                  575


(       )(      )
                              [(   )(    )
                                                 (        )( ) (     )]                                                                                           576


(       )(      )
                              [(   )(    )
                                                 (        )( ) (     )]                                                                                           577

(       )(      )
                              [(   )(    )
                                                 (        )( ) (     )]                                                                                           578


(       )(      )
                              (    )(   )
                                                 (       )( ) (      )                                                                                            579


(       )(      )
                              (    )(   )
                                                 (       )( ) (      )                                                                                            580


(       )(      )
                              (    )(   )
                                                 (       )( ) (      )                                                                                            584


has a unique positive solution , which is an equilibrium solution for the system                                                                                  582


                                                                                                                                                                    583

                                                                                                                                                                    584

(a) Indeed the first two equations have a nontrivial solution                                                         if

 ( ) (                       )( ) ( )(       )
                                                     (     )( ) (        )(   )
                                                                                      (       )( ) (    )( ) (    )        (       )( ) (    )( ) (    )
( )( ) (                    )( )( ) (            )

                                                                                                                                                                    585

(a) Indeed the first two equations have a nontrivial solution                                                             if

    (       )           (     )( ) ( )( ) (                 )( ) (        )(      )
                                                                                          (    )( ) (    )( ) (       )        (    )( ) (    )( ) (       )
            ( )
(       )           (       )( )( ) ( )                                                                                                                             586



                                                                                                 361
Advances in Physics Theories and Applications                                                                                                                                                   www.iiste.org
ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
Vol 7, 2012



                                                                                                                                                                                                     587

(a) Indeed the first two equations have a nontrivial solution                                                                                           if

    (       )             (      )( ) ( )( ) (                             )( ) (             )(    )
                                                                                                             (        )( ) (           )( ) (           )        (        )( ) (   )( ) (   )
            ( )
(       )         (            )( )( ) ( )

                                                                                                                                                                                                   588

(a) Indeed the first two equations have a nontrivial solution                                                                                            if

    (       )         (         )( ) ( )( ) (                         )( ) (         )(   )
                                                                                                    (        )( ) (          )( ) (             )   (        )( ) (       )( ) (   )
         ( )(                 )( )( ) ( )
(       )

                                                                                                                                                                                                   589

(a) Indeed the first two equations have a nontrivial solution                                                                                            if

    (       )
         ( )
(       ) (                   )(   )       (      )( ) (         )(    )
                                                                            (        )( ) (             )( ) (          )      (       )( ) (           )( ) (        )
(       )( ) (                )(       )( )(        )

                                                                                                                                                                                                   560

(a) Indeed the first two equations have a nontrivial solution                                                                                            if

    (       )         (         )( ) ( )( ) (                         )( ) (         )(   )
                                                                                                    (        )( ) (          )( ) (             )   (        )( ) (       )( ) (   )
         ( )(                 )( )( ) ( )
(       )

Definition and uniqueness of                                                    :-                                                                                                                   561

After hypothesis ( )                                              ( )      and the functions ( )( ) ( ) being increasing, it follows
that there exists a unique                                         for which ( )         . With this value , we obtain from the three first
equations

                               (    )( )                                                                  (    )( )
                                                                      ,
                [(            )( ) (     )( ) (         )]                                     [(        )( ) (     )( ) (             )]


Definition and uniqueness of                                                    :-                                                                                                                   562

After hypothesis ( )                                              ( )      and the functions ( )( ) ( ) being increasing, it follows
that there exists a unique                                         for which ( )         . With this value , we obtain from the three first
equations

                               (       )( )                                                                  (    )( )                                                                               563
                                                                       ,
                [(            )( ) (           )( ) (      )]                                  [(        )( ) (             )( ) (         )]


Definition and uniqueness of                                                    :-                                                                                                                   564

After hypothesis ( )                                              ( )     and the functions ( )( ) ( ) being increasing, it follows that
there exists a unique                                           for which ( )       . With this value , we obtain from the three first
equations

                               (       )( )                                                              (       )( )
                                                                   ,
                [(            )( ) (           )( ) (      )]                                 [(        )( ) (          )( ) (        )]




                                                                                                                        362
Advances in Physics Theories and Applications                                                                                                    www.iiste.org
ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
Vol 7, 2012



                                                                                                                                                      565

Definition and uniqueness of                                       :-                                                                               566

After hypothesis ( )                                   ( )      and the functions ( )( ) ( ) being increasing, it follows
that there exists a unique                               for which ( )         . With this value , we obtain from the three
first equations

                     (    )( )                                                            (    )( )
                                                           ,
           [(       )( ) (     )( ) (         )]                               [(        )( ) (     )( ) (      )]


Definition and uniqueness of                                       :-                                                                               567

After hypothesis ( )                                   ( )      and the functions ( )( ) ( ) being increasing, it follows
that there exists a unique                               for which ( )         . With this value , we obtain from the three
first equations

                     (    )( )                                                            (     )( )
                                                           ,
           [(       )( ) (       )( ) (       )]                               [(        )( ) (        )( ) (   )]


Definition and uniqueness of                                       :-                                                                               568

After hypothesis ( )                                   ( )      and the functions ( )( ) ( ) being increasing, it follows
that there exists a unique                               for which ( )         . With this value , we obtain from the three
first equations

                     (    )( )                                                            (     )( )
                                                           ,
           [(       )( ) (       )( ) (       )]                               [(        )( ) (        )( ) (   )]


(e) By the same argument, the equations 92,93 admit solutions                                                                      if                 569

 ( )        (         )( ) (       )(     )
                                                   (           )( ) (     )(     )


[(   )( ) (           )( ) ( )            (        )( ) (           )( ) ( )] (               )( ) ( )(          )( ) ( )

 Where in (                )                                  must be replaced by their values from 96. It is easy to see that
is a decreasing function in                             taking into account the hypothesis ( )           ( )         it follows
that there exists a unique                             such that ( )

(f) By the same argument, the equations 92,93 admit solutions                                                                      if                 570

 (     )        (        )( ) (         )(    )
                                                       (         )( ) (        )(    )



[(   )( ) (           )( ) (       )          (        )( ) (           )( ) (           )] (          )( ) (    )(       )( ) (        )

Where in ( )(                 )         must be replaced by their values from 96. It is easy to see that                                              571
  is a decreasing function in     taking into account the hypothesis ( )          ( )         it follows
that there exists a unique     such that (( ) )

(g) By the same argument, the concatenated equations admit solutions                                                                        if        572

 (     )        (        )( ) (         )(    )
                                                       (         )( ) (        )(    )



[(   )( ) (           )( ) (        )         (        )( ) (           )( ) (           )] (          )( ) (        )(   )( ) (        )



                                                                                                       363
Advances in Physics Theories and Applications                                                                                                                 www.iiste.org
ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
Vol 7, 2012



Where in      (             )         must be replaced by their values from 96. It is easy to see that
is a decreasing function in    taking into account the hypothesis ( )          ( )        it follows
that there exists a unique    such that (( ) )
                                                                                                                                                                   573

(h) By the same argument, the equations of modules admit solutions                                                                                       if      574

 (       )         (       )( ) (          )(    )
                                                     (             )( ) (              )(     )



[(   )( ) (            )( ) (          )         (       )( ) (              )( ) (               )] (         )( ) (        )(   )( ) (        )

Where in ( )(                 )                                                must be replaced by their values from 96. It is easy to see
that is a decreasing function in                                             taking into account the hypothesis ( )            ( )       it
follows that there exists a unique                                           such that (( ) )

(i) By the same argument, the equations (modules) admit solutions                                                                                   if           575


 (       )         (       )( ) (          )(    )
                                                     (             )( ) (              )(    )



[(   )( ) (            )( ) (          )         (       )( ) (              )( ) (               )] (     )( ) (            )(   )( ) (        )

Where in ( )(                 )                                                must be replaced by their values from 96. It is easy to see
that is a decreasing function in                                             taking into account the hypothesis ( )            ( )       it
follows that there exists a unique                                           such that (( ) )

(j) By the same argument, the equations (modules) admit solutions                                                                                   if           578

                                                                                                                                                                 579
                            ( )             ( )                        ( )                 ( )
 (       )         (       )       (       )         (             )         (         )
                                                                                                                                                                 580
         ( )            ( )                                  ( )                 ( )                               ( )                ( )
[(   )         (       )       (       )         (       )         (         )         (          )] (         )         (   )(   )         (   )
                                                                                                                                                                 581
Where in ( )(                                       )          must be replaced by their values It is easy to see that is a
decreasing function in                            taking into account the hypothesis ( )            ( )        it follows that
there exists a unique                            such that ( )

Finally we obtain the unique solution of 89 to 94                                                                                                                  582

                           (       )            ,                                  (              )       and

                    (    )( )                                                               (    )( )
                                                     ,
         [(        )( ) (     )( ) (            )]                           [(            )( ) (     )( ) (        )]

                    (   )( )                                                            (   )( )
                                                     ,
         [(        )( ) (    )( ) (         )]                               [(        )( ) (    )( )(             )]


Obviously, these values represent an equilibrium solution

Finally we obtain the unique solution                                                                                                                              583

                           ((          ))            ,                                        (       )            and                                             584




                                                                                                           364
Advances in Physics Theories and Applications                                                                            www.iiste.org
ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
Vol 7, 2012



             (        )( )                                                  (       )( )                                      585
                                                 ,
       [(   )( ) (           )( ) (       )]                 [(         )( ) (             )( ) (          )]


               (   )( )                                                             (   )( )                                  586
                                                         ,
       [(   )( ) (    )( ) ((             ) )]                      [(           )( ) (    )( ) ((                ) )]


    Obviously, these values represent an equilibrium solution                                                                 587

Finally we obtain the unique solution                                                                                         588

                      ((             ))          ,                              (          )           and

              (       )( )                                               (          )( )
                                                 ,
       [(   )( ) (           )( ) (       )]                 [(         )( ) (             )( ) (      )]


              (    )( )                                                       (    )( )
                                                     ,
       [(   )( ) (     )( ) (             )]                  [(            )( ) (     )( ) (               )]


Obviously, these values represent an equilibrium solution

Finally we obtain the unique solution                                                                                       589

                      (          )         ,                            (           )            and

             (    )( )                                                   (    )( )
                                                 ,
       [(   )( ) (     )( ) (             )]                 [(         )( ) (     )( ) (              )]


                  (       )( )                                                      (          )( )                         590
                                                         ,
       [(   )( ) (           )( ) ((      ) )]                     [(           )( ) (           )( ) ((         ) )]


Obviously, these values represent an equilibrium solution

Finally we obtain the unique solution                                                                                       591

                      ((         ))              ,                              (       )              and

             (    )( )                                                   (    )( )
                                                 ,
       [(   )( ) (     )( ) (             )]                 [(         )( ) (     )( ) (              )]


                  (       )( )                                                      (          )( )                         592
                                                         ,
       [(   )( ) (           )( ) ((      ) )]                     [(           )( ) (           )( ) ((         ) )]


Obviously, these values represent an equilibrium solution

Finally we obtain the unique solution                                                                                       593

                      ((             ))          ,                              (       )              and

              (       )( )                                                  (       )( )
                                                 ,
       [(   )( ) (           )( ) (       )]                 [(         )( ) (             )( ) (      )]


               (   )( )                                                            (   )( )                                 594
                                                         ,
       [(   )( ) (    )( ) ((             ) )]                     [(           )( ) (    )( ) ((                ) )]


Obviously, these values represent an equilibrium solution

ASYMPTOTIC STABILITY ANALYSIS                                                                                                 595


                                                                                                      365
Advances in Physics Theories and Applications                                                                                                               www.iiste.org
ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
Vol 7, 2012



Theorem 4: If the conditions of the previous theorem are satisfied and if the functions
( )( )    ( )( ) Belong to ( ) (       ) then the above equilibrium point is asymptotically stable.

Proof: Denote

Definition of                             :-

                                                                 ,
                                                                                                                                                                 596
                         (        )( )                                   ( )            (           )( )
                                           (       )        (        )         ,                           (       )

Then taking into account equations (global) and neglecting the terms of power 2, we obtain                                                                       597

                ((       )(       )
                                           (       )( ) )                  (        )(          )
                                                                                                               (       )(   )                                    598


                ((       )(       )
                                           (       )( ) )                  (        )(          )
                                                                                                               (       )(   )                                  599

                ((       )(       )
                                           (       )( ) )                  (        )(          )
                                                                                                               (       )(   )                                  600

                ((       )(   )
                                          (        )( ) )                 (        )(       )
                                                                                                               ∑       (    (   )( )   )                         601

                ((       )(   )
                                          (        )( ) )                 (        )(       )
                                                                                                               ∑       (    (   )( )   )                         602


                ((       )(   )
                                          (        )( ) )                 (        )(       )
                                                                                                               ∑       (    (   )( )   )                         603

If the conditions of the previous theorem are satisfied and if the functions ( )(                                                          )
                                                                                                                                               (   )(   )        604
Belong to ( ) (     ) then the above equilibrium point is asymptotically stable

Denote                                                                                                                                                           605

Definition of                             :-

                                      ,                                                                                                                          606

 (   )( )                                               (       )( )                                                                                             607
            (        )        (           )(   )
                                                    ,                  ((          ) )

taking into account equations (global)and neglecting the terms of power 2, we obtain                                                                             608

                ((       )(   )
                                           (       )( ) )                  (       )(           )
                                                                                                               (       )(   )                                    609


                ((       )(   )
                                           (       )( ) )                  (       )(           )
                                                                                                               (       )(   )                                    610


                ((       )(   )
                                           (       )( ) )                  (       )(           )
                                                                                                               (       )(   )                                    611


                ((       )(   )
                                          (        )( ) )                 (        )(    )
                                                                                                               ∑       (    (   )( )   )                         612


                ((       )(   )
                                          (        )( ) )                 (        )(    )
                                                                                                               ∑       (    (   )( )   )                         613


                ((       )(   )
                                          (        )( ) )                 (        )(    )
                                                                                                               ∑       (    (   )( )   )                         614




                                                                                                                   366
Advances in Physics Theories and Applications                                                                                                          www.iiste.org
ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
Vol 7, 2012



If the conditions of the previous theorem are satisfied and if the functions ( )(                                             )
                                                                                                                                      (   )(   )            615
Belong to ( ) (     ) then the above equilibrium point is asymptotically stabl

Denote

Definition of                  :-

                                                                ,

                       (        )( )                                                    (   )( )
                                         (       )        (          )(   )
                                                                               ,                   ((        ) )


                                                                                                                                                            616

Then taking into account equations (global) and neglecting the terms of power 2, we obtain                                                                  617

          ((      )(   )
                                    (        )( ) )                  (         )(       )
                                                                                                   (     )(   )                                             618


          ((      )(   )
                                    (        )( ) )                  (         )(       )
                                                                                                   (     )(   )                                             619


          ((      )(   )
                                    (        )( ) )                  (         )(       )
                                                                                                   (     )(   )                                             6120


          ((      )(   )
                                (            )( ) )              (            )(    )
                                                                                                   ∑     (    (    )( )   )                                 621


          ((      )(   )
                                (            )( ) )              (            )(    )
                                                                                                   ∑     (    (    )( )   )                                 622


          ((      )(   )
                                (            )( ) )              (            )(    )
                                                                                                   ∑     (    (    )( )   )                                 623


If the conditions of the previous theorem are satisfied and if the functions ( )(                                                 )
                                                                                                                                      (   )(       )        624
Belong to ( ) (     ) then the above equilibrium point is asymptotically stabl

Denote

Definition of                  :-                                                                                                                           625

                                    ,

   (   )( )                                           (       )( )
              (   )        (            )(   )
                                                 ,                   ((            ) )

Then taking into account equations (global) and neglecting the terms of power 2, we obtain                                                                  626

          ((      )(   )
                                    (        )( ) )                  (         )(       )
                                                                                                   (     )(   )                                             627


          ((      )(   )
                                    (        )( ) )                  (         )(       )
                                                                                                   (     )(   )                                             628


          ((      )(   )
                                    (        )( ) )                  (         )(       )
                                                                                                   (     )(   )                                             629


          ((      )(   )
                                (            )( ) )              (            )(    )
                                                                                                   ∑     (    (    )( )   )                                 630




                                                                                                       367
Advances in Physics Theories and Applications                                                                                                         www.iiste.org
ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
Vol 7, 2012



                ((          )(   )
                                          (             )( ) )                      (        )(    )
                                                                                                           ∑     (    (   )( )   )                         631


                ((          )(   )
                                          (             )( ) )                      (        )(    )
                                                                                                           ∑     (    (   )( )   )                         632

                                                                                                                                                           633

 If the conditions of the previous theorem are satisfied and if the functions ( )(                                                   )
                                                                                                                                         (   )(   )

Belong to ( ) (     ) then the above equilibrium point is asymptotically stable

Denote

Definition of                            :-                                                                                                                634

                                          ,

 (       )( )                                                        (       )( )
                (       )        (            )(    )
                                                             ,                      ((        ) )


Then taking into account equations (global) and neglecting the terms of power 2, we obtain                                                                 635

                ((          )(   )
                                              (         )( ) )                        (       )(       )
                                                                                                           (     )(   )                                    636


                ((          )(   )
                                              (         )( ) )                      (        )(       )
                                                                                                           (     )(   )                                    637


                ((          )(   )
                                              (         )( ) )                        (       )(       )
                                                                                                           (     )(   )                                    638


                ((          )(   )
                                          (             )( ) )                      (        )(    )
                                                                                                           ∑     (    (   )( )   )                         639


                ((          )(   )
                                          (             )( ) )                      (        )(   )
                                                                                                           ∑     (    (   )( )   )                         640


                ((          )(   )
                                          (             )( ) )                      (        )(    )
                                                                                                           ∑     (    (   )( )   )                         641


If the conditions of the previous theorem are satisfied and if the functions ( )(                                                    )
                                                                                                                                         (   )(   )        642
Belong to ( ) (    ) then the above equilibrium point is asymptotically stable

Denote

Definition of                            :-                                                                                                                643

                                          ,

     (     )( )                                                          (     )( )
                    (       )        (             )(    )
                                                                 ,                      ((         ) )


Then taking into account equations(global) and neglecting the terms of power 2, we obtain                                                                  644

                ((          )(   )
                                              (         )( ) )                        (       )(       )
                                                                                                           (     )(   )                                    645


                ((          )(   )
                                              (         )( ) )                        (       )(       )
                                                                                                           (     )(   )                                    646




                                                                                                               368
Advances in Physics Theories and Applications                                                                                                                                                                   www.iiste.org
ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
Vol 7, 2012



                    ((           )(    )
                                                       (           )( ) )                      (            )(       )
                                                                                                                                           (           )(   )                                                        647


                    ((           )(    )
                                                    (              )( ) )                  (            )(       )
                                                                                                                                          ∑            (    (        )( )               )                            648


                    ((           )(    )
                                                    (              )( ) )                  (            )(       )
                                                                                                                                          ∑            (    (        )( )               )                            649


                    ((           )(    )
                                                    (              )( ) )                  (            )(       )
                                                                                                                                          ∑            (    (        )( )               )                            650

                                                                                                                                                                                                                     651

The characteristic equation of this system is                                                                                                                                                                        652

(( )(   )
                    (           )(    )
                                                   (           )( ) ) (( )(                )
                                                                                                        (            )(       )
                                                                                                                                          (           )( ) )

[((( )(         )
                         (            )(       )
                                                           (           )( ) )(             )(       )
                                                                                                                          (            )( ) (               )(      )
                                                                                                                                                                                 )]
                                                                                                                                                                                                                     653
((( )(      )
                        (        )(        )
                                                       (           )( ) )    (        )(        )                    (            )(      )
                                                                                                                                                  (    )(       )            )

  ((( )(            )
                             (            )(       )
                                                               (        )( ) )(                )(       )
                                                                                                                              (            )( ) (               )(       )
                                                                                                                                                                                  )

((( )(      )
                        (        )(        )
                                                       (           )( ) )    (        )(        )                    (            )(          )
                                                                                                                                                  (    )(        )           )

((( )( ) )                   ((                )(      )
                                                                   (        )(   )
                                                                                           (                )(   )
                                                                                                                              (            )( ) ) ( ) ( ) )

((( )( ) )                   ((                )(      )
                                                                   (        )(   )
                                                                                           (            )(       )
                                                                                                                             (            )( ) ) ( ) ( ) )

  ((( )( ) )                      ((                   )(      )
                                                                        (        )(    )
                                                                                                    (            )(      )
                                                                                                                                      (           )( ) ) ( ) ( ) ) (                     )(    )



  (( )(         )
                            (         )(       )
                                                           (           )( ) ) ((                   )( ) (                 )(      )
                                                                                                                                                       (         )( ) (               )( ) (       )(   )
                                                                                                                                                                                                            )

((( )(      )
                        (        )(        )
                                                       (           )( ) )    (        )(        )                    (            )(      )
                                                                                                                                                  (    )(       )            )


+
(( )(   )
                    (           )(    )
                                                   (           )( ) ) (( )(                )
                                                                                                        (            )(       )
                                                                                                                                          (           )( ) )

[((( )(         )
                         (            )(       )
                                                           (           )( ) )(             )(       )
                                                                                                                          (            )( ) (               )(       )
                                                                                                                                                                                 )]

((( )(      )
                        (        )(        )
                                                       (           )( ) )    (        )(        )                    (            )(      )
                                                                                                                                                  (    )(       )            )

  ((( )(            )
                             (            )(       )
                                                               (        )( ) )(                )(       )
                                                                                                                              (            )( ) (               )(       )
                                                                                                                                                                                  )

((( )(      )
                        (        )(        )
                                                       (           )( ) )    (        )(        )                     (           )(          )
                                                                                                                                                  (    )(        )           )

((( )( ) )                   ((                )(      )
                                                                   (        )(   )
                                                                                           (                )(   )
                                                                                                                              (            )( ) ) ( ) ( ) )




                                                                                                                                                  369
Advances in Physics Theories and Applications                                                                                                                                                                                www.iiste.org
ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
Vol 7, 2012




  ((( )( ) )                        ((                )(      )
                                                                       (        )(      )
                                                                                                     (            )(       )
                                                                                                                                        (            )( ) ) ( )( ) )


  ((( )( ) )                        ((                )(       )
                                                                       (        )(          )
                                                                                                         (            )(      )
                                                                                                                                           (             )( ) ) ( ) ( ) ) (                           )(    )



  (( )(         )
                            (        )(       )
                                                           (           )( ) ) ((                     )( ) (                    )(      )
                                                                                                                                                                (          )( ) (                  )( ) (       )(   )
                                                                                                                                                                                                                         )

((( )(      )
                        (           )(   )
                                                      (            )( ) )   (           )(          )                     (            )(       )
                                                                                                                                                     (          )(        )            )


+
(( )(   )
                    (           )(   )
                                                  (            )( ) ) (( )(                     )
                                                                                                             (            )(       )
                                                                                                                                                (               )( ) )

[((( )(         )
                        (            )(      )
                                                          (            )( ) )(                  )(       )
                                                                                                                               (               )( ) (                 )(       )
                                                                                                                                                                                           )]

((( )(      )
                        (           )(   )
                                                      (            )( ) )   (           )(           )                    (             )(      )
                                                                                                                                                        (        )(       )            )

  ((( )(            )
                            (            )(       )
                                                               (        )( ) )(                     )(       )
                                                                                                                                   (                )( ) (                )(       )
                                                                                                                                                                                               )

((( )(      )
                        (           )(    )
                                                       (           )( ) )       (       )(           )                        (             )(      )
                                                                                                                                                            (        )(       )            )

((( )( ) )                  ((               )(       )
                                                                   (       )(       )
                                                                                                (                )(   )
                                                                                                                                   (             )( ) ) ( )( ) )


((( )( ) )                  ((               )(       )
                                                                   (       )(   )
                                                                                                (            )(       )
                                                                                                                                   (            )( ) ) ( )( ) )


  ((( )( ) )                        ((                )(       )
                                                                       (        )(          )
                                                                                                         (            )(       )
                                                                                                                                            (            )( ) ) ( )( ) ) (                            )(    )



  (( )(         )
                            (        )(       )
                                                           (           )( ) ) ((                     )( ) (                    )(       )
                                                                                                                                                                 (            )( ) (               )( ) (       )(   )
                                                                                                                                                                                                                         )

((( )(      )
                        (           )(   )
                                                      (            )( ) )   (           )(           )                    (             )(      )
                                                                                                                                                        (        )(       )            )


+
(( )(   )
                    (           )(   )
                                                  (            )( ) ) (( )(                     )
                                                                                                             (            )(       )
                                                                                                                                                (               )( ) )

[((( )(         )
                        (            )(      )
                                                          (            )( ) )(                  )(       )
                                                                                                                               (               )( ) (                 )(       )
                                                                                                                                                                                           )]

((( )(      )
                        (           )(   )
                                                      (            )( ) )   (           )(           )                    (             )(      )
                                                                                                                                                        (        )(       )            )

  ((( )(            )
                            (            )(       )
                                                               (        )( ) )(                     )(       )
                                                                                                                                   (                )( ) (                )(       )
                                                                                                                                                                                               )

   ((( )(           )
                                (         )(      )
                                                               (        )( ) )          (       )(           )                      (               )(      )
                                                                                                                                                                 (        )(       )           )

((( )( ) )                  ((               )(       )
                                                                   (       )(       )
                                                                                                (                )(   )
                                                                                                                                   (             )( ) ) ( )( ) )




                                                                                                                                                     370
Advances in Physics Theories and Applications                                                                                                                                                                     www.iiste.org
ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
Vol 7, 2012




  ((( )( ) )                        ((               )(      )
                                                                      (        )(   )
                                                                                                 (            )(       )
                                                                                                                                   (            )( ) ) ( ) ( ) )


  ((( )( ) )                        ((               )(       )
                                                                      (        )(       )
                                                                                                     (            )(       )
                                                                                                                                       (            )( ) ) ( )( ) ) (                      )(    )



  (( )(         )
                            (        )(      )
                                                          (           )( ) ) ((                  )( ) (                    )(      )
                                                                                                                                                        (         )( ) (                )( ) (       )(   )
                                                                                                                                                                                                              )

((( )(      )
                        (           )(   )
                                                     (            )( ) )   (        )(           )                    (            )(      )
                                                                                                                                                (       )(    )                )


+
(( )(   )
                    (           )(   )
                                                 (            )( ) ) (( )(                  )
                                                                                                         (            )(       )
                                                                                                                                           (         )( ) )

[((( )(         )
                        (            )(      )
                                                         (            )( ) )(               )(       )
                                                                                                                           (            )( ) (               )(    )
                                                                                                                                                                                   )]

((( )(      )
                        (           )(   )
                                                     (            )( ) )   (        )(           )                 (               )(      )
                                                                                                                                                (       )(    )            )

  ((( )(            )
                                (        )(      )
                                                             (         )( ) )(                  )(       )
                                                                                                                               (           )( ) (             )(       )
                                                                                                                                                                                    )

   ((( )(           )
                                (         )(     )
                                                              (        )( ) )       (       )(           )                     (               )(   )
                                                                                                                                                        (     )(       )            )

((( )( ) )                      ((           )(      )
                                                                  (       )(    )
                                                                                            (                )(   )
                                                                                                                               (           )( ) ) ( )( ) )


  ((( )( ) )                        ((               )(      )
                                                                      (        )(   )
                                                                                                 (            )(       )
                                                                                                                                   (            )( ) ) ( )( ) )


  ((( )( ) )                        ((               )(       )
                                                                      (        )(       )
                                                                                                     (            )(       )
                                                                                                                                       (            )( ) ) ( )( ) ) (                      )(    )



  (( )(         )
                            (        )(      )
                                                          (           )( ) ) ((                  )( ) (                    )(      )
                                                                                                                                                        (         )( ) (                )( ) (       )(   )
                                                                                                                                                                                                              )

((( )(      )
                        (           )(   )
                                                     (            )( ) )   (        )(           )                 (               )(      )
                                                                                                                                                (       )(    )            )


+
(( )(   )
                    (           )(   )
                                                 (            )( ) ) (( )(                  )
                                                                                                         (            )(       )
                                                                                                                                           (         )( ) )

[((( )(         )
                        (            )(      )
                                                         (            )( ) )(               )(       )
                                                                                                                           (            )( ) (               )(    )
                                                                                                                                                                                   )]

((( )(      )
                        (           )(   )
                                                     (            )( ) )   (        )(           )                    (            )(      )
                                                                                                                                                (       )(    )                )

  ((( )(            )
                                (        )(      )
                                                              (        )( ) )(                  )(       )
                                                                                                                               (               )( ) (         )(       )
                                                                                                                                                                                    )

   ((( )(           )
                                (         )(     )
                                                              (        )( ) )       (        )(          )                     (               )(   )
                                                                                                                                                        (     )(           )        )

((( )( ) )                      ((           )(      )
                                                                  (       )(    )
                                                                                            (                )(   )
                                                                                                                               (           )( ) ) ( )( ) )



                                                                                                                                                371
Advances in Physics Theories and Applications                                                                                                                www.iiste.org
ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
Vol 7, 2012




     ((( )( ) )           ((           )(   )
                                                      (      )(       )
                                                                           (       )(    )
                                                                                                  (           )( ) ) ( ) ( ) )


     ((( )( ) )           ((           )(       )
                                                      (          )(    )
                                                                               (    )(      )
                                                                                                      (        )( ) ) ( )( ) ) (      )(    )



     (( )(    )
                      (    )(      )
                                            (         )( ) ) ((            )( ) (            )(   )
                                                                                                                  (    )( ) (      )( ) (       )(   )
                                                                                                                                                         )

((( )(    )
                  (       )(   )
                                       (            )( ) )   (        )(   )            (         )(      )
                                                                                                              (   )(   )    )

And as one sees, all the coefficients are positive. It follows that all the roots have negative real part,
and this proves the theorem.



                  IV.                  Acknowledgments:
=======================================================================
The introduction is a collection of information from various articles, Books, News
Paper reports, Home Pages Of authors, Journal Reviews, Nature ‘s L:etters,Article
Abstracts, Research papers, Abstracts Of Research Papers, Stanford
Encyclopedia, Web Pages, Ask a Physicist Column, Deliberations with Professors,
the internet including Wikipedia. We acknowledge all authors who have contributed
to the same. In the eventuality of the fact that there has been any act of omission on
the part of the authors, we regret with great deal of compunction, contrition, regret,
trepidiation and remorse. As Newton said, it is only because erudite and eminent
people allowed one to piggy ride on their backs; probably an attempt has been made
to look slightly further. Once again, it is stated that the references are only
illustrative and not comprehensive



                                         V.     REFERENCES
                  ================================================================
                  =========



1.            Dr K N Prasanna Kumar, Prof B S Kiranagi, Prof C S Bagewadi - MEASUREMENT
DISTURBS EXPLANATION OF QUANTUM MECHANICAL STATES-A HIDDEN VARIABLE
THEORY - published at: "International Journal of Scientific and Research Publications, Volume 2,
Issue 5, May 2012 Edition".
2.     DR K N PRASANNA KUMAR, PROF B S KIRANAGI and PROF C S BAGEWADI -
CLASSIC 2 FLAVOUR COLOR SUPERCONDUCTIVITY AND ORDINARY NUCLEAR
MATTER-A NEW PARADIGM STATEMENT - published at: "International Journal of Scientific
and Research Publications, Volume 2, Issue 5, May 2012 Edition".
3.     A HAIMOVICI: “On the growth of a two species ecological system divided on age groups”.
       Tensor, Vol 37 (1982),Commemoration volume dedicated to Professor Akitsugu Kawaguchi on
       his 80th birthday

4.     FRTJOF CAPRA: “The web of life” Flamingo, Harper Collins See "Dissipative structures”
       pages 172-188


                                                                                                              372
Advances in Physics Theories and Applications                                                          www.iiste.org
ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
Vol 7, 2012



5.   HEYLIGHEN F. (2001): "The Science of Self-organization and Adaptivity", in L. D. Kiel, (ed) .
     Knowledge     Management, Organizational Intelligence and Learning, and Complexity, in: The
     Encyclopedia of Life Support Systems ((EOLSS), (Eolss Publishers, Oxford)
     [http://www.eolss.net

6.   MATSUI, T, H. Masunaga, S. M. Kreidenweis, R. A. Pielke Sr., W.-K. Tao, M. Chin, and Y. J
     Kaufman (2006), “Satellite-based assessment of marine low cloud variability associated with
     aerosol, atmospheric stability, and the diurnal cycle”, J. Geophys. Res., 111, D17204,
     doi:10.1029/2005JD006097

7.   STEVENS, B, G. Feingold, W.R. Cotton and R.L. Walko, “Elements of the microphysical
     structure of numerically simulated nonprecipitating stratocumulus” J. Atmos. Sci., 53, 980-1006

8.   FEINGOLD, G, Koren, I; Wang, HL; Xue, HW; Brewer, WA (2010), “Precipitation-generated
     oscillations in open cellular cloud fields” Nature, 466 (7308) 849-852, doi: 10.1038/nature09314,
     Published 12-Aug 2010




                                                      373
Advances in Physics Theories and Applications                                                               www.iiste.org
ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
Vol 7, 2012




(9)^ a b c Einstein, A. (1905), "Ist die Trägheit eines Körpers von seinem Energieinhalt
abhängig?", Annalen der Physik 18:
639 Bibcode 1905AnP...323..639E,DOI:10.1002/andp.19053231314. See also the English translation.


(10)^ a b Paul Allen Tipler, Ralph A. Llewellyn (2003-01), Modern Physics, W. H. Freeman and
Company, pp. 87–88, ISBN 0-7167-4345-0


(11)^ a b Rainville, S. et al. World Year of Physics: A direct test of E=mc2. Nature 438, 1096-1097
(22 December 2005) | doi: 10.1038/4381096a; Published online 21 December 2005.


(12)^ In F. Fernflores. The Equivalence of Mass and Energy. Stanford Encyclopedia of Philosophy

(13)^ Note that the relativistic mass, in contrast to the rest mass m0, is not a relativistic invariant, and
that the velocity is not a Minkowski four-vector, in contrast to the quantity , where is the differential
of the proper time. However, the energy-momentum four-vector is a genuine Minkowski four-vector,
and the intrinsic origin of the square-root in the definition of the relativistic mass is the distinction
between dτ and dt.


(14)^ Relativity DeMystified, D. McMahon, Mc Graw Hill (USA), 2006, ISBN 0-07-145545-0

(15)^ Dynamics and Relativity, J.R. Forshaw, A.G. Smith, Wiley, 2009, ISBN 978-0-470-01460-8

(16)^ Hans, H. S.; Puri, S. P. (2003). Mechanics (2 ed.). Tata McGraw-Hill. p. 433. ISBN 0-07-
047360-9., Chapter 12 page 433


(17)^ E. F. Taylor and J. A. Wheeler, Spacetime Physics, W.H. Freeman and Co., NY. 1992.ISBN
0-7167-2327-1, see pp. 248-9 for discussion of mass remaining constant after detonation of nuclear
bombs, until heat is allowed to escape.


(18)^ Mould, Richard A. (2002). Basic relativity (2 ed.). Springer. p. 126. ISBN 0-387-95210-
1., Chapter 5 page 126


(19)^ Chow, Tail L. (2006). Introduction to electromagnetic theory: a modern perspective. Jones &
Bartlett Learning. p. 392. ISBN 0-7637-3827-1., Chapter 10 page 392


(20)^ [2] Cockcroft-Walton experiment

(21)^ a b c Conversions used: 1956 International (Steam) Table (IT) values where one calorie

                                                         374
Advances in Physics Theories and Applications                                                                   www.iiste.org
ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
Vol 7, 2012




≡ 4.1868 J and one BTU ≡ 1055.05585262 J. Weapons designers' conversion value of one gram TNT
≡ 1000 calories used.


(22)^ Assuming the dam is generating at its peak capacity of 6,809 MW.


(23)^ Assuming a 90/10 alloy of Pt/Ir by weight, a Cp of 25.9 for Pt and 25.1 for Ir, a Pt-dominated
average Cp of 25.8, 5.134 moles of metal, and 132 J.K-1 for the prototype. A variation of
± picograms is of course, much smaller than the actual uncertainty in the mass of the international
 1.5
prototype, which are ± micrograms.
                      2


(24)^ [3] Article on Earth rotation energy. Divided by c^2.


(25)^ a b Earth's gravitational self-energy is 4.6 × 10-10 that of Earth's total mass, or 2.7 trillion metric
tons. Citation: The Apache Point Observatory Lunar Laser-Ranging Operation (APOLLO), T. W.
Murphy, Jr. et al. University of Washington, Dept. of Physics (132 kB PDF, here.).


(26)^ There is usually more than one possible way to define a field energy, because any field can be
made to couple to gravity in many different ways. By general scaling arguments, the correct answer
at everyday distances, which are long compared to the quantum gravity scale, should be minimal
coupling, which means that no powers of the curvature tensor appear. Any non-minimal couplings,
along with other higher order terms, are presumably only determined by a theory of quantum gravity,
and within string theory, they only start to contribute to experiments at the string scale.


(27)^ G. 't Hooft, "Computation of the quantum effects due to a four-dimensional pseudoparticle",
Physical Review D14:3432–3450 (1976).


(28)^ A. Belavin, A. M. Polyakov, A. Schwarz, Yu. Tyupkin, "Pseudoparticle Solutions to Yang
Mills Equations", Physics Letters 59B:85 (1975).


(29)^ F. Klinkhammer, N. Manton, "A Saddle Point Solution in the Weinberg Salam Theory",
Physical Review D 30:2212.


(30)^ Rubakov V. A. "Monopole Catalysis of Proton Decay", Reports on Progress in Physics
51:189–241 (1988).


(31)^ S.W. Hawking "Black Holes Explosions?" Nature 248:30 (1974).


(32)^ Einstein, A. (1905), "Zur Elektrodynamik bewegter Körper." (PDF), Annalen der Physik 17:
891–921, Bibcode 1905AnP...322...891E,DOI:10.1002/andp.19053221004. English translation.


                                                          375
Advances in Physics Theories and Applications                                                             www.iiste.org
ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
Vol 7, 2012




(33)^ See e.g. Lev B.Okun, The concept of Mass, Physics Today 42 (6), June 1969, p. 31–
36, http://www.physicstoday.org/vol-42/iss-6/vol42no6p31_36.pdf


(34)^ Max Jammer (1999), Concepts of mass in contemporary physics and philosophy, Princeton
University Press, p. 51, ISBN 0-691-01017-X


(35)^ Eriksen, Erik; Vøyenli, Kjell (1976), "The classical and relativistic concepts of
mass",Foundations of Physics (Springer) 6: 115–
124, Bibcode 1976FoPh....6..115E,DOI:10.1007/BF00708670


(36)^ a b Jannsen, M., Mecklenburg, M. (2007), From classical to relativistic mechanics:
Electromagnetic models of the electron., in V. F. Hendricks, et al., , Interactions: Mathematics,
Physics and Philosophy (Dordrecht: Springer): 65–134


(37)^ a b Whittaker, E.T. (1951–1953), 2. Edition: A History of the theories of aether and electricity,
vol. 1: The classical theories / vol. 2: The modern theories 1900–1926, London: Nelson


(38)^ Miller, Arthur I. (1981), Albert Einstein's special theory of relativity. Emergence (1905) and
early interpretation (1905–1911), Reading: Addison–Wesley, ISBN 0-201-04679-2


(39)^ a b Darrigol, O. (2005), "The Genesis of the theory of relativity." (PDF), Séminaire Poincaré1:
1–22


(40)^ Philip Ball (Aug 23, 2011). "Did Einstein discover E = mc2?” Physics World.


(41)^ Ives, Herbert E. (1952), "Derivation of the mass-energy relation", Journal of the Optical
Society of America 42 (8): 540–543, DOI:10.1364/JOSA.42.000540


(42)^ Jammer, Max (1961/1997). Concepts of Mass in Classical and Modern Physics. New York:
Dover. ISBN 0-486-29998-8.


(43)^ Stachel, John; Torretti, Roberto (1982), "Einstein's first derivation of mass-energy
equivalence", American Journal of Physics 50 (8): 760–
763, Bibcode1982AmJPh..50..760S, DOI:10.1119/1.12764


(44)^ Ohanian, Hans (2008), "Did Einstein prove E=mc2?", Studies In History and Philosophy of
Science Part B 40 (2): 167–173, arXiv:0805.1400,DOI:10.1016/j.shpsb.2009.03.002

                                                       376
Advances in Physics Theories and Applications                                                       www.iiste.org
ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
Vol 7, 2012




(45)^ Hecht, Eugene (2011), "How Einstein confirmed E0=mc2", American Journal of
Physics 79 (6): 591–600, Bibcode 2011AmJPh..79..591H, DOI:10.1119/1.3549223


(46)^ Rohrlich, Fritz (1990), "An elementary derivation of E=mc2", American Journal of
Physics 58 (4): 348–349, Bibcode 1990AmJPh..58..348R, DOI:10.1119/1.16168


(47) (1996). Lise Meitner: A Life in Physics. California Studies in the History of Science. 13.
Berkeley: University of California Press. pp. 236–237. ISBN 0-520-20860-




(48)^ UIBK.ac.at


(49)^ J. J. L. Morton; et al. (2008). "Solid-state quantum memory using the 31P nuclear
spin". Nature 455 (7216): 1085–1088. Bibcode 2008Natur.455.1085M.DOI:10.1038/nature07295.


(50)^ S. Weisner (1983). "Conjugate coding". Association of Computing Machinery, Special Interest
Group in Algorithms and Computation Theory 15: 78–88.


(51)^ A. Zelinger, Dance of the Photons: From Einstein to Quantum Teleportation, Farrar, Straus &
Giroux, New York, 2010, pp. 189, 192, ISBN 0374239665


(52)^ B. Schumacher (1995). "Quantum coding". Physical Review A 51 (4): 2738–
2747. Bibcode 1995PhRvA..51.2738S. DOI:10.1103/PhysRevA.51.2738.


(53)^ a b Straumann, N (2000). "On Pauli's invention of non-abelian Kaluza-Klein Theory in
1953". ArXiv: gr-qc/0012054 [gr-qc].


(54)^ See Abraham Pais' account of this period as well as L. Susskind's "Superstrings, Physics World
on the first non-abelian gauge theory" where Susskind wrote that Yang–Mills was "rediscovered"
only because Pauli had chosen not to publish.


(55)^ Reifler, N (2007). "Conditions for exact equivalence of Kaluza-Klein and Yang-Mills
theories". ArXiv: gr-qc/0707.3790 [gr-qc].


(56)^ Yang, C. N.; Mills, R. (1954). "Conservation of Isotopic Spin and Isotopic Gauge
Invariance". Physical Review 96 (1): 191–


                                                       377
Advances in Physics Theories and Applications                                                            www.iiste.org
ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
Vol 7, 2012




195. Bibcode 1954PhRv...96...191Y.DOI:10.1103/PhysRev.96.191.


(57)^ Caprini, I.; Colangelo, G.; Leutwyler, H. (2006). "Mass and width of the lowest resonance in
QCD". Physical Review Letters 96 (13): 132001. ArXiv: hep-
ph/0512364.Bibcode 2006PhRvL..96m2001C. DOI:10.1103/PhysRevLett.96.132001.


(58)^ Yndurain, F. J.; Garcia-Martin, R.; Pelaez, J. R. (2007). "Experimental status of the ππ
isoscalar S wave at low energy: f0 (600) pole and scattering length". Physical Review D76 (7):
074034. ArXiv:hep-
ph/0701025. Bibcode 2007PhRvD..76g4034G.DOI:10.1103/PhysRevD.76.074034.


(59)^ Novikov, V. A.; Shifman, M. A.; A. I. Vainshtein, A. I.; Zakharov, V. I. (1983). "Exact Gell-
Mann-Low Function of Supersymmetric Yang-Mills Theories From Instanton Calculus”.
Nuclear 229 (2): 381–393. Bibcode 1983NuPhB.229..381N.DOI:10.1016/0550-3213(83)90338-3.


(60)^ Ryttov, T.; Sannino, F. (2008). "Super symmetry Inspired QCD Beta Function". Physical
Review D 78 (6): 065001. Bibcode 2008PhRvD..78f5001R.DOI:10.1103/PhysRevD.78.065001


(61)^ Bogolubsky, I. L.; Ilgenfritz, E.-M.; A. I. Müller-Preussker, M.; Sternbeck, A. (2009). "Lattice
gluodynamics computation of Landau-gauge Green's functions in the deep infrared". Physics Letters
B 676 (1-3): 69–73. Bibcode 2009PhLB..676...69B.DOI:10.1016/j.physletb.2009.04.076.




                                                       378
Advances in Physics Theories and Applications                                                            www.iiste.org
ISSN 2224-719X (Paper) ISSN 2225-0638 (Online)
Vol 7, 2012




First Author: 1Mr. K. N.Prasanna Kumar has three doctorates one each in Mathematics, Economics,
Political Science. Thesis was based on Mathematical Modeling. He was recently awarded D.litt. for his work on
‘Mathematical Models in Political Science’--- Department of studies in Mathematics, Kuvempu University,
Shimoga, Karnataka, India Corresponding Author:drknpkumar@gmail.com

Second Author: 2Prof. B.S Kiranagi is the Former Chairman of the Department of Studies in Mathematics,
Manasa Gangotri and present Professor Emeritus of UGC in the Department. Professor Kiranagi has guided
over 25 students and he has received many encomiums and laurels for his contribution to Co homology Groups
and Mathematical Sciences. Known for his prolific writing, and one of the senior most Professors of the
country, he has over 150 publications to his credit. A prolific writer and a prodigious thinker, he has to his credit
several books on Lie Groups, Co Homology Groups, and other mathematical application topics, and excellent
publication history.-- UGC Emeritus Professor (Department of studies in Mathematics), Manasagangotri,
University of Mysore, Karnataka, India

Third Author: 3Prof. C.S. Bagewadi is the present Chairman of Department of Mathematics and Department
of Studies in Computer Science and has guided over 25 students. He has published articles in both national and
international journals. Professor Bagewadi specializes in Differential Geometry and its wide-ranging
ramifications. He has to his credit more than 159 research papers. Several Books on Differential Geometry,
Differential Equations are coauthored by him--- Chairman, Department of studies in Mathematics and Computer
science, Jnanasahyadri Kuvempu University, Shankarghatta, Shimoga district, Karnataka, India

==============================================================================




                                                        379

More Related Content

PDF
Quantum gravity
PDF
The grand unified theory part two the final solution
PDF
SCHRODINGER'S CAT PARADOX RESOLUTION USING GRW COLLAPSE MODEL
PDF
Ck4201578592
PDF
Quantum mechanical behaviour, quantum tunneling, higgs boson
PDF
Two Types of Novel Discrete Time Chaotic Systems
PDF
General Solution of Equations of Motion of Axisymmetric Problem of Micro-Isot...
PDF
Point symmetries of lagrangians
Quantum gravity
The grand unified theory part two the final solution
SCHRODINGER'S CAT PARADOX RESOLUTION USING GRW COLLAPSE MODEL
Ck4201578592
Quantum mechanical behaviour, quantum tunneling, higgs boson
Two Types of Novel Discrete Time Chaotic Systems
General Solution of Equations of Motion of Axisymmetric Problem of Micro-Isot...
Point symmetries of lagrangians

What's hot (17)

PDF
An order seven implicit symmetric sheme applied to second order initial value...
PDF
C024015024
PDF
HYBRID CHAOS SYNCHRONIZATION OF UNCERTAIN LORENZ-STENFLO AND QI 4-D CHAOTIC S...
PDF
IRJET- On Certain Subclasses of Univalent Functions: An Application
PDF
Lesson16 -inverse_trigonometric_functions_021_handout
PDF
Review questions about Crystal Field Theory
PDF
Sequential Extraction of Local ICA Structures
PDF
ADAPTIVESYNCHRONIZER DESIGN FOR THE HYBRID SYNCHRONIZATION OF HYPERCHAOTIC ZH...
PDF
In insight into QAC2(1) : Dynkin diagrams and properties of roots
PDF
Development of implicit rational runge kutta schemes for second order ordinar...
PDF
Au4201315330
PDF
Irjet v2i170
PDF
Sequential processing in nature
PDF
Ob2422972301
PDF
The Analytical Nature of the Greens Function in the Vicinity of a Simple Pole
PDF
Catalan Tau Collocation for Numerical Solution of 2-Dimentional Nonlinear Par...
PDF
A new generalized lindley distribution
An order seven implicit symmetric sheme applied to second order initial value...
C024015024
HYBRID CHAOS SYNCHRONIZATION OF UNCERTAIN LORENZ-STENFLO AND QI 4-D CHAOTIC S...
IRJET- On Certain Subclasses of Univalent Functions: An Application
Lesson16 -inverse_trigonometric_functions_021_handout
Review questions about Crystal Field Theory
Sequential Extraction of Local ICA Structures
ADAPTIVESYNCHRONIZER DESIGN FOR THE HYBRID SYNCHRONIZATION OF HYPERCHAOTIC ZH...
In insight into QAC2(1) : Dynkin diagrams and properties of roots
Development of implicit rational runge kutta schemes for second order ordinar...
Au4201315330
Irjet v2i170
Sequential processing in nature
Ob2422972301
The Analytical Nature of the Greens Function in the Vicinity of a Simple Pole
Catalan Tau Collocation for Numerical Solution of 2-Dimentional Nonlinear Par...
A new generalized lindley distribution
Ad

Similar to Yang mills theory (20)

PDF
The general theory of einstein field equations a gesellschaft gemeinschaft model
PDF
Np complete problems a minimalist mutatis
PDF
Bo2422422286
PDF
11.on a non variational viewpoint in newtonian mechanics
PDF
Cl dys of p and s 5 ed
PPTX
UPSEE - Physics -2007 Unsolved Paper
PDF
E0522327
PDF
Simulation of generation process for asymmetric involute gear tooth shape wit...
PDF
Natures general ledger
PDF
Physics CBSE solution 2012
PDF
TaPL名古屋 Chap2
PDF
Adomian decomposition method for solving higher order boundary value problems
PDF
Lecture25
PDF
Better Science Through Art
PDF
Better Science Through Art
PDF
K. Ulker - Non-commutative Gauge Theories and Seiberg Witten Map
PDF
QB_DCE_Anuj
PDF
English for maths
PDF
M. Dimitrijevic - Twisted Symmetry and Noncommutative Field Theory
PDF
Viterbi2
The general theory of einstein field equations a gesellschaft gemeinschaft model
Np complete problems a minimalist mutatis
Bo2422422286
11.on a non variational viewpoint in newtonian mechanics
Cl dys of p and s 5 ed
UPSEE - Physics -2007 Unsolved Paper
E0522327
Simulation of generation process for asymmetric involute gear tooth shape wit...
Natures general ledger
Physics CBSE solution 2012
TaPL名古屋 Chap2
Adomian decomposition method for solving higher order boundary value problems
Lecture25
Better Science Through Art
Better Science Through Art
K. Ulker - Non-commutative Gauge Theories and Seiberg Witten Map
QB_DCE_Anuj
English for maths
M. Dimitrijevic - Twisted Symmetry and Noncommutative Field Theory
Viterbi2
Ad

More from Alexander Decker (20)

PDF
Abnormalities of hormones and inflammatory cytokines in women affected with p...
PDF
A validation of the adverse childhood experiences scale in
PDF
A usability evaluation framework for b2 c e commerce websites
PDF
A universal model for managing the marketing executives in nigerian banks
PDF
A unique common fixed point theorems in generalized d
PDF
A trends of salmonella and antibiotic resistance
PDF
A transformational generative approach towards understanding al-istifham
PDF
A time series analysis of the determinants of savings in namibia
PDF
A therapy for physical and mental fitness of school children
PDF
A theory of efficiency for managing the marketing executives in nigerian banks
PDF
A systematic evaluation of link budget for
PDF
A synthetic review of contraceptive supplies in punjab
PDF
A synthesis of taylor’s and fayol’s management approaches for managing market...
PDF
A survey paper on sequence pattern mining with incremental
PDF
A survey on live virtual machine migrations and its techniques
PDF
A survey on data mining and analysis in hadoop and mongo db
PDF
A survey on challenges to the media cloud
PDF
A survey of provenance leveraged
PDF
A survey of private equity investments in kenya
PDF
A study to measures the financial health of
Abnormalities of hormones and inflammatory cytokines in women affected with p...
A validation of the adverse childhood experiences scale in
A usability evaluation framework for b2 c e commerce websites
A universal model for managing the marketing executives in nigerian banks
A unique common fixed point theorems in generalized d
A trends of salmonella and antibiotic resistance
A transformational generative approach towards understanding al-istifham
A time series analysis of the determinants of savings in namibia
A therapy for physical and mental fitness of school children
A theory of efficiency for managing the marketing executives in nigerian banks
A systematic evaluation of link budget for
A synthetic review of contraceptive supplies in punjab
A synthesis of taylor’s and fayol’s management approaches for managing market...
A survey paper on sequence pattern mining with incremental
A survey on live virtual machine migrations and its techniques
A survey on data mining and analysis in hadoop and mongo db
A survey on challenges to the media cloud
A survey of provenance leveraged
A survey of private equity investments in kenya
A study to measures the financial health of

Recently uploaded (20)

PDF
CloudStack 4.21: First Look Webinar slides
PDF
Hindi spoken digit analysis for native and non-native speakers
PPTX
Tartificialntelligence_presentation.pptx
PDF
Developing a website for English-speaking practice to English as a foreign la...
PDF
sustainability-14-14877-v2.pddhzftheheeeee
PDF
Hybrid model detection and classification of lung cancer
PDF
WOOl fibre morphology and structure.pdf for textiles
PDF
Hybrid horned lizard optimization algorithm-aquila optimizer for DC motor
PDF
1 - Historical Antecedents, Social Consideration.pdf
PDF
Getting started with AI Agents and Multi-Agent Systems
PPTX
The various Industrial Revolutions .pptx
PDF
From MVP to Full-Scale Product A Startup’s Software Journey.pdf
PDF
August Patch Tuesday
PDF
A Late Bloomer's Guide to GenAI: Ethics, Bias, and Effective Prompting - Boha...
PDF
Architecture types and enterprise applications.pdf
PDF
Enhancing emotion recognition model for a student engagement use case through...
PPT
Module 1.ppt Iot fundamentals and Architecture
PDF
TrustArc Webinar - Click, Consent, Trust: Winning the Privacy Game
PPT
Geologic Time for studying geology for geologist
PPT
What is a Computer? Input Devices /output devices
CloudStack 4.21: First Look Webinar slides
Hindi spoken digit analysis for native and non-native speakers
Tartificialntelligence_presentation.pptx
Developing a website for English-speaking practice to English as a foreign la...
sustainability-14-14877-v2.pddhzftheheeeee
Hybrid model detection and classification of lung cancer
WOOl fibre morphology and structure.pdf for textiles
Hybrid horned lizard optimization algorithm-aquila optimizer for DC motor
1 - Historical Antecedents, Social Consideration.pdf
Getting started with AI Agents and Multi-Agent Systems
The various Industrial Revolutions .pptx
From MVP to Full-Scale Product A Startup’s Software Journey.pdf
August Patch Tuesday
A Late Bloomer's Guide to GenAI: Ethics, Bias, and Effective Prompting - Boha...
Architecture types and enterprise applications.pdf
Enhancing emotion recognition model for a student engagement use case through...
Module 1.ppt Iot fundamentals and Architecture
TrustArc Webinar - Click, Consent, Trust: Winning the Privacy Game
Geologic Time for studying geology for geologist
What is a Computer? Input Devices /output devices

Yang mills theory

  • 1. Advances in Physics Theories and Applications www.iiste.org ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Vol 7, 2012 SOME CONTRIBUTIONS TO YANG MILLS THEORY FORTIFICATION –DISSIPATION MODELS 1 DR K N PRASANNA KUMAR, 2PROF B S KIRANAGI AND 3 PROF C S BAGEWADI ABSTRACT. We provide a series of Models for the problems that arise in Yang Mills Theory. No claim is made that the problem is solved. We do factorize the Yang Mills Theory and give a Model for the values of LHS and RHS of the yang Mills theory. We hope these forms the stepping stone for further factorizations and solutions to the subatomic denominations at Planck’s scale. Work also throws light on some important factors like mass acquisition by symmetry breaking, relation between strong interaction and weak interaction, Lagrangian Invariance despite transformations, Gauge field, Noncommutative symmetry group of Gauge Theory and Yang Mills Theory itself. Key Words: Acquisition of mass, Symmetry Breaking, Strong interaction ,Unified Electroweak interaction, Continuous group of local transformations, Lagrangian Variance, Group generator in Gauge Theory, Vector field or Gauge field, commutative symmetry group in Gauge Theory, Yang Mills Theory The outlay of the paper is as follows: I. INTRODUCTION II. FORMULATION OF THE PROBLEM III. STATEMENT OF GOVERNING EQUATIONS IV. THE SOLUTION-BODY FABRIC OF THE THESIS V. ACKNOWLEDGEMENTS VI. REFRENCES I. INTRODUCTION: We take in to consideration the following parameters, processes and concepts: (1) Acquisition of mass (2) Symmetry Breaking (3) Strong interaction (4) Unified Electroweak interaction (5) Continuous group of local transformations (6) Lagrangian Variance (7) Group generator in Gauge Theory (8) Vector field or Gauge field (9) Non commutative symmetry group in Gauge Theory (10) Yang Mills Theory (We repeat the same Bank’s example. Individual debits and Credits are conservative so also the holistic one. Generalized theories are applied to various systems which are parameterized. And we live in ‘measurement world’. Classification is done on the parameters of various systems to which the Theory is applied. ). (11) First Term of the Lagrangian of the Yang Mills Theory(LHS) 304
  • 2. Advances in Physics Theories and Applications www.iiste.org ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Vol 7, 2012 (12) RHS of the Yang Mills Theory II. FORMULATION OF THE PROBLEM SYMMETRY BREAKING AND ACQUISITION OF MASS: MODULE NUMBERED ONE NOTATION : : CATEGORY ONE OF SYMMETRY BREAKING : CATEGORY TWO OF SYMMETRY BREAKING : CATEGORY THREE OF SYMMETRY BREAKING : CATEGORY ONE OF ACQUISITION OF MASS : CATEGORY TWO OF ACQUISITION OF MASS :CATEGORY THREE OF ACQUISITION OF MASS UNIFIED ELECTROWEAK INTERACTION AND STRONG INTERACTION: MODULE NUMBERED TWO: ========================================================================== === : CATEGORY ONE OF UNIFIED ELECTROWEAK INTERACTION : CATEGORY TWO OFUNIFIED ELECTROWEAK INTERACTION : CATEGORY THREE OFUNIFIED ELECTROWEAK IONTERACTION :CATEGORY ONE OF STRONG INTERACTION : CATEGORY TWO OF STRONG INTERACTION : CATEGORY THREE OF STRONG INTERACTION LAGRANGIAN INVARIANCE AND CONTINOUS GROUP OF LOCAL TRANSFORMATIONS: 305
  • 3. Advances in Physics Theories and Applications www.iiste.org ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Vol 7, 2012 MODULE NUMBERED THREE: ========================================================================== === : CATEGORY ONE OF CONTINUOUS GROUP OF LOCAL TRANSFORMATIONS :CATEGORY TWO OFCONTINUOUS GROUP OF LOCAL TRANSFORMATIONS : CATEGORY THREE OF CONTINUOUS GROUP OF LOCAL TRANSFORMATION : CATEGORY ONE OF LAGRANGIAN INVARIANCE :CATEGORY TWO OF LAGRANGIAN INVARIANCE : CATEGORY THREE OF LAGRANGIAN INVARIANCE GROUP GENERATOR OF GAUGE THEORY AND VECTOR FIELD(GAUGE FIELD): : MODULE NUMBERED FOUR: ========================================================================== == : CATEGORY ONE OF GROUP GENERATOR OF GAUGE THEORY : CATEGORY TWO OF GROUP GENERATOR OF GAUGE THEORY : CATEGORY THREE OF GROUP GENERATOR OF GAUGE THEORY :CATEGORY ONE OF VECTOR FIELD NAMELY GAUGE FIELD :CATEGORY TWO OF GAUGE FIELD : CATEGORY THREE OFGAUGE FIELD YANG MILLS THEORYAND NON COMMUTATIVE SYMMETRY GROUP IN GAUGE THEORY: MODULE NUMBERED FIVE: ========================================================================== === : CATEGORY ONE OF NON COMMUTATIVE SYMMETRY GROUP OF GAUGE THEORY : CATEGORY TWO OF NON COMMUTATIVE SYMMETRY GROUP OPF GAUGE THEORY :CATEGORY THREE OFNON COMMUTATIVE SYMMETRY GROUP OF GAUGE 306
  • 4. Advances in Physics Theories and Applications www.iiste.org ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Vol 7, 2012 THEORY : CATEGORY ONE OFYANG MILLS THEORY (Theory is applied to various subatomic particle systems and the classification is done based on the parametricization of these systems. There is not a single system known which is not characterized by some properties) :CATEGORY TWO OF YANG MILLS THEORY :CATEGORY THREE OF YANG MILLS THEORY LHS OF THE YANG MILLS THEORY AND RHS OF THE YANG MILLS THEORY.TAKEN TO THE OTHER SIDE THE LHS WOULD DISSIPATE THE RHS WITH OR WITHOUT TIME LAG : MODULE NUMBERED SIX: ========================================================================== === : CATEGORY ONE OF LHS OF YANG MILLS THEORY : CATEGORY TWO OF LHS OF YANG MILLS THEORY : CATEGORY THREE OF LHS OF YANG MILLS THEORY : CATEGORY ONE OF RHS OF YANG MILLS THEORY : CATEGORY TWO OF RHS OF YANG MILLS THEORY : CATEGORY THREE OF RHS OF YANG MILLS THEORY (Theory applied to various characterized systems and the systemic characterizations form the basis for the formulation of the classification). ========================================================================== ===== ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) : ( )( ) ( )( ) ( ) ( ) ( ) (( ) ( ) ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ( ) ( ) ) ( ) ( ) ( ( ) ( ) ) , ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) are Accentuation coefficients ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ,( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) 307
  • 5. Advances in Physics Theories and Applications www.iiste.org ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Vol 7, 2012 are Dissipation coefficients III. STATEMENT OF GOVERNING EQUATIONS: SYMMETRY BREAKING AND ACQUISITION OF MASS: 1 MODULE NUMBERED ONE The differential system of this model is now (Module Numbered one) ( )( ) [( )( ) ( )( ) ( )] 2 ( )( ) [( )( ) ( )( ) ( )] 3 ( )( ) [( )( ) ( )( ) ( )] 4 ( )( ) [( )( ) ( )( ) ( )] 5 ( )( ) [( )( ) ( )( ) ( )] 6 ( )( ) [( )( ) ( )( ) ( )] 7 ( )( ) ( ) First augmentation factor 8 ( )( ) ( ) First detritions factor UNIFIED ELECTROWEAK INTERACTION AND STRONG INTERACTION: 9 MODULE NUMBERED TWO The differential system of this model is now ( Module numbered two) ( )( ) [( )( ) ( )( ) ( )] 10 ( )( ) [( )( ) ( )( ) ( )] 11 ( )( ) [( )( ) ( )( ) ( )] 12 ( )( ) [( )( ) ( )( ) (( ) )] 13 ( )( ) [( )( ) ( )( ) (( ) )] 14 ( )( ) [( )( ) ( )( ) (( ) )] 15 ( )( ) ( ) First augmentation factor 16 ( )( ) (( ) ) First detritions factor 17 308
  • 6. Advances in Physics Theories and Applications www.iiste.org ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Vol 7, 2012 LAGRANGIAN INVARIANCE AND CONTINOUS GROUP OF LOCAL 18 TRANSFORMATIONS: MODULE NUMBERED THREE The differential system of this model is now (Module numbered three) ( )( ) [( )( ) ( )( ) ( )] 19 ( )( ) [( )( ) ( )( ) ( )] 20 ( )( ) [( )( ) ( )( ) ( )] 21 ( )( ) [( )( ) ( )( ) ( )] 22 ( )( ) [( )( ) ( )( ) ( )] 23 ( )( ) [( )( ) ( )( ) ( )] 24 ( )( ) ( ) First augmentation factor ( )( ) ( ) First detritions factor 25 26 GROUP GENERATOR OF GAUGE THEORY AND VECTOR FIELD(GAUGE FIELD): : MODULE NUMBERED FOUR: ========================================================================== == The differential system of this model is now (Module numbered Four) ( )( ) [( )( ) ( )( ) ( )] 27 ( )( ) [( )( ) ( )( ) ( )] 28 ( )( ) [( )( ) ( )( ) ( )] 29 ( )( ) [( )( ) ( )( ) (( ) )] 30 ( )( ) [( )( ) ( )( ) (( ) )] 31 ( )( ) [( )( ) ( )( ) (( ) )] 32 ( )( ) ( ) First augmentation factor 33 ( )( ) (( ) ) First detritions factor 34 309
  • 7. Advances in Physics Theories and Applications www.iiste.org ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Vol 7, 2012 YANG MILLS THEORYAND NON COMMUTATIVE SYMMETRY GROUP IN GAUGE 35 THEORY: MODULE NUMBERED FIVE The differential system of this model is now (Module number five) ( )( ) [( )( ) ( )( ) ( )] 36 ( )( ) [( )( ) ( )( ) ( )] 37 ( )( ) [( )( ) ( )( ) ( )] 38 ( )( ) [( )( ) ( )( ) (( ) )] 39 ( )( ) [( )( ) ( )( ) (( ) )] 40 ( )( ) [( )( ) ( )( ) (( ) )] 41 ( )( ) ( ) First augmentation factor 42 ( )( ) (( ) ) First detritions factor 43 LHS OF THE YANG MILLS THEORY AND RHS OF THE YANG MILLS THEORY.TAKEN 44 TO THE OTHER SIDE THE LHS WOULD DISSIPATE THE RHS WITH OR WITHOUT TIME 45 LAG : MODULE NUMBERED SIX : The differential system of this model is now (Module numbered Six) ( )( ) [( )( ) ( )( ) ( )] 46 ( )( ) [( )( ) ( )( ) ( )] 47 ( )( ) [( )( ) ( )( ) ( )] 48 ( )( ) [( )( ) ( )( ) (( ) )] 49 ( )( ) [( )( ) ( )( ) (( ) )] 50 310
  • 8. Advances in Physics Theories and Applications www.iiste.org ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Vol 7, 2012 ( )( ) [( )( ) ( )( ) (( ) )] 51 ( )( ) ( ) First augmentation factor 52 ( )( ) (( ) ) First detritions factor 53 HOLISTIC CONCATENATE SYTEMAL EQUATIONS HENCEFORTH REFERRED TO AS “GLOBAL 54 EQUATIONS” We take in to consideration the following parameters, processes and concepts: (1) Acquisition of mass (2) Symmetry Breaking (3) Strong interaction (4) Unified Electroweak interaction (5) Continuous group of local transformations (6) Lagrangian Variance (7) Group generator in Gauge Theory (8) Vector field or Gauge field (9) Non commutative symmetry group in Gauge Theory (10) Yang Mills Theory (We repeat the same Bank’s example. Individual debits and Credits are conservative so also the holistic one. Generalized theories are applied to various systems which are parameterized. And we live in ‘measurement world’. Classification is done on the parameters of various systems to which the Theory is applied. ). (11) First Term of the Lagrangian of the Yang Mills Theory(LHS) (12) RHS of the Yang Mills Theory ( )( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) 55 ( )( ) [ ] ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) 56 ( )( ) [ ] ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) 57 ( )( ) [ ] ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) 311
  • 9. Advances in Physics Theories and Applications www.iiste.org ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Vol 7, 2012 Where ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) are first augmentation coefficients for category 1, 2 and 3 58 ( )( ) ( ) , ( )( ) ( ) , ( )( ) ( ) are second augmentation coefficient for category 1, 2 and 3 ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) are third augmentation coefficient for category 1, 2 and 3 59 ( )( ) ( ) , ( )( ) ( ) , ( )( ) ( ) are fourth augmentation coefficient for category 1, 2 and 3 ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) are fifth augmentation coefficient for category 1, 2 and 3 ( )( ) ( ), ( )( ) ( ) , ( )( ) ( ) are sixth augmentation coefficient for category 1, 2 and 3 60 ( )( ) ( )( ) ( ) ( )( ) ( ) –( )( ) ( ) 61 ( ) ( ) [ ] ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( ) –( )( ) ( ) 62 ( )( ) [ ] ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( ) –( )( ) ( ) 63 ( )( ) [ ] ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) Where ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) are first detrition coefficients for category 1, 2 and 3 64 ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) are second detritions coefficients for category 1, 2 and 3 ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) are third detritions coefficients for category 1, 2 and 3 ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) are fourth detritions coefficients for category 1, 2 and 3 ( )( ) ( ) , ( )( ) ( ) , ( )( ) ( ) are fifth detritions coefficients for category 1, 2 and 3 ( )( ) ( ) , ( )( ) ( ) , ( )( ) ( ) are sixth detritions coefficients for category 1, 2 and 3 65 ( )( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) 66 ( )( ) [ ] ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) 67 ( )( ) [ ] ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) 68 ( )( ) [ ] ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) Where ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) are first augmentation coefficients for category 1, 2 and 3 69 312
  • 10. Advances in Physics Theories and Applications www.iiste.org ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Vol 7, 2012 ( )( ) ( ) , ( )( ) ( ) , ( )( ) ( ) are second augmentation coefficient for category 1, 2 and 3 ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) are third augmentation coefficient for category 1, 2 and 3 ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) are fourth augmentation coefficient for category 1, 2 and 3 ( )( ) ( ), ( )( ) ( ) , ( )( ) ( ) are fifth augmentation coefficient for category 1, 2 and 3 70 ( )( ) ( ), ( )( ) ( ) , ( )( ) ( ) are sixth augmentation coefficient for category 1, 2 and 3 71 ( )( ) ( )( ) ( ) ( )( ) ( ) –( )( ) ( ) 72 ( )( ) [ ] ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( ) –( )( ) ( ) 73 ( )( ) [ ] ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( ) –( )( ) ( ) 74 ( )( ) [ ] ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) , ( )( ) ( ) , ( )( ) ( ) are first detrition coefficients for category 1, 2 and 3 75 ( )( ) ( ) ( )( ) ( ) , ( )( ) ( ) are second detrition coefficients for category 1,2 and 3 ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) are third detrition coefficients for category 1,2 and 3 ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) are fourth detritions coefficients for category 1,2 and 3 ( )( ) ( ) , ( )( ) ( ) , ( )( ) ( ) are fifth detritions coefficients for category 1,2 and 3 ( )( ) ( ) ( )( ) ( ) , ( )( ) ( ) are sixth detritions coefficients for category 1,2 and 3 76 ( )( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) [ ] ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) 77 ( )( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) [ ] ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) 78 313
  • 11. Advances in Physics Theories and Applications www.iiste.org ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Vol 7, 2012 ( )( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) [ ] ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) 79 ( )( ) ( ), ( )( ) ( ), ( )( ) ( ) are first augmentation coefficients for category 1, 2 and 3 ( )( ) ( ) ( )( ) ( ) , ( )( ) ( ) are second augmentation coefficients for category 1, 2 and 3 ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) are third augmentation coefficients for category 1, 2 and 3 ( )( ) ( ) , ( )( ) ( ) ( )( ) ( ) are fourth augmentation coefficients for category 1, 2 and 3 80 ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) are fifth augmentation coefficients for category 1, 2 and 3 ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) are sixth augmentation coefficients for category 1, 2 and 3 81 82 ( )( ) ( )( ) ( ) –( )( ) ( ) –( )( ) ( ) ( ) ( ) [ ] ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) 83 ( )( ) ( )( ) ( ) –( )( ) ( ) –( )( ) ( ) ( )( ) [ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 84 ( )( ) ( )( ) ( ) –( )( ) ( ) –( )( ) ( ) ( )( ) [ ] ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) are first detritions coefficients for category 1, 2 and 3 85 ( )( ) ( ) , ( )( ) ( ) , ( )( ) ( ) are second detritions coefficients for category 1, 2 and 3 ( )( ) ( ) ( )( ) ( ) , ( )( ) ( ) are third detrition coefficients for category 1,2 and 3 ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) are fourth detritions coefficients for category 1, 2 and 3 ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) are fifth detritions coefficients for category 1, 2 and 3 ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) are sixth detritions coefficients for category 1, 2 and 3 86 314
  • 12. Advances in Physics Theories and Applications www.iiste.org ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Vol 7, 2012 ( )( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) 87 ( )( ) [ ] ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) 88 ( )( ) [ ] ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) 89 ( )( ) [ ] ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) 90 ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) 91 ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) are fourth augmentation coefficients for category 1, 2,and 3 ( )( ) ( ), ( )( ) ( ) ( )( ) ( ) are fifth augmentation coefficients for category 1, 2,and 3 ( )( ) ( ), ( )( ) ( ), ( )( ) ( ) are sixth augmentation coefficients for category 1, 2,and 3 92 ( )( ) ( )( ) ( ) ( )( ) ( ) –( )( ) ( ) 93 ( )( ) [ ] ( )( ) ( ) ( )( ) ( ) –( )( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( ) –( )( ) ( ) 94 ( )( ) [ ] ( )( ) ( ) ( )( ) ( ) –( )( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( ) –( )( ) ( ) 95 ( )( ) [ ] ( )( ) ( ) ( )( ) ( ) –( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) 96 ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) , ( )( ) ( ) ( )( ) ( ), ( )( ) ( ), ( )( ) ( ) –( )( ) ( ) –( )( ) ( ) –( )( ) ( ) 315
  • 13. Advances in Physics Theories and Applications www.iiste.org ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Vol 7, 2012 97 98 99 ( )( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) [ ] ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) 100 ( )( ) [ ] ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) 101 ( ) ( ) [ ] ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) 102 ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) are fourth augmentation coefficients for category 1,2, and 3 ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) are fifth augmentation coefficients for category 1,2,and 3 ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) are sixth augmentation coefficients for category 1,2, 3 103 104 ( )( ) ( )( ) ( ) ( )( ) ( ) –( )( ) ( ) ( ) ( ) [ ] ( )( ) ( ) ( )( ) ( ) –( )( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( ) –( )( ) ( ) 105 ( )( ) [ ] ( )( ) ( ) ( )( ) ( ) –( )( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( ) –( )( ) ( ) 106 ( )( ) [ ] ( )( ) ( ) ( )( ) ( ) –( )( ) ( ) –( )( ) ( ) ( )( ) ( ) ( )( ) ( ) 107 ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) are fourth detrition coefficients for category 1,2, and 3 ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) are fifth detrition coefficients for category 1,2, and 3 316
  • 14. Advances in Physics Theories and Applications www.iiste.org ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Vol 7, 2012 –( )( ) ( ) , –( )( ) ( ) –( )( ) ( ) are sixth detrition coefficients for category 1,2, and 3 108 109 ( )( ) ( )( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) [ ] ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) 110 ( )( ) ( )( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) [ ] ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) 111 ( )( ) ( )( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) [ ] ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) 112 ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) - are fourth augmentation coefficients ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) - fifth augmentation coefficients ( )( ) ( ), ( )( ) ( ) ( )( ) ( ) sixth augmentation coefficients 113 114 ( )( ) ( )( ) ( ) –( )( ) ( ) –( )( ) ( ) ( ) ( ) [ ] ( )( ) ( ) ( )( ) ( ) –( )( ) ( ) ( )( ) ( )( ) ( ) –( )( ) ( ) –( )( ) ( ) 115 ( )( ) [ ] ( )( ) ( ) ( )( ) ( ) –( )( ) ( ) ( )( ) ( )( ) ( ) –( )( ) ( ) –( )( ) ( ) 116 ( )( ) [ ] ( )( ) ( ) ( )( ) ( ) –( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) 117 ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) are fourth detrition coefficients for category 1, 2, and 3 317
  • 15. Advances in Physics Theories and Applications www.iiste.org ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Vol 7, 2012 ( )( ) ( ), ( )( ) ( ) ( )( ) ( ) are fifth detrition coefficients for category 1, 2, and 3 –( )( ) ( ) , –( )( ) ( ) –( )( ) ( ) are sixth detrition coefficients for category 1, 2, and 3 118 Where we suppose 119 (A) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) 120 (B) The functions ( )( ) ( )( ) are positive continuous increasing and bounded. Definition of ( )( ) ( )( ) : ( )( ) ( ) ( )( ) ( ̂ )( ) 121 ( )( ) ( ) ( )( ) ( )( ) ( ̂ )( ) (C) ( )( ) ( ) ( )( ) 122 ( )( ) ( ) ( )( ) Definition of ( ̂ )( ) ( ̂ )( ) : Where ( ̂ )( ) ( ̂ )( ) ( )( ) ( )( ) are positive constants and They satisfy Lipschitz condition: 123 )( ) ( )( ) ( ) ( )( ) ( ) (̂ )( ) ( ̂ 124 )( ) 125 ( )( ) ( ) ( )( ) ( ) (̂ )( ) ( ̂ With the Lipschitz condition, we place a restriction on the behavior of functions 126 ( )( ) ( ) and( )( ) ( ) ( ) and ( ) are points belonging to the interval [( ̂ )( ) ( ̂ )( ) ] . It is to be noted that ( )( ) ( ) is uniformly continuous. In the eventuality of the fact, that if ( ̂ )( ) then the function ( ) ( ( ) ) , the first augmentation coefficient WOULD be absolutely continuous. Definition of ( ̂ )( ) (̂ )( ) : 127 (D) ( ̂ )( ) (̂ )( ) are positive constants ( )( ) ( )( ) ( ̂ )( ) ( ̂ )( ) Definition of ( ̂ )( ) ( ̂ )( ) : 128 (E) There exists two constants ( ̂ )( ) and ( ̂ )( ) which together 129 with ( ̂ )( ) ( ̂ )( ) ( ̂ )( ) and ( ̂ )( ) and the constants 130 ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) 131 satisfy the inequalities 318
  • 16. Advances in Physics Theories and Applications www.iiste.org ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Vol 7, 2012 ( )( ) ( )( ) ( ̂ )( ) ( ̂ )( ) ( ̂ )( ) 132 ( ̂ )( ) ( )( ) ( )( ) (̂ )( ) ( ̂ )( ) (̂ )( ) ( ̂ )( ) Where we suppose 134 (F) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) 135 (G) The functions ( )( ) ( )( ) are positive continuous increasing and bounded. 136 Definition of ( )( ) ( )( ) : 137 ( ) ( )( ) ( ) ( )( ) ( ̂ ) 138 ( )( ) ( ) ( )( ) ( )( ) ( ̂ )( ) 139 (H) ( )( ) ( ) ( )( ) 140 ( )( ) (( ) ) ( )( ) 141 Definition of ( ̂ )( ) ( ̂ )( ) : 142 Where ( ̂ )( ) ( ̂ )( ) ( )( ) ( )( ) are positive constants and They satisfy Lipschitz condition: 143 )( ) ( )( ) ( ) ( )( ) ( ) (̂ )( ) ( ̂ 144 )( ) ( )( ) (( ) ) ( )( ) (( ) ) (̂ )( ) ( ) ( ) ( ̂ 145 With the Lipschitz condition, we place a restriction on the behavior of functions ( )( ) ( ) 146 and( ) ( ) ( ) .( ) And ( ) are points belonging to the interval [( ̂ )( ) ( ̂ )( ) ] . It is to be noted that ( )( ) ( ) is uniformly continuous. In the eventuality of the fact, that if ( ̂ )( ) ( ) then the function ( ) ( ) , the SECOND augmentation coefficient would be absolutely continuous. Definition of ( ̂ )( ) (̂ )( ) : 147 (I) ( ̂ )( ) (̂ )( ) are positive constants 148 ( )( ) ( )( ) ( ̂ )( ) ( ̂ )( ) Definition of ( ̂ )( ) ( ̂ )( ) : 149 There exists two constants ( ̂ )( ) and ( ̂ )( ) which together with ( ̂ )( ) ( ̂ )( ) ( ̂ )( ) ( ̂ )( ) and the constants ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) satisfy the inequalities ( )( ) ( )( ) (̂ )( ) ( ̂ )( ) ( ̂ )( ) 150 (̂ )( ) ( )( ) ( )( ) (̂ )( ) ( ̂ )( ) (̂ )( ) 151 ( ̂ )( ) 319
  • 17. Advances in Physics Theories and Applications www.iiste.org ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Vol 7, 2012 Where we suppose 152 (J) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) 153 The functions ( )( ) ( )( ) are positive continuous increasing and bounded. Definition of ( )( ) ( )( ) : ( )( ) ( ) ( )( ) ( ̂ )( ) ( )( ) ( ) ( )( ) ( )( ) ( ̂ )( ) ( )( ) ( ) ( )( ) 154 ( )( ) ( ) ( )( ) 155 Definition of ( ̂ )( ) ( ̂ )( ) : 156 Where ( ̂ )( ) (̂ )( ) ( )( ) ( )( ) are positive constants and They satisfy Lipschitz condition: 157 )( ) ( )( ) ( ) ( )( ) ( ) (̂ )( ) ( ̂ 158 )( ) 159 ( )( ) ( ) ( )( ) ( ) (̂ )( ) ( ̂ With the Lipschitz condition, we place a restriction on the behavior of functions ( )( ) ( ) 160 and( )( ) ( ) .( ) And ( ) are points belonging to the interval [( ̂ )( ) ( ̂ )( ) ] . It is to be noted that ( )( ) ( ) is uniformly continuous. In the eventuality of the fact, that if ( ̂ )( ) ( ) then the function ( ) ( ) , the THIRD augmentation coefficient, would be absolutely continuous. Definition of ( ̂ )( ) (̂ )( ) : 161 (K) ( ̂ )( ) (̂ )( ) are positive constants ( )( ) ( )( ) ( ̂ )( ) ( ̂ )( ) There exists two constants There exists two constants ( ̂ )( ) and ( ̂ )( ) which together with 162 ( ̂ )( ) ( ̂ )( ) ( ̂ )( ) ( ̂ )( ) and the constants ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) 163 satisfy the inequalities 164 ( ) ( ) ( ) ( ) ( ̂ ) ( ) ( ̂ ) ( ) (̂ ( ) ) 165 ( ̂ )( ) ( )( ) ( )( ) (̂ )( ) ( ̂ )( ) (̂ )( ) 166 ( ̂ )( ) 167 Where we suppose 168 (L) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) 169 (M) The functions ( )( ) ( )( ) are positive continuous increasing and bounded. 320
  • 18. Advances in Physics Theories and Applications www.iiste.org ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Vol 7, 2012 Definition of ( )( ) ( )( ) : ( )( ) ( ) ( )( ) ( ̂ )( ) ( )( ) (( ) ) ( )( ) ( )( ) ( ̂ )( ) 170 (N) ( )( ) ( ( )( ) ) ( )( ) (( ) ) ( )( ) Definition of ( ̂ )( ) ( ̂ )( ) : Where ( ̂ )( ) ( ̂ )( ) ( )( ) ( )( ) are positive constants and They satisfy Lipschitz condition: 171 )( ) ( )( ) ( ) ( )( ) ( ) (̂ )( ) ( ̂ )( ) ( )( ) (( ) ) ( )( ) (( ) ) (̂ )( ) ( ) ( ) ( ̂ With the Lipschitz condition, we place a restriction on the behavior of functions ( )( ) ( ) 172 and( )( ) ( ) .( ) And ( ) are points belonging to the interval [( ̂ )( ) ( ̂ )( ) ] . It is to be noted that ( )( ) ( ) is uniformly continuous. In the eventuality of the fact, that if ( ̂ ) ( ) then the function ( )( ) ( ) , the FOURTH augmentation coefficient WOULD be absolutely continuous. 173 Defi174nition of ( ̂ )( ) (̂ )( ) : 174 (O) ( ̂ ) ( ) (̂ )( ) are positive constants (P) ( )( ) ( )( ) ( ̂ )( ) ( ̂ )( ) Definition of ( ̂ )( ) ( ̂ )( ) : 175 (Q) There exists two constants ( ̂ )( ) and ( ̂ )( ) which together with ( ̂ )( ) ( ̂ )( ) ( ̂ )( ) ( ̂ )( ) and the constants ( ) ( ) ( ) ( ) ( )( ) ( )( ) ( ) ( ) ( ) ( ) satisfy the inequalities ( )( ) ( )( ) ( ̂ )( ) ( ̂ )( ) ( ̂ )( ) ( ̂ )( ) ( )( ) ( )( ) (̂ )( ) ( ̂ )( ) (̂ )( ) ( ̂ )( ) Where we suppose 176 (R) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) 177 (S) The functions ( )( ) ( )( ) are positive continuous increasing and bounded. Definition of ( )( ) ( )( ) : 321
  • 19. Advances in Physics Theories and Applications www.iiste.org ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Vol 7, 2012 ( )( ) ( ) ( )( ) ( ̂ )( ) ( )( ) (( ) ) ( )( ) ( )( ) ( ̂ )( ) 178 (T) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) Definition of ( ̂ )( ) ( ̂ )( ) : Where ( ̂ )( ) ( ̂ )( ) ( )( ) ( )( ) are positive constants and They satisfy Lipschitz condition: 179 )( ) ( )( ) ( ) ( )( ) ( ) (̂ )( ) ( ̂ )( ) ( )( ) (( ) ) ( )( ) (( ) ) (̂ )( ) ( ) ( ) ( ̂ With the Lipschitz condition, we place a restriction on the behavior of functions ( )( ) ( ) 180 and( ) (( ) ) .( ) and ( ) are points belonging to the interval [( ̂ )( ) ( ̂ )( ) ] . It is to be noted that ( )( ) ( ) is uniformly continuous. In the eventuality of the fact, that if ( ̂ )( ) then the function ( )( ) ( ) , theFIFTH augmentation coefficient attributable would be absolutely continuous. Definition of ( ̂ )( ) (̂ )( ) : 181 (U) ( ̂ )( ) (̂ )( ) are positive constants ( )( ) ( )( ) ( ̂ )( ) ( ̂ )( ) Definition of ( ̂ )( ) ( ̂ )( ) : 182 (V) There exists two constants ( ̂ )( ) and ( ̂ )( ) which together with ( ̂ )( ) ( ̂ )( ) ( ̂ )( ) ( ̂ )( ) and the constants ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) satisfy the inequalities ( )( ) ( )( ) ( ̂ )( ) ( ̂ )( ) ( ̂ )( ) ( ̂ )( ) ( )( ) ( )( ) (̂ )( ) ( ̂ )( ) (̂ )( ) ( ̂ )( ) Where we suppose 183 ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) 184 (W) The functions ( )( ) ( )( ) are positive continuous increasing and bounded. Definition of ( )( ) ( )( ) : ( )( ) ( ) ( )( ) ( ̂ )( ) ( )( ) (( ) ) ( )( ) ( )( ) (̂ )( ) 322
  • 20. Advances in Physics Theories and Applications www.iiste.org ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Vol 7, 2012 185 (X) ( )( ) ( ) ( )( ) ( ) ( ) (( ) ) ( )( ) Definition of ( ̂ )( ) ( ̂ )( ) : Where ( ̂ )( ) ( ̂ )( ) ( )( ) ( )( ) are positive constants and They satisfy Lipschitz condition: 186 )( ) ( )( ) ( ) ( )( ) ( ) (̂ )( ) ( ̂ )( ) ( )( ) (( ) ) ( )( ) (( ) ) (̂ )( ) ( ) ( ) ( ̂ With the Lipschitz condition, we place a restriction on the behavior of functions ( )( ) ( ) 187 and( ) (( ) ) .( ) and ( ) are points belonging to the interval [( ̂ )( ) ( ̂ )( ) ] . It is to be noted that ( )( ) ( ) is uniformly continuous. In the eventuality of the fact, that if ( ̂ ) ( ) then the function ( )( ) ( ) , the SIXTH augmentation coefficient would be absolutely continuous. Definition of ( ̂ )( ) (̂ )( ) : 188 ( ̂ )( ) (̂ )( ) are positive constants ( )( ) ( )( ) ( ̂ )( ) ( ̂ )( ) Definition of ( ̂ )( ) ( ̂ )( ) : 189 There exists two constants ( ̂ )( ) and ( ̂ )( ) which together with ( ̂ )( ) ( ̂ )( ) ( ̂ )( ) ( ̂ )( ) and the constants ( ) ( ) ( ) ( ) ( )( ) ( )( ) ( ) ( ) ( ) ( ) satisfy the inequalities ( )( ) ( )( ) ( ̂ )( ) ( ̂ )( ) ( ̂ )( ) ( ̂ )( ) ( )( ) ( )( ) (̂ )( ) ( ̂ )( ) (̂ )( ) ( ̂ )( ) 190 Theorem 1: if the conditions IN THE FOREGOING above are fulfilled, there exists a solution 191 satisfying the conditions Definition of ( ) ( ): ( ) ( ̂ )( ) ( ) ( ̂ ) , ( ) ) ( ̂ )( ) ( ) ( ̂ )( , ( ) 192 193 323
  • 21. Advances in Physics Theories and Applications www.iiste.org ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Vol 7, 2012 Definition of ( ) ( ) ) ( ̂ )( ) ( ) ( ̂ )( , ( ) ) ( ̂ )( ) ( ) ( ̂ )( , ( ) 194 195 ) ( ̂ )( ) ( ) ( ̂ )( , ( ) ) ( ̂ )( ) ( ) ( ̂ )( , ( ) Definition of ( ) ( ): 196 ( ) ( ̂ )( ) ( ) ( ̂ ) , ( ) ) ( ̂ )( ) ( ) ( ̂ )( , ( ) 197 Definition of ( ) ( ): ( ) ( ̂ )( ) ( ) ( ̂ ) , ( ) ) ( ̂ )( ) ( ) ( ̂ )( , ( ) 198 Definition of ( ) ( ): 199 ( ) ( ̂ )( ) ( ) ( ̂ ) , ( ) ) ( ̂ )( ) ( ) ( ̂ )( , ( ) Proof: Consider operator ( ) defined on the space of sextuples of continuous functions 200 which satisfy ( ) ( ) ( ̂ )( ) ( ̂ )( ) 201 ) ( ̂ )( ) ( ) ( ̂ )( 202 ) ( ̂ )( ) ( ) ( ̂ )( 203 By 204 ̅ ( ) ∫ [( )( ) ( ( )) (( )( ) )( ) ( ( ( )) ( ) )) ( ( ) )] ( ) ̅ ( ) ∫ [( )( ) ( ( )) (( )( ) ( )( ) ( ( ( )) ( ) )) ( ( ) )] ( ) 205 324
  • 22. Advances in Physics Theories and Applications www.iiste.org ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Vol 7, 2012 ̅ ( ) ∫ [( )( ) ( ( )) (( )( ) ( )( ) ( ( ( )) ( ) )) ( ( ) )] ( ) 206 ̅ ( ) ∫ [( )( ) ( ( )) (( )( ) ( )( ) ( ( ( )) ( ) )) ( ( ) )] ( ) 207 ̅ ( ) ∫ [( )( ) ( ( )) (( )( ) ( )( ) ( ( ( )) ( ) )) ( ( ) )] ( ) 208 ̅ () ∫ [( )( ) ( ( )) (( )( ) ( )( ) ( ( ( )) ( ) )) ( ( ) )] ( ) 209 Where ( ) is the integrand that is integrated over an interval ( ) 210 Proof: 211 ( ) Consider operator defined on the space of sextuples of continuous functions which satisfy ( ) ( ) ( ̂ )( ) ( ̂ )( ) 212 ) ( ̂ )( ) ( ) ( ̂ )( 213 ) ( ̂ )( ) ( ) ( ̂ )( 214 By 215 ̅ ( ) ∫ [( )( ) ( ( )) (( )( ) )( ) ( ( ( )) ( ) )) ( ( ) )] ( ) ̅ ( ) ∫ [( )( ) ( ( )) (( )( ) ( )( ) ( ( ( )) ( ) )) ( ( ) )] ( ) 216 ̅ ( ) ∫ [( )( ) ( ( )) (( )( ) ( )( ) ( ( ( )) ( ) )) ( ( ) )] ( ) 217 ̅ ( ) ∫ [( )( ) ( ( )) (( )( ) ( )( ) ( ( ( )) ( ) )) ( ( ) )] ( ) 218 ̅ ( ) ∫ [( )( ) ( ( )) (( )( ) ( )( ) ( ( ( )) ( ) )) ( ( ) )] ( ) 219 ̅ ( ) ∫ [( )( ) ( ( )) (( )( ) ( )( ) ( ( ( )) ( ) )) ( ( ) )] ( ) 220 Where ( ) is the integrand that is integrated over an interval ( ) Proof: 221 ( ) Consider operator defined on the space of sextuples of continuous functions which satisfy ( ) ( ) ( ̂ )( ) ( ̂ )( ) 222 ) ( ̂ )( ) ( ) ( ̂ )( 223 ) ( ̂ )( ) ( ) ( ̂ )( 224 By 225 325
  • 23. Advances in Physics Theories and Applications www.iiste.org ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Vol 7, 2012 ̅ ( ) ∫ [( )( ) ( ( )) (( )( ) )( ) ( ( ( )) ( ) )) ( ( ) )] ( ) ̅ ( ) ∫ [( )( ) ( ( )) (( )( ) ( )( ) ( ( ( )) ( ) )) ( ( ) )] ( ) 226 ̅ ( ) ∫ [( )( ) ( ( )) (( )( ) ( )( ) ( ( ( )) ( ) )) ( ( ) )] ( ) 227 ̅ ( ) ∫ [( )( ) ( ( )) (( )( ) ( )( ) ( ( ( )) ( ) )) ( ( ) )] ( ) 228 ̅ ( ) ∫ [( )( ) ( ( )) (( )( ) ( )( ) ( ( ( )) ( ) )) ( ( ) )] ( ) 229 ̅ () ∫ [( )( ) ( ( )) (( )( ) ( )( ) ( ( ( )) ( ) )) ( ( ) )] ( ) 230 Where ( ) is the integrand that is integrated over an interval ( ) ( ) 231 Consider operator defined on the space of sextuples of continuous functions which satisfy ( ) ( ) ( ̂ )( ) ( ̂ )( ) 232 ) ( ̂ )( ) ( ) ( ̂ )( 233 ) ( ̂ )( ) ( ) ( ̂ )( 234 By 235 ̅ ( ) ∫ [( )( ) ( ( )) (( )( ) )( ) ( ( ( )) ( ) )) ( ( ) )] ( ) ̅ ( ) ∫ [( )( ) ( ( )) (( )( ) ( )( ) ( ( ( )) ( ) )) ( ( ) )] ( ) 236 ̅ ( ) ∫ [( )( ) ( ( )) (( )( ) ( )( ) ( ( ( )) ( ) )) ( ( ) )] ( ) 237 ̅ ( ) ∫ [( )( ) ( ( )) (( )( ) ( )( ) ( ( ( )) ( ) )) ( ( ) )] ( ) 238 ̅ ( ) ∫ [( )( ) ( ( )) (( )( ) ( )( ) ( ( ( )) ( ) )) ( ( ) )] ( ) 239 ̅ () ∫ [( )( ) ( ( )) (( )( ) ( )( ) ( ( ( )) ( ) )) ( ( ) )] ( ) 240 Where ( ) is the integrand that is integrated over an interval ( ) ( ) 241 Consider operator defined on the space of sextuples of continuous functions which satisfy 242 ( ) ( ) ( ̂ )( ) ( ̂ )( ) 243 ) ( ̂ )( ) ( ) ( ̂ )( 244 ) ( ̂ )( ) ( ) ( ̂ )( 245 326
  • 24. Advances in Physics Theories and Applications www.iiste.org ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Vol 7, 2012 By 246 ̅ ( ) ∫ [( )( ) ( ( )) (( )( ) )( ) ( ( ( )) ( ) )) ( ( ) )] ( ) ̅ ( ) ∫ [( )( ) ( ( )) (( )( ) ( )( ) ( ( ( )) ( ) )) ( ( ) )] ( ) 247 ̅ ( ) ∫ [( )( ) ( ( )) (( )( ) ( )( ) ( ( ( )) ( ) )) ( ( ) )] ( ) 248 ̅ ( ) ∫ [( )( ) ( ( )) (( )( ) ( )( ) ( ( ( )) ( ) )) ( ( ) )] ( ) 249 ̅ ( ) ∫ [( )( ) ( ( )) (( )( ) ( )( ) ( ( ( )) ( ) )) ( ( ) )] ( ) 250 ̅ () ∫ [( )( ) ( ( )) (( )( ) ( )( ) ( ( ( )) ( ) )) ( ( ) )] ( ) 251 Where ( ) is the integrand that is integrated over an interval ( ) 252 ( ) Consider operator defined on the space of sextuples of continuous functions which satisfy ( ) ( ) ( ̂ )( ) ( ̂ )( ) 253 ) ( ̂ )( ) ( ) ( ̂ )( 254 ) ( ̂ )( ) ( ) ( ̂ )( 255 By 256 ̅ ( ) ∫ [( )( ) ( ( )) (( )( ) )( ) ( ( ( )) ( ) )) ( ( ) )] ( ) ̅ ( ) ∫ [( )( ) ( ( )) (( )( ) ( )( ) ( ( ( )) ( ) )) ( ( ) )] ( ) 257 ̅ ( ) ∫ [( )( ) ( ( )) (( )( ) ( )( ) ( ( ( )) ( ) )) ( ( ) )] ( ) 258 ̅ ( ) ∫ [( )( ) ( ( )) (( )( ) ( )( ) ( ( ( )) ( ) )) ( ( ) )] ( ) 259 ̅ ( ) ∫ [( )( ) ( ( )) (( )( ) ( )( ) ( ( ( )) ( ) )) ( ( ) )] ( ) 260 ̅ () ∫ [( )( ) ( ( )) (( )( ) ( )( ) ( ( ( )) ( ) )) ( ( ) )] ( ) 261 Where ( ) is the integrand that is integrated over an interval ( ) 262 (a) The operator ( ) maps the space of functions satisfying GLOBAL EQUATIONS into itself 263 .Indeed it is obvious that 327
  • 25. Advances in Physics Theories and Applications www.iiste.org ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Vol 7, 2012 ) ( ̂ )( ) ( ( ) ∫ [( )( ) ( ( ̂ )( ) )] ( ) ( )( ) ( ̂ )( ) )( ) ( ( )( ) ) ( (̂ ) ( ̂ )( ) From which it follows that 264 (̂ )( ) ( )( ) ( ) ( ̂ )( ) ̂ ) ( ( ) ) [(( ( ) ) ( ̂ )( ) ] ( ̂ )( ) ( ) is as defined in the statement of theorem 1 Analogous inequalities hold also for 265 (b) The operator ( ) maps the space of functions satisfying GLOBAL EQUATIONS into itself 266 .Indeed it is obvious that ) ( ̂ )( ) ( ( ) ∫ [( )( ) ( ( ̂ )( ) )] ( ) ( ( )( ) ) 267 ( )( ) ( ̂ )( ) )( ) ( (̂ ) ( ̂ )( ) From which it follows that 268 (̂ )( ) ( )( ) ( ) ( ̂ )( ) ̂ )( ( ( ) ) ) [(( ) ) ( ̂ )( ) ] ( ̂ )( Analogous inequalities hold also for 269 (a) The operator ( ) maps the space of functions satisfying GLOBAL EQUATIONS into itself 270 .Indeed it is obvious that ) ( ̂ )( ) ( ( ) ∫ [( )( ) ( ( ̂ )( ) )] ( ) ( )( ) ( ̂ )( ) )( ) ( ( )( ) ) ( (̂ ) ( ̂ )( ) From which it follows that 271 (̂ )( ) ( )( ) ( ) ( ̂ )( ) ̂ ( ( ) ) ) [(( )( ) ) ( ̂ )( ) ] ( ̂ )( Analogous inequalities hold also for 272 (b) The operator ( ) maps the space of functions satisfying GLOBAL EQUATIONS into itself 273 .Indeed it is obvious that ̂ )( ) ( ) ( ) ∫ [( )( ) ( ( ̂ )( ) ( )] ( ) ( )( ) ( ̂ )( ) )( ) ( ( )( ) ) ( (̂ ) ( ̂ )( ) From which it follows that 274 (̂ )( ) ( )( ) ( ) ( ̂ )( ) ̂ ( ( ) ) ) [(( )( ) ) ( ̂ )( ) ] ( ̂ )( 328
  • 26. Advances in Physics Theories and Applications www.iiste.org ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Vol 7, 2012 ( ) is as defined in the statement of theorem 1 (c) The operator ( ) maps the space of functions satisfying GLOBAL EQUATIONS into itself 275 .Indeed it is obvious that ̂ )( ) ( ) ( ) ∫ [( )( ) ( ( ̂ )( ) ( )] ( ) ( )( ) ( ̂ )( ) )( ) ( ( )( ) ) ( (̂ ) ( ̂ )( ) From which it follows that 276 (̂ )( ) ( )( ) ( ) ( ̂ )( ) ̂ ( ( ) ) [(( )( ) ) (̂ )( ) ] ( ̂ )( ) ( ) is as defined in the statement of theorem 1 (d) The operator ( ) maps the space of functions satisfying GLOBAL EQUATIONS into itself 277 .Indeed it is obvious that ) ( ̂ )( ) ( ( ) ∫ [( )( ) ( ( ̂ )( ) )] ( ) ( )( ) ( ̂ )( ) )( ) ( ( )( ) ) ( (̂ ) ( ̂ )( ) From which it follows that 278 (̂ )( ) ( )( ) ( ) ( ̂ )( ) ̂ ( ( ) ) [(( )( ) ) ( ̂ )( ) ] ( ̂ )( ) ( ) is as defined in the statement of theorem 6 Analogous inequalities hold also for 279 280 ( )( ) ( )( ) 281 It is now sufficient to take and to choose ( ̂ )( ) ( ̂ )( ) ( ̂ )( ) (̂ )( ) large to have 282 (̂ )( ) 283 ( ) ( )( ) [( ̂ ) ( ) (( ̂ ) ( ) ) ] ( ̂ ) ( ) (̂ )( ) (̂ )( ) 284 ( ) ( )( ) [(( ̂ )( ) ) ( ̂ )( ) ] ( ̂ )( ) ( ̂ )( ) ( ) 285 In order that the operator transforms the space of sextuples of functions satisfying 329
  • 27. Advances in Physics Theories and Applications www.iiste.org ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Vol 7, 2012 GLOBAL EQUATIONS into itself ( ) 286 The operator is a contraction with respect to the metric ( ) ( ) ( ) ( ) (( )( )) ( ) ( ) ( ) ( )| (̂ )( ) ( ) ( ) ( ) ( )| (̂ )( ) | | Indeed if we denote 287 Definition of ̃ ̃ : ( ̃ ̃) ( ) ( ) It results ( ) ̃ ( )| ( ) ( ) (̂ )( ) ( (̂ )( ) ( |̃ ∫( )( ) | | ) ) ( ) ( ) ( ) (̂ )( ) ( (̂ )( ) ( ∫ ( )( ) | | ) ) ( ) ( ) ( ) (̂ )( ) ( (̂ )( ) ( ( )( ) ( ( ) )| | ) ) ( ) ( ) ( ) (̂ )( ) ( (̂ )( ) ( ( )( ) ( ( )) ( )( ) ( ( )) ) ) ( ) Where ( ) represents integrand that is integrated over the interval From the hypotheses it follows ( ) ( ) (̂ )( ) 288 | | (( )( ) ( )( ) ( ̂ )( ) ( ̂ )( ) ( ̂ )( ) ) (( ( ) ( ) ( ) ( ) )) (̂ )( ) And analogous inequalities for . Taking into account the hypothesis the result follows Remark 1: The fact that we supposed ( )( ) ( )( ) depending also on can be considered as 289 not conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition necessary to prove the uniqueness of the solution bounded by ( ) ( ) ( ̂ )( ) ( ̂ ) ( ̂ )( ) ( ̂ ) respectively of If instead of proving the existence of the solution on , we have to prove it only on a compact then ( ) ( ) it suffices to consider that ( ) ( ) depend only on and respectively on ( ) and hypothesis can replaced by a usual Lipschitz condition. Remark 2: There does not exist any where ( ) ( ) 290 From 19 to 24 it results [ ∫ {( )( ) ( )( ) ( ( ( )) ( ) )} )] 291 ( ) ( ( ) ( ( )( ) ) for Definition of (( ̂ )( ) ) (( ̂ )( ) ) : 292 Remark 3: if is bounded, the same property have also . indeed if 330
  • 28. Advances in Physics Theories and Applications www.iiste.org ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Vol 7, 2012 ( ̂ )( ) it follows (( ̂ )( ) ) ( )( ) and by integrating (( ̂ )( ) ) ( )( ) (( ̂ )( ) ) ( )( ) In the same way , one can obtain (( ̂ )( ) ) ( )( ) (( ̂ )( ) ) ( )( ) If is bounded, the same property follows for and respectively. Remark 4: If bounded, from below, the same property holds for The proof is 293 analogous with the preceding one. An analogous property is true if is bounded from below. Remark 5: If is bounded from below and (( )( ) ( ( ) )) ( )( ) then 294 Definition of ( )( ) : Indeed let be so that for ( )( ) ( )( ) ( ( ) ) ( ) ( )( ) Then ( )( ) ( )( ) which leads to 295 ( )( ) ( )( ) ( )( ) If we take such that it results ( )( ) ( )( ) ( ) By taking now sufficiently small one sees that is ( ) ( ) unbounded. The same property holds for if ( ) ( ( ) ) ( ) We now state a more precise theorem about the behaviors at infinity of the solutions 296 ( )( ) ( )( ) 297 It is now sufficient to take and to choose ( ̂ )( ) ( ̂ )( ) ( ̂ )( ) ( ̂ )( ) large to have (̂ )( ) 298 ( ) ( )( ) [( ̂ )( ) (( ̂ ) ( ) ) ] ( ̂ )( ) ( ̂ )( ) 299 (̂ )( ) ( ) ( )( ) [(( ̂ )( ) ) ( ̂ )( ) ] ( ̂ )( ) ( ̂ )( ) ( ) 300 In order that the operator transforms the space of sextuples of functions satisfying ( ) 301 The operator is a contraction with respect to the metric ((( )( ) ( )( ) ) (( )( ) ( )( ) )) ( ) ( ) ( ) ( )| (̂ )( ) ( ) ( ) ( ) ( )| (̂ )( ) | | 331
  • 29. Advances in Physics Theories and Applications www.iiste.org ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Vol 7, 2012 Indeed if we denote 302 Definition of ̃ ̃ : ( ̃ ̃ ) ( ) ( ) It results 303 ( ) ̃ ( )| ( ) ( ) (̂ )( ) ( (̂ )( ) ( |̃ ∫( )( ) | | ) ) ( ) ( ) ( ) (̂ )( ) ( (̂ )( ) ( ∫ ( )( ) | | ) ) ( ) ( ) ( ) (̂ )( ) ( (̂ )( ) ( ( )( ) ( ( ) )| | ) ) ( ) ( ) ( ) (̂ )( ) ( (̂ )( ) ( ( )( ) ( ( )) ( )( ) ( ( )) ) ) ( ) Where ( ) represents integrand that is integrated over the interval 304 From the hypotheses it follows )( ) ( )( ) | (̂ )( ) 305 |( (( )( ) ( )( ) ( ̂ )( ) (̂ )( ) (̂ ) ( ) ( ̂ )( ) ) ((( )( ) ( )( ) ( )( ) ( )( ) )) And analogous inequalities for . Taking into account the hypothesis the result follows 306 Remark 1: The fact that we supposed ( )( ) ( )( ) depending also on can be considered as 307 not conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition necessary to prove the uniqueness of the solution bounded by ̂ )( ) ̂ )( ) ( ̂ )( ) ( ( ̂ )( ) ( respectively of If instead of proving the existence of the solution on , we have to prove it only on a compact then it suffices to consider that ( )( ) ( )( ) depend only on and respectively on ( )( ) and hypothesis can replaced by a usual Lipschitz condition. Remark 2: There does not exist any where () () 308 From 19 to 24 it results [ ∫ {( )( ) ( )( ) ( ( ( )) ( ) )} )] () ( () ( ( )( ) ) for Definition of (( ̂ )( ) ) (( ̂ )( ) ) (( ̂ )( ) ) : 309 Remark 3: if is bounded, the same property have also . indeed if ( ̂ )( ) it follows (( ̂ )( ) ) ( )( ) and by integrating (( ̂ )( ) ) ( )( ) (( ̂ )( ) ) ( )( ) In the same way , one can obtain (( ̂ )( ) ) ( )( ) (( ̂ )( ) ) ( )( ) 310 If is bounded, the same property follows for and respectively. 332
  • 30. Advances in Physics Theories and Applications www.iiste.org ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Vol 7, 2012 Remark 4: If bounded, from below, the same property holds for The proof is 311 analogous with the preceding one. An analogous property is true if is bounded from below. Remark 5: If is bounded from below and (( )( ) (( )( ) )) ( )( ) then 312 Definition of ( )( ) : Indeed let be so that for ( )( ) ( )( ) (( )( ) ) () ( )( ) Then ( )( ) ( ) ( ) which leads to 313 ( )( ) ( )( ) ( )( ) If we take such that it results ( )( ) ( )( ) 314 ( ) By taking now sufficiently small one sees that is unbounded. The same property holds for if ( )( ) (( )( ) ) ( )( ) We now state a more precise theorem about the behaviors at infinity of the solutions 315 ( )( ) ( )( ) 316 It is now sufficient to take and to choose ( ̂ )( ) ( ̂ )( ) ( ̂ )( ) (̂ )( ) large to have (̂ )( ) 317 ( ) ( )( ) [( ̂ )( ) (( ̂ )( ) ) ] ( ̂ )( ) ( ̂ )( ) (̂ )( ) 318 ( ) ( )( ) [(( ̂ ) ( ) ) ( ̂ ( ) ) ] ( ̂ ( ) ) ( ̂ )( ) ( ) 319 In order that the operator transforms the space of sextuples of functions into itself ( ) 320 The operator is a contraction with respect to the metric ((( )( ) ( )( ) ) (( )( ) ( )( ) )) ( ) ( ) ( ) ( )| (̂ )( ) ( ) ( ) ( ) ( )| (̂ )( ) | | Indeed if we denote 321 Definition of ̃ ̃ :( (̃) ( ) ) ̃ ( ) (( )( )) It results 322 ( ) ̃ ( )| ( ) ( ) (̂ )( ) ( (̂ )( ) ( |̃ ∫( )( ) | | ) ) ( ) ( ) ( ) (̂ )( ) ( (̂ )( ) ( ∫ ( )( ) | | ) ) 333
  • 31. Advances in Physics Theories and Applications www.iiste.org ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Vol 7, 2012 ( ) ( ) ( ) (̂ )( ) ( (̂ )( ) ( ( )( ) ( ( ) )| | ) ) 323 ( ) ( ) ( ) (̂ )( ) ( (̂ )( ) ( ( )( ) ( ( )) ( )( ) ( ( )) ) ) ( ) Where ( ) represents integrand that is integrated over the interval From the hypotheses it follows ( ) ( ) (̂ )( ) 324 | | (( )( ) ( )( ) (̂ )( ) (̂ )( ) ( ) ̂ (̂ ) ( )( ) ) ((( )( ) ( )( ) ( )( ) ( )( ) )) And analogous inequalities for . Taking into account the hypothesis the result follows Remark 1: The fact that we supposed ( )( ) ( )( ) depending also on can be considered as 325 not conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition necessary to prove the uniqueness of the solution bounded by ( ) ( ) ( ̂ )( ) ( ̂ ) ( ̂ )( ) ( ̂ ) respectively of If instead of proving the existence of the solution on , we have to prove it only on a compact then it suffices to consider that ( )( ) ( )( ) depend only on and respectively on ( )( ) and hypothesis can replaced by a usual Lipschitz condition. Remark 2: There does not exist any where ( ) ( ) 326 From 19 to 24 it results [ ∫ {( )( ) ( )( ) ( ( ( )) ( ) )} )] ( ) ( ( ) ( ( )( ) ) for Definition of (( ̂ )( ) ) (( ̂ )( ) ) (( ̂ )( ) ) : 327 Remark 3: if is bounded, the same property have also . indeed if ( ̂ )( ) it follows (( ̂ )( ) ) ( )( ) and by integrating (( ̂ )( ) ) ( )( ) (( ̂ )( ) ) ( )( ) In the same way , one can obtain (( ̂ )( ) ) ( )( ) (( ̂ )( ) ) ( )( ) If is bounded, the same property follows for and respectively. Remark 4: If bounded, from below, the same property holds for The proof is 328 analogous with the preceding one. An analogous property is true if is bounded from below. Remark 5: If is bounded from below and (( )( ) (( )( ) )) ( )( ) then 329 Definition of ( )( ) : 330 Indeed let be so that for 334
  • 32. Advances in Physics Theories and Applications www.iiste.org ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Vol 7, 2012 ( )( ) ( )( ) (( )( ) ) ( ) ( )( ) Then ( )( ) ( ) ( ) which leads to 331 ( )( ) ( )( ) ( )( ) If we take such that it results ( )( ) ( )( ) ( ) By taking now sufficiently small one sees that is ( ) ( ) unbounded. The same property holds for if ( ) (( )( ) ) ( ) We now state a more precise theorem about the behaviors at infinity of the solutions 332 ( )( ) ( )( ) 333 It is now sufficient to take and to choose ( ̂ )( ) ( ̂ )( ) ( ̂ )( ) (̂ )( ) large to have (̂ )( ) 334 ( ) ( )( ) [( ̂ )( ) (( ̂ ) ( ) ) ] ( ̂ ) ( ) ( ̂ )( ) (̂ )( ) 335 ( ) ( )( ) [(( ̂ ) ( ) ) ( ̂ )( ) ] ( ̂ )( ) ( ̂ )( ) ( ) 336 In order that the operator transforms the space of sextuples of functions satisfying IN to itself ( ) 337 The operator is a contraction with respect to the metric ((( )( ) ( )( ) ) (( )( ) ( )( ) )) ( ) ( ) ( ) ( )| (̂ )( ) ( ) ( ) ( ) ( )| (̂ )( ) | | Indeed if we denote Definition of (̃) ( ) : ( (̃) ( ) ) ̃ ̃ ( ) (( )( )) It results ( ) ̃ ( )| ( ) ( ) (̂ )( ) ( (̂ )( ) ( |̃ ∫( )( ) | | ) ) ( ) ( ) ( ) (̂ )( ) ( (̂ )( ) ( ∫ ( )( ) | | ) ) ( ) ( ) ( ) (̂ )( ) ( (̂ )( ) ( ( )( ) ( ( ) )| | ) ) ( ) ( ) ( ) (̂ )( ) ( (̂ )( ) ( ( )( ) ( ( )) ( )( ) ( ( )) ) ) ( ) Where ( ) represents integrand that is integrated over the interval 335
  • 33. Advances in Physics Theories and Applications www.iiste.org ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Vol 7, 2012 From the hypotheses it follows 338 )( ) ( )( ) | (̂ )( ) 339 |( (( )( ) ( )( ) (̂ )( ) (̂ )( ) ( ̂ )( ) ( ̂ )( ) ) ((( )( ) ( )( ) ( )( ) ( )( ) )) And analogous inequalities for . Taking into account the hypothesis the result follows Remark 1: The fact that we supposed ( )( ) ( )( ) depending also on can be considered 340 as not conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition necessary to prove the uniqueness of the solution bounded by ( ) ( ) ( ̂ )( ) ( ̂ ) ( ̂ )( ) ( ̂ ) respectively of If instead of proving the existence of the solution on , we have to prove it only on a compact then ( ) ( ) it suffices to consider that ( ) ( ) depend only on and respectively on ( )( ) and hypothesis can replaced by a usual Lipschitz condition. Remark 2: There does not exist any where ( ) ( ) 341 From 19 to 24 it results [ ∫ {( )( ) ( )( ) ( ( ( )) ( ) )} )] ( ) ( ( ) ( ( )( ) ) for Definition of (( ̂ )( ) ) (( ̂ )( ) ) (( ̂ )( ) ) : 342 Remark 3: if is bounded, the same property have also . indeed if ( ̂ )( ) it follows (( ̂ )( ) ) ( )( ) and by integrating (( ̂ )( ) ) ( )( ) (( ̂ )( ) ) ( )( ) In the same way , one can obtain (( ̂ )( ) ) ( )( ) (( ̂ )( ) ) ( )( ) If is bounded, the same property follows for and respectively. Remark 4: If bounded, from below, the same property holds for The proof is 343 analogous with the preceding one. An analogous property is true if is bounded from below. Remark 5: If is bounded from below and (( )( ) (( )( ) )) ( )( ) then 344 Definition of ( )( ) : Indeed let be so that for 336
  • 34. Advances in Physics Theories and Applications www.iiste.org ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Vol 7, 2012 ( )( ) ( )( ) (( )( ) ) ( ) ( )( ) Then ( )( ) ( )( ) which leads to 345 ( )( ) ( )( ) ( )( ) If we take such that it results ( )( ) ( )( ) ( ) By taking now sufficiently small one sees that is unbounded. The same property holds for if ( )( ) (( )( ) ) ( )( ) We now state a more precise theorem about the behaviors at infinity of the solutions ANALOGOUS inequalities hold also for 346 ( )( ) ( )( ) 347 It is now sufficient to take and to choose ( ̂ )( ) ( ̂ )( ) ( ̂ )( ) (̂ )( ) large to have (̂ )( ) 348 ( ) ( )( ) [( ̂ ( ) ) (( ̂ )( ) ) ] ( ̂ )( ) ( ̂ )( ) (̂ )( ) 349 ( ) ( )( ) [(( ̂ ) ( ) ) ( ̂ )( ) ] ( ̂ )( ) ( ̂ )( ) ( ) 350 In order that the operator transforms the space of sextuples of functions into itself ( ) 351 The operator is a contraction with respect to the metric ((( )( ) ( )( ) ) (( )( ) ( )( ) )) ( ) ( ) ( ) ( )| (̂ )( ) ( ) ( ) ( ) ( )| (̂ )( ) | | Indeed if we denote Definition of (̃) ( ) : ( (̃) ( ) ) ̃ ̃ ( ) (( )( )) It results ( ) ̃ ( )| ( ) ( ) (̂ )( ) ( (̂ )( ) ( |̃ ∫( )( ) | | ) ) ( ) ( ) ( ) (̂ )( ) ( (̂ )( ) ( ∫ ( )( ) | | ) ) ( ) ( ) ( ) (̂ )( ) ( (̂ )( ) ( ( )( ) ( ( ) )| | ) ) 337
  • 35. Advances in Physics Theories and Applications www.iiste.org ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Vol 7, 2012 ( ) ( ) ( ) (̂ )( ) ( (̂ )( ) ( ( )( ) ( ( )) ( )( ) ( ( )) ) ) ( ) Where ( ) represents integrand that is integrated over the interval From the hypotheses it follows 352 )( ) ( )( ) | (̂ )( ) 353 |( (( )( ) ( )( ) (̂ )( ) (̂ )( ) ( ̂ )( ) ( ̂ )( ) ) ((( )( ) ( )( ) ( )( ) ( )( ) )) And analogous inequalities for . Taking into account the hypothesis (35,35,36) the result follows Remark 1: The fact that we supposed ( )( ) ( )( ) depending also on can be considered 354 as not conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition necessary to prove the uniqueness of the solution bounded by ( ) ( ) ( ̂ )( ) ( ̂ ) ( ̂ )( ) ( ̂ ) respectively of If instead of proving the existence of the solution on , we have to prove it only on a compact then ( ) ( ) it suffices to consider that ( ) ( ) depend only on and respectively on ( )( ) and hypothesis can replaced by a usual Lipschitz condition. Remark 2: There does not exist any where ( ) ( ) 355 From GLOBAL EQUATIONS it results [ ∫ {( )( ) ( )( ) ( ( ( )) ( ) )} )] ( ) ( ( ) ( ( )( ) ) for Definition of (( ̂ )( ) ) (( ̂ )( ) ) (( ̂ )( ) ) : 356 Remark 3: if is bounded, the same property have also . indeed if ( ̂ )( ) it follows (( ̂ )( ) ) ( )( ) and by integrating (( ̂ )( ) ) ( )( ) (( ̂ )( ) ) ( )( ) In the same way , one can obtain (( ̂ )( ) ) ( )( ) (( ̂ )( ) ) ( )( ) If is bounded, the same property follows for and respectively. Remark 4: If bounded, from below, the same property holds for The proof is 357 analogous with the preceding one. An analogous property is true if is bounded from below. Remark 5: If is bounded from below and (( )( ) (( )( ) )) ( )( ) then 358 338
  • 36. Advances in Physics Theories and Applications www.iiste.org ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Vol 7, 2012 Definition of ( )( ) : Indeed let be so that for 359 ( )( ) ( )( ) (( )( ) ) ( ) ( )( ) Then ( )( ) ( ) ( ) which leads to 360 ( )( ) ( )( ) ( )( ) If we take such that it results ( )( ) ( )( ) ( ) By taking now sufficiently small one sees that is unbounded. The same property holds for if ( )( ) (( )( ) ) ( )( ) We now state a more precise theorem about the behaviors at infinity of the solutions Analogous inequalities hold also for 361 ( )( ) ( )( ) 362 It is now sufficient to take and to choose ( ̂ )( ) ( ̂ )( ) ( ̂ )( ) (̂ )( ) large to have (̂ )( ) 363 ( ) ( )( ) [( ̂ ) ( ) (( ̂ )( ) ) ] ( ̂ ) ( ) (̂ )( ) (̂ )( ) 364 ( ) ( )( ) [(( ̂ ) ( ) ) ( ̂ )( ) ] ( ̂ )( ) ( ̂ )( ) ( ) 365 In order that the operator transforms the space of sextuples of functions into itself ( ) 366 The operator is a contraction with respect to the metric ((( )( ) ( )( ) ) (( )( ) ( )( ) )) ( ) ( ) ( ) ( )| (̂ )( ) ( ) ( ) ( ) ( )| (̂ )( ) | | Indeed if we denote Definition of (̃) ( ) : ( (̃) ( ) ) ̃ ̃ ( ) (( )( )) It results 339
  • 37. Advances in Physics Theories and Applications www.iiste.org ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Vol 7, 2012 ( ) ̃ ( )| ( ) ( ) (̂ )( ) ( (̂ )( ) ( |̃ ∫( )( ) | | ) ) ( ) ( ) ( ) (̂ )( ) ( (̂ )( ) ( ∫ ( )( ) | | ) ) ( ) ( ) ( ) (̂ )( ) ( (̂ )( ) ( ( )( ) ( ( ) )| | ) ) ( ) ( ) ( ) (̂ )( ) ( (̂ )( ) ( ( )( ) ( ( )) ( )( ) ( ( )) ) ) ( ) 367 Where ( ) represents integrand that is integrated over the interval From the hypotheses it follows )( ) ( )( ) | (̂ )( ) 368 |( (( )( ) ( )( ) (̂ )( ) (̂ )( ) ( ̂ )( ) ( ̂ )( ) ) ((( )( ) ( )( ) ( )( ) ( )( ) )) And analogous inequalities for . Taking into account the hypothesis the result follows Remark 1: The fact that we supposed ( )( ) ( )( ) depending also on can be considered 369 as not conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition necessary to prove the uniqueness of the solution bounded by ( ) ( ) ( ̂ )( ) ( ̂ ) ( ̂ )( ) ( ̂ ) respectively of If instead of proving the existence of the solution on , we have to prove it only on a compact then it suffices to consider that ( )( ) ( )( ) depend only on and respectively on ( )( ) and hypothesis can replaced by a usual Lipschitz condition. Remark 2: There does not exist any where ( ) ( ) 370 From 69 to 32 it results [ ∫ {( )( ) ( )( ) ( ( ( )) ( ) )} )] ( ) ( ( ) ( ( )( ) ) for Definition of (( ̂ )( ) ) (( ̂ )( ) ) (( ̂ )( ) ) : 371 Remark 3: if is bounded, the same property have also . indeed if ( ̂ )( ) it follows (( ̂ )( ) ) ( )( ) and by integrating (( ̂ )( ) ) ( )( ) (( ̂ )( ) ) ( )( ) In the same way , one can obtain (( ̂ )( ) ) ( )( ) (( ̂ )( ) ) ( )( ) If is bounded, the same property follows for and respectively. 340
  • 38. Advances in Physics Theories and Applications www.iiste.org ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Vol 7, 2012 Remark 4: If bounded, from below, the same property holds for The proof is 372 analogous with the preceding one. An analogous property is true if is bounded from below. Remark 5: If is bounded from below and (( )( ) (( )( ) )) ( )( ) then 373 Definition of ( )( ) : Indeed let be so that for ( )( ) ( )( ) (( )( ) ) ( ) ( )( ) 374 Then ( )( ) ( )( ) which leads to 375 ( )( ) ( )( ) ( )( ) If we take such that it results ( )( ) ( )( ) ( ) By taking now sufficiently small one sees that is unbounded. The same property holds for if ( )( ) (( )( ) ( ) ) ( )( ) We now state a more precise theorem about the behaviors at infinity of the solutions 376 Behavior of the solutions 377 If we denote and define Definition of ( )( ) ( )( ) ( )( ) ( )( ) : (a) )( ) ( )( ) ( )( ) ( )( ) four constants satisfying ( )( ) ( )( ) ( )( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ) ( )( ) ( ) ( )( ) Definition of ( )( ) ( )( ) ( )( ) ( )( ) ( ) ( ) : 378 (b) By ( )( ) ( )( ) and respectively ( )( ) ( )( ) the roots of the ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) equations ( ) ( ) ( ) ( ) and ( ) ( ) ( ) ( )( ) Definition of ( ̅ )( ) ( ̅ )( ) ( ̅ )( ) ( ̅ )( ) : 379 By ( ̅ )( ) ( ̅ )( ) and respectively ( ̅ )( ) ( ̅ )( ) the roots of the equations ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) and ( ) ( ) ( )( ) ( ) ( )( ) Definition of ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) :- 380 (c) If we define ( )( ) ( )( ) ( )( ) ( )( ) by 341
  • 39. Advances in Physics Theories and Applications www.iiste.org ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Vol 7, 2012 ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ̅ )( ) ( )( ) ( )( ) ( ̅ )( ) and ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ̅ )( ) ( )( ) and analogously 381 ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ̅ )( ) ( )( ) ( )( ) ( ̅ )( ) and ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ̅ )( ) ( )( ) where ( )( ) ( ̅ )( ) 382 are defined respectively Then the solution satisfies the inequalities 383 (( )( ) ( )( ) ) ( )( ) ( ) where ( )( ) is defined (( )( ) ( )( ) ) ( )( ) ( ) ( )( ) ( )( ) ( )( ) (( )( ) ( )( ) ) ( )( ) ( )( ) 384 ( [ ] ( ) ( )( ) (( )( ) ( )( ) ( )( ) ) ( )( ) ( )( ) ( )( ) ( )( ) ) ( )( ) (( )( ) ( )( ) ) ( )( ) (( )( ) ( )( ) ) 385 ( ) ( )( ) (( )( ) ( )( ) ) 386 ( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) 387 [ ] ( ) ( )( ) (( )( ) ( )( ) ) ( )( ) (( )( ) ( )( ) ) ( )( ) ( )( ) [ ] ( )( ) (( )( ) ( )( ) ( )( ) ) Definition of ( )( ) ( )( ) ( )( ) ( )( ) :- 388 Where ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) 342
  • 40. Advances in Physics Theories and Applications www.iiste.org ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Vol 7, 2012 Behavior of the solutions 389 If we denote and define Definition of ( )( ) ( )( ) ( )( ) ( )( ) : 390 (d) )( ) ( )( ) ( )( ) ( )( ) four constants satisfying ( )( ) ( )( ) ( )( ) ( )( ) ( ) ( )( ) ( ) ( )( ) 391 ( )( ) ( )( ) ( )( ) ( )( ) (( ) ) ( )( ) (( ) ) ( )( ) 392 Definition of ( )( ) ( )( ) ( )( ) ( )( ) : 393 By ( )( ) ( )( ) and respectively ( )( ) ( )( ) the roots 394 (e) of the equations ( )( ) ( ( ) ) ( )( ) ( ) ( )( ) 395 and ( )( ) ( ( ) ) ( )( ) ( ) ( )( ) and 396 Definition of ( ̅ )( ) ( ̅ )( ) ( ̅ )( ) ( ̅ )( ) : 397 By ( ̅ )( ) ( ̅ )( ) and respectively ( ̅ )( ) ( ̅ )( ) the 398 roots of the equations ( )( ) ( ( ) ) ( )( ) ( ) ( )( ) 399 and ( )( ) ( ( ) ) ( )( ) ( ) ( )( ) 400 Definition of ( )( ) ( )( ) ( )( ) ( )( ) :- 401 (f) If we define ( )( ) ( )( ) ( )( ) ( )( ) by 402 ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) 403 ( )( ) ( )( ) ( )( ) ( ̅ )( ) ( )( ) ( )( ) ( ̅ )( ) 404 and ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ̅ )( ) ( )( ) 405 and analogously 406 ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ̅ )( ) ( )( ) ( )( ) ( ̅ )( ) and ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ̅ )( ) ( )( ) 407 Then the solution satisfies the inequalities 408 (( )( ) ( )( ) ) ( ) ( )( ) ( )( ) is defined 409 343
  • 41. Advances in Physics Theories and Applications www.iiste.org ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Vol 7, 2012 (( )( ) ( )( ) ) ( )( ) 410 ( ) ( )( ) ( )( ) ( )( ) (( )( ) ( )( ) ) ( )( ) ( )( ) 411 ( [ ] ( ) ( )( ) (( )( ) ( )( ) ( )( ) ) ( ) ( ) ( )( ) ( )( ) ( )( ) ) ( )( ) (( )( ) ( )( ) ) ( )( ) (( )( ) ( )( ) ) 412 ( ) ( )( ) (( )( ) ( )( ) ) 413 ( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) 414 [ ] ( ) ( )( ) (( )( ) ( )( ) ) ( )( ) (( )( ) ( )( ) ) ( )( ) ( )( ) [ ] ( )( ) (( )( ) ( )( ) ( )( ) ) Definition of ( )( ) ( )( ) ( )( ) ( )( ) :- 415 Where ( )( ) ( )( ) ( )( ) ( )( ) 416 ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) 417 ( )( ) ( )( ) ( )( ) 418 Behavior of the solutions 419 If we denote and define Definition of ( )( ) ( )( ) ( )( ) ( )( ) : (a) )( ) ( )( ) ( )( ) ( )( ) four constants satisfying ( )( ) ( )( ) ( )( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ) ( )( ) (( ) ) ( )( ) Definition of ( )( ) ( )( ) ( )( ) ( )( ) : 420 (b) By ( )( ) ( )( ) and respectively ( )( ) ( )( ) the roots of the ( ) ( ) ( ) ( ) ( ) equations ( ) ( ) ( ) ( ) and ( )( ) ( ( ) ) ( )( ) ( ) ( )( ) and By ( ̅ )( ) ( ̅ )( ) and respectively ( ̅ )( ) ( ̅ )( ) the roots of the equations ( )( ) ( ( ) ) ( )( ) ( ) ( )( ) and ( )( ) ( ( ) ) ( )( ) ( ) ( )( ) Definition of ( )( ) ( )( ) ( )( ) ( )( ) :- 421 344
  • 42. Advances in Physics Theories and Applications www.iiste.org ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Vol 7, 2012 (c) If we define ( )( ) ( )( ) ( )( ) ( )( ) by ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ̅ )( ) ( )( ) ( )( ) ( ̅ )( ) and ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ̅ )( ) ( )( ) and analogously 422 ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ̅ )( ) ( )( ) ( )( ) ( ̅ )( ) and ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ̅ )( ) ( )( ) Then the solution satisfies the inequalities (( )( ) ( )( ) ) ( )( ) ( ) ( )( ) is defined 423 (( )( ) ( )( ) ) ( )( ) 424 ( ) ( )( ) ( )( ) ( )( ) (( )( ) ( )( ) ) ( )( ) ( )( ) 425 ( [ ] ( ) ( )( ) (( )( ) ( )( ) ( )( ) ) ( )( ) ( )( ) ( )( ) ( )( ) ) ( )( ) (( )( ) ( )( ) ) ( )( ) (( )( ) ( )( ) ) 426 ( ) ( )( ) (( )( ) ( )( ) ) 427 ( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) 428 [ ] ( ) ( )( ) (( )( ) ( )( ) ) ( )( ) (( )( ) ( )( ) ) ( )( ) ( )( ) [ ] ( )( ) (( )( ) ( )( ) ( )( ) ) Definition of ( )( ) ( )( ) ( )( ) ( )( ) :- 429 Where ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) 430 431 Behavior of the solutions 432 345
  • 43. Advances in Physics Theories and Applications www.iiste.org ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Vol 7, 2012 If we denote and define Definition of ( )( ) ( )( ) ( )( ) ( )( ) : (d) ( )( ) ( )( ) ( )( ) ( )( ) four constants satisfying ( )( ) ( )( ) ( )( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) (( ) ) ( )( ) (( ) ) ( )( ) Definition of ( )( ) ( )( ) ( )( ) ( )( ) ( ) ( ) : 433 (e) By ( )( ) ( )( ) and respectively ( )( ) ( )( ) the roots of the ( ) ( ) ( ) ( ) ( ) equations ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) and ( ) ( ) ( ) ( ) and Definition of ( ̅ )( ) ( ̅ )( ) ( ̅ )( ) ( ̅ )( ) : 434 435 By ( ̅ )( ) ( ̅ )( ) and respectively ( ̅ )( ) ( ̅ )( ) the ( ) ( ) ( ) ( ) ( ) roots of the equations ( ) ( ) ( ) ( ) and ( )( ) ( ( ) ) ( )( ) ( ) ( )( ) 436 Definition of ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) :- (f) If we define ( )( ) ( )( ) ( )( ) ( )( ) by ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ̅ )( ) ( )( ) ( )( ) ( ̅ )( ) and ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ̅ )( ) ( )( ) and analogously 437 438 ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ̅ )( ) ( )( ) ( )( ) ( ̅ )( ) and ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ̅ )( ) ( )( ) where ( )( ) ( ̅ )( ) are defined by 59 and 64 respectively Then the solution satisfies the inequalities 439 440 (( )( ) ( )( ) ) ( ) ( )( ) 441 442 where ( )( ) is defined 443 444 445 346
  • 44. Advances in Physics Theories and Applications www.iiste.org ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Vol 7, 2012 (( )( ) ( )( ) ) ( ) ( )( ) 446 ( )( ) ( )( ) 447 ( )( ) (( )( ) ( )( ) ) ( )( ) ( )( ) 448 ( [ ] ( ) ( )( ) (( )( ) ( )( ) ( )( ) ) ( )( ) ( )( ) ( )( ) ( )( ) [ ] ) ( )( ) (( )( ) ( )( ) ) ( )( ) ( ) (( )( ) ( )( ) ) 449 ( )( ) (( )( ) ( )( ) ) 450 ( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) 451 [ ] ( ) ( )( ) (( )( ) ( )( ) ) ( )( ) (( )( ) ( )( ) ) ( )( ) ( )( ) [ ] ( )( ) (( )( ) ( )( ) ( )( ) ) Definition of ( )( ) ( )( ) ( )( ) ( )( ) :- 452 Where ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) 453 Behavior of the solutions 454 If we denote and define Definition of ( )( ) ( )( ) ( )( ) ( )( ) : (g) ( )( ) ( )( ) ( )( ) ( )( ) four constants satisfying ( )( ) ( )( ) ( )( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) (( ) ) ( )( ) (( ) ) ( )( ) Definition of ( )( ) ( )( ) ( )( ) ( )( ) ( ) ( ) : 455 (h) By ( )( ) ( )( ) and respectively ( )( ) ( )( ) the roots of the ( ) ( ) ( ) ( ) ( ) equations ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) and ( ) ( ) ( ) ( ) and Definition of ( ̅ )( ) ( ̅ )( ) ( ̅ )( ) ( ̅ )( ) : 456 By ( ̅ )( ) ( ̅ )( ) and respectively ( ̅ )( ) ( ̅ )( ) the ( ) ( ) ( ) ( ) ( ) roots of the equations ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) and ( ) ( ) ( ) ( ) Definition of ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) :- (i) If we define ( )( ) ( )( ) ( )( ) ( )( ) by 347
  • 45. Advances in Physics Theories and Applications www.iiste.org ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Vol 7, 2012 ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ̅ )( ) ( )( ) ( )( ) ( ̅ )( ) and ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ̅ )( ) ( )( ) and analogously 457 ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ̅ )( ) ( )( ) ( )( ) ( ̅ )( ) and ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ̅ )( ) ( )( ) where ( )( ) ( ̅ )( ) are defined respectively Then the solution satisfies the inequalities 458 (( )( ) ( )( ) ) ( )( ) ( ) where ( )( ) is defined (( )( ) ( )( ) ) ( )( ) 459 ( ) ( )( ) ( )( ) 460 ( )( ) (( )( ) ( )( ) ) ( )( ) ( )( ) 461 ( [ ] ( ) ( )( ) (( )( ) ( )( ) ( )( ) ) ( )( ) ( )( ) ( )( ) ( )( ) [ ] ) ( )( ) (( )( ) ( )( ) ) ( )( ) (( )( ) ( )( ) ) 462 ( ) ( )( ) (( )( ) ( )( ) ) 463 ( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) 464 [ ] ( ) ( )( ) (( )( ) ( )( ) ) ( )( ) (( )( ) ( )( ) ) ( )( ) ( )( ) [ ] ( )( ) (( )( ) ( )( ) ( )( ) ) Definition of ( )( ) ( )( ) ( )( ) ( )( ) :- 465 Where ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) Behavior of the solutions 466 348
  • 46. Advances in Physics Theories and Applications www.iiste.org ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Vol 7, 2012 If we denote and define Definition of ( )( ) ( )( ) ( )( ) ( )( ) : (j) ( )( ) ( )( ) ( )( ) ( )( ) four constants satisfying ( )( ) ( )( ) ( )( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) (( ) ) ( )( ) (( ) ) ( )( ) Definition of ( )( ) ( )( ) ( )( ) ( )( ) ( ) ( ) : 467 (k) By ( )( ) ( )( ) and respectively ( )( ) ( )( ) the roots of the ( ) ( ) ( ) ( ) ( ) equations ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) and ( ) ( ) ( ) ( ) and Definition of ( ̅ )( ) ( ̅ )( ) ( ̅ )( ) ( ̅ )( ) : 468 By ( ̅ )( ) ( ̅ )( ) and respectively ( ̅ )( ) ( ̅ )( ) the ( ) ( ) ( ) ( ) ( ) roots of the equations ( ) ( ) ( ) ( ) and ( )( ) ( ( ) ) ( )( ) ( ) ( )( ) Definition of ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) :- (l) If we define ( )( ) ( )( ) ( )( ) ( )( ) by ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) 470 ( )( ) ( )( ) ( )( ) ( ̅ )( ) ( )( ) ( )( ) ( ̅ )( ) and ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ̅ )( ) ( )( ) and analogously 471 ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ̅ )( ) ( )( ) ( )( ) ( ̅ )( ) and ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ̅ )( ) ( )( ) where ( )( ) ( ̅ )( ) are defined respectively Then the solution satisfies the inequalities 472 (( )( ) ( )( ) ) ( )( ) ( ) where ( )( ) is defined (( )( ) ( )( ) ) ( )( ) 473 ( ) ( )( ) ( )( ) 349
  • 47. Advances in Physics Theories and Applications www.iiste.org ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Vol 7, 2012 ( )( ) (( )( ) ( )( ) ) ( )( ) ( )( ) 474 ( [ ] ( ) ( )( ) (( )( ) ( )( ) ( )( ) ) ( )( ) ( )( ) ( )( ) ( )( ) [ ] ) ( )( ) (( )( ) ( )( ) ) ( )( ) (( )( ) ( )( ) ) 475 ( ) ( )( ) (( )( ) ( )( ) ) 476 ( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) 477 [ ] ( ) ( )( ) (( )( ) ( )( ) ) ( )( ) (( )( ) ( )( ) ) ( )( ) ( )( ) [ ] ( )( ) (( )( ) ( )( ) ( )( ) ) Definition of ( )( ) ( )( ) ( )( ) ( )( ) :- 478 Where ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) 479 Proof : From GLOBAL EQUATIONS we obtain 480 ( ) ( )( ) (( )( ) ( )( ) ( )( ) ( )) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( ) 481 Definition of :- It follows ( ) (( )( ) ( ( ) ) ( )( ) ( ) ( )( ) ) (( )( ) ( ( ) ) ( )( ) ( ) ( )( ) ) From which one obtains Definition of ( ̅ )( ) ( )( ) :- (a) For ( )( ) ( )( ) ( ̅ )( ) [ ( )( ) (( )( ) ( )( ) ) ] ( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ) )( ) (( )( ) ( )( ) ) ] , ( )( ) [ ( ( )( ) ( )( ) ( )( ) ( )( ) ( ) ( ) ( )( ) In the same manner , we get 482 350
  • 48. Advances in Physics Theories and Applications www.iiste.org ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Vol 7, 2012 [ ( )( )((̅ )( ) (̅ )( ) ) ] (̅ )( ) ( ̅ )( ) (̅ )( ) (̅ )( ) ( )( ) ( ) ( ) )( )((̅ )( ) (̅ )( ) ) ] , ( ̅ )( ) [ ( ( )( ) (̅ )( ) ( ̅ )( ) From which we deduce ( )( ) ( ) ( ) ( ̅ )( ) (b) If ( )( ) ( )( ) ( ̅ )( ) we find like in the previous case, 483 [ ( )( ) (( )( ) ( )( ) ) ] ( )( ) ( )( ) ( )( ) ( )( ) [ ( )( ) (( )( ) ( )( ) ) ] ( ) ( ) ( )( ) [ ( )( )((̅ )( ) (̅ )( ) ) ] (̅ )( ) ( ̅ )( ) (̅ )( ) [ ( )( )((̅ )( ) (̅ )( ) ) ] ( ̅ )( ) ( ̅ )( ) 484 (c) If ( )( ) ( ̅ )( ) ( )( ) , we obtain [ ( )( ) ((̅ )( ) (̅ )( )) ] (̅ )( ) ( ̅ )( ) (̅ )( ) ( )( ) ( ) ( ) [ ( )( ) ((̅ )( ) (̅ )( )) ] ( )( ) ( ̅ )( ) And so with the notation of the first part of condition (c) , we have ( ) Definition of ( ) :- ( ) ( )( ) ( ) ( ) ( )( ) , ( ) ( ) ( ) In a completely analogous way, we obtain ( ) Definition of ( ) :- ( ) ( )( ) ( ) ( ) ( )( ) , ( ) ( ) ( ) Now, using this result and replacing it in GLOBAL E486QUATIONS we get easily the result stated in the theorem. Particular case : 485 If ( )( ) ( )( ) ( )( ) ( )( ) and in this case ( )( ) ( ̅ )( ) if in addition ( ) ( ) ( ) ( ) ( ) then ( ) ( )( ) and as a consequence ( ) ( )( ) ( ) this also ( ) defines ( ) for the special case Analogously if ( )( ) ( )( ) ( )( ) ( )( ) and then ( )( ) ( ̅ )( ) if in addition ( )( ) ( )( ) then ( ) ( )( ) ( ) This is an important consequence of the relation between ( )( ) and ( ̅ )( ) and definition of ( )( ) 486 we obtain 487 351
  • 49. Advances in Physics Theories and Applications www.iiste.org ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Vol 7, 2012 ( ) ( )( ) (( )( ) ( )( ) ( )( ) ( )) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( ) 488 Definition of :- It follows 489 ( ) (( )( ) ( ( ) ) ( )( ) ( ) ( )( ) ) (( )( ) ( ( ) ) ( )( ) ( ) ( )( ) ) From which one obtains 490 Definition of ( ̅ )( ) ( )( ) :- (d) For ( )( ) ( )( ) ( ̅ )( ) [ ( )( )(( )( ) ( )( ) ) ] ( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ) )( )(( )( ) ( )( ) ) ] , ( )( ) [ ( ( )( ) ( )( ) ( )( ) ( )( ) ( ) ( ) ( )( ) In the same manner , we get 491 [ ( )( ) ((̅ )( ) (̅ )( ) ) ] (̅ )( ) ( ̅ )( ) (̅ )( ) (̅ )( ) ( )( ) ( ) ( ) )( ) ((̅ )( ) (̅ )( ) ) ] , ( ̅ )( ) [ ( ( )( ) (̅ )( ) ( ̅ )( ) From which we deduce ( )( ) ( ) ( ) ( ̅ )( ) 492 (e) If ( )( ) ( )( ) ( ̅ )( ) we find like in the previous case, 493 [ ( )( ) (( )( ) ( )( ) ) ] ( )( ) ( )( ) ( )( ) ( )( ) [ ( )( ) (( )( ) ( )( ) ) ] ( ) ( ) ( )( ) [ ( )( )((̅ )( ) (̅ )( ) ) ] (̅ )( ) ( ̅ )( ) (̅ )( ) [ ( )( )((̅ )( ) (̅ )( ) ) ] ( ̅ )( ) ( ̅ )( ) (f) If ( )( ) ( ̅ )( ) ( )( ) , we obtain 494 [ ( )( )((̅ )( ) (̅ )( ) ) ] (̅ )( ) ( ̅ )( ) (̅ )( ) ( )( ) ( ) ( ) [ ( )( )((̅ )( ) (̅ )( ) ) ] ( )( ) ( ̅ )( ) And so with the notation of the first part of condition (c) , we have ( ) Definition of ( ) :- 495 ( ) ( )( ) ( ) ( ) ( )( ) , ( ) ( ) ( ) In a completely analogous way, we obtain 496 ( ) Definition of ( ) :- 352
  • 50. Advances in Physics Theories and Applications www.iiste.org ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Vol 7, 2012 ( ) ( )( ) ( ) ( ) ( )( ) , ( ) ( ) ( ) . 497 Particular case : 498 If ( )( ) ( )( ) ( )( ) ( )( ) and in this case ( )( ) ( ̅ )( ) if in addition ( )( ) ( )( ) then ( ) ( ) ( )( ) and as a consequence ( ) ( )( ) ( ) Analogously if ( )( ) ( )( ) ( )( ) ( )( ) and then ( )( ) ( ̅ )( ) if in addition ( )( ) ( )( ) then ( ) ( )( ) ( ) This is an important consequence of the relation between ( )( ) and ( ̅ )( ) 499 From GLOBAL EQUATIONS we obtain 500 ( ) ( )( ) (( )( ) ( )( ) ( )( ) ( )) ( )( ) ( ) ( ) ( )( ) ( ) Definition of ( ) :- ( ) 501 It follows ( ) (( )( ) ( ( ) ) ( )( ) ( ) ( )( ) ) (( )( ) ( ( ) ) ( )( ) ( ) ( )( ) ) 502 From which one obtains (a) For ( )( ) ( )( ) ( ̅ )( ) [ ( )( ) (( )( ) ( )( ) ) ] ( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ) )( ) (( )( ) ( )( ) ) ] , ( )( ) [ ( ( )( ) ( )( ) ( )( ) ( )( ) ( ) ( ) ( )( ) In the same manner , we get 503 [ ( )( )((̅ )( ) (̅ )( ) ) ] (̅ )( ) ( ̅ )( ) (̅ )( ) (̅ )( ) ( )( ) ( ) ( ) )( )((̅ )( ) (̅ )( ) ) ] , ( ̅ )( ) [ ( ( )( ) (̅ )( ) ( ̅ )( ) Definition of ( ̅ )( ) :- From which we deduce ( )( ) ( ) ( ) ( ̅ )( ) (b) If ( )( ) ( )( ) ( ̅ )( ) we find like in the previous case, 504 [ ( )( ) (( )( ) ( )( ) ) ] ( ) ( )( ) ( )( ) ( )( ) ( ) ( ) )( ) (( ( ) [ ( )( ) ( )( ) ) ] ( )( ) 353
  • 51. Advances in Physics Theories and Applications www.iiste.org ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Vol 7, 2012 [ ( )( ) ((̅ )( ) (̅ )( ) ) ] (̅ )( ) ( ̅ )( ) (̅ )( ) [ ( )( ) ((̅ )( ) (̅ )( ) ) ] ( ̅ )( ) ( ̅ )( ) (c) If ( )( ) ( ̅ )( ) ( )( ) , we obtain 505 [ ( )( ) ((̅ )( ) (̅ )( ) ) ] (̅ )( ) ( ̅ )( ) (̅ )( ) ( )( ) ( ) ( ) [ ( )( ) ((̅ )( ) (̅ )( ) ) ] ( )( ) ( ̅ )( ) And so with the notation of the first part of condition (c) , we have ( ) Definition of ( ) :- ( ) ( )( ) ( ) ( ) ( )( ) , ( ) ( ) ( ) In a completely analogous way, we obtain ( ) Definition of ( ) :- ( ) ( )( ) ( ) ( ) ( )( ) , ( ) ( ) ( ) Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the theorem. Particular case : If ( )( ) ( )( ) ( )( ) ( )( ) and in this case ( )( ) ( ̅ )( ) if in addition ( )( ) ( )( ) then ( ) ( ) ( )( ) and as a consequence ( ) ( )( ) ( ) Analogously if ( )( ) ( )( ) ( )( ) ( )( ) and then ( )( ) ( ̅ )( ) if in addition ( )( ) ( )( ) then ( ) ( )( ) ( ) This is an important consequence of the relation between ( )( ) and ( ̅ )( ) 506 : From GLOBAL EQUATIONS we obtain 507 ( ) ( )( ) (( )( ) ( )( ) ( )( ) ( )) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( ) Definition of :- 508 It follows ( ) (( )( ) ( ( ) ) ( )( ) ( ) ( )( ) ) (( )( ) ( ( ) ) ( )( ) ( ) ( )( ) ) From which one obtains Definition of ( ̅ )( ) ( )( ) :- (d) For ( )( ) ( )( ) ( ̅ )( ) 354
  • 52. Advances in Physics Theories and Applications www.iiste.org ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Vol 7, 2012 [ ( )( ) (( )( ) ( )( ) ) ] ( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ) )( ) (( , ( )( ) [ ( )( ) ( )( ) ) ] ( )( ) ( )( ) ( )( ) ( )( ) ( ) ( ) ( )( ) In the same manner , we get 509 [ ( )( )((̅ )( ) (̅ )( ) ) ] (̅ )( ) ( ̅ )( ) (̅ )( ) (̅ )( ) ( )( ) ( ) ( ) )( )((̅ )( ) (̅ )( ) ) ] , ( ̅ )( ) ( ̅ )( ) [ ( ( )( ) (̅ )( ) From which we deduce ( )( ) ( ) ( ) ( ̅ )( ) (e) If ( )( ) ( )( ) ( ̅ )( ) we find like in the previous case, 510 [ ( )( ) (( )( ) ( )( ) ) ] ( ) ( )( ) ( )( ) ( )( ) ( ) ( ) )( ) (( ( ) [ ( )( ) ( )( ) ) ] ( )( ) [ ( )( )((̅ )( ) (̅ )( ) ) ] (̅ )( ) ( ̅ )( ) (̅ )( ) [ ( )( )((̅ )( ) (̅ )( ) ) ] ( ̅ )( ) ( ̅ )( ) 511 ( ) ( ) ( ) 512 (f) If ( ) ( ̅ ) ( ) , we obtain [ ( )( ) ((̅ )( ) (̅ )( )) ] (̅ )( ) ( ̅ )( ) (̅ )( ) ( )( ) ( ) ( ) [ ( )( ) ((̅ )( ) (̅ )( )) ] ( )( ) ( ̅ )( ) And so with the notation of the first part of condition (c) , we have Definition of ( ) ( ) :- ( ) ( )( ) ( ) ( ) ( )( ) , ( ) ( ) ( ) In a completely analogous way, we obtain Definition of ( ) ( ) :- ( ) ( )( ) ( ) ( ) ( )( ) , ( ) ( ) ( ) Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the theorem. Particular case : If ( )( ) ( )( ) ( )( ) ( )( ) and in this case ( )( ) ( ̅ )( ) if in addition 513 ( )( ) ( )( ) then ( ) ( ) ( )( ) and as a consequence ( ) ( )( ) ( ) this also ( ) defines ( ) for the special case . Analogously if ( )( ) ( )( ) ( )( ) ( )( ) and then ( ) ( ) ( ) ( ) ( ̅ ) if in addition ( ) ( )( ) then ( ) ( )( ) ( ) This is an important consequence of the relation between ( )( ) and ( ̅ )( ) and definition of ( )( ) 514 355
  • 53. Advances in Physics Theories and Applications www.iiste.org ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Vol 7, 2012 From GLOBAL EQUATIONS we obtain 515 ( ) ( )( ) (( )( ) ( )( ) ( )( ) ( )) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( ) Definition of :- It follows ( ) (( )( ) ( ( ) ) ( )( ) ( ) ( )( ) ) (( )( ) ( ( ) ) ( )( ) ( ) ( )( ) ) From which one obtains Definition of ( ̅ )( ) ( )( ) :- (g) For ( )( ) ( )( ) ( ̅ )( ) [ ( )( ) (( )( ) ( )( ) ) ] ( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ) )( ) (( )( ) ( )( ) ) ] , ( )( ) [ ( ( )( ) ( )( ) ( )( ) ( )( ) ( ) ( ) ( )( ) In the same manner , we get 516 [ ( )( )((̅ )( ) (̅ )( ) ) ] (̅ )( ) ( ̅ )( ) (̅ )( ) (̅ )( ) ( )( ) ( ) ( ) )( )((̅ )( ) (̅ )( ) ) ] , ( ̅ )( ) [ ( ( )( ) (̅ )( ) ( ̅ )( ) From which we deduce ( )( ) ( ) ( ) ( ̅ )( ) (h) If ( )( ) ( )( ) ( ̅ )( ) we find like in the previous case, 517 [ ( )( ) (( )( ) ( )( ) ) ] ( ) ( )( ) ( )( ) ( )( ) ( ) ( ) )( ) (( ( ) [ ( )( ) ( )( ) ) ] ( )( ) [ ( )( )((̅ )( ) (̅ )( ) ) ] (̅ )( ) ( ̅ )( ) (̅ )( ) [ ( )( )((̅ )( ) (̅ )( ) ) ] ( ̅ )( ) ( ̅ )( ) 518 (i) If ( )( ) ( ̅ )( ) ( )( ) , we obtain [ ( )( ) ((̅ )( ) (̅ )( )) ] (̅ )( ) ( ̅ )( ) (̅ )( ) ( )( ) ( ) ( ) [ ( )( ) ((̅ )( ) (̅ )( )) ] ( )( ) ( ̅ )( ) 519 And so with the notation of the first part of condition (c) , we have Definition of ( ) ( ) :- ( ) ( )( ) ( ) ( ) ( )( ) , ( ) ( ) ( ) In a completely analogous way, we obtain Definition of ( ) ( ) :- 356
  • 54. Advances in Physics Theories and Applications www.iiste.org ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Vol 7, 2012 ( ) ( )( ) ( ) ( ) ( )( ) , ( ) ( ) ( ) Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the theorem. Particular case : If ( )( ) ( )( ) ( )( ) ( )( ) and in this case ( )( ) ( ̅ )( ) if in addition ( ) ( ) ( ) ( ) ( ) then ( ) ( )( ) and as a consequence ( ) ( )( ) ( ) this also ( ) defines ( ) for the special case . Analogously if ( )( ) ( )( ) ( )( ) ( )( ) and then ( ) ( ) ( ) ( ) ( ̅ ) if in addition ( ) ( )( ) then ( ) ( )( ) ( ) This is an important consequence of the relation between ( ) and ( ̅ ) and definition of ( )( ) ( ) ( ) 520 we obtain 521 ( ) ( )( ) (( )( ) ( )( ) ( )( ) ( )) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( ) Definition of :- It follows ( ) (( )( ) ( ( ) ) ( )( ) ( ) ( )( ) ) (( )( ) ( ( ) ) ( )( ) ( ) ( )( ) ) From which one obtains Definition of ( ̅ )( ) ( )( ) :- (j) For ( )( ) ( )( ) ( ̅ )( ) [ ( )( ) (( )( ) ( )( ) ) ] ( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ) )( ) (( )( ) ( )( ) ) ] , ( )( ) [ ( ( )( ) ( )( ) ( )( ) ( )( ) ( ) ( ) ( )( ) In the same manner , we get 522 [ ( )( )((̅ )( ) (̅ )( ) ) ] 523 (̅ )( ) ( ̅ )( ) (̅ )( ) (̅ )( ) ( )( ) ( ) ( ) )( )((̅ )( ) (̅ )( ) ) ] , ( ̅ )( ) [ ( ( )( ) (̅ )( ) ( ̅ )( ) From which we deduce ( )( ) ( ) ( ) ( ̅ )( ) (k) If ( )( ) ( )( ) ( ̅ )( ) we find like in the previous case, 524 357
  • 55. Advances in Physics Theories and Applications www.iiste.org ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Vol 7, 2012 [ ( )( ) (( )( ) ( )( ) ) ] ( )( ) ( )( ) ( )( ) ( )( ) [ ( )( ) (( )( ) ( )( ) ) ] ( ) ( ) ( )( ) [ ( )( ) ((̅ )( ) (̅ )( )) ] (̅ )( ) ( ̅ )( ) (̅ )( ) [ ( )( ) ((̅ )( ) (̅ )( )) ] ( ̅ )( ) ( ̅ )( ) 525 (l) If ( )( ) ( ̅ )( ) ( )( ) , we obtain [ ( )( ) ((̅ )( ) (̅ )( )) ] (̅ )( ) ( ̅ )( ) (̅ )( ) ( )( ) ( ) ( ) [ ( )( ) ((̅ )( ) (̅ )( )) ] ( )( ) ( ̅ )( ) And so with the notation of the first part of condition (c) , we have Definition of ( ) ( ) :- ( ) ( )( ) ( ) ( ) ( )( ) , ( ) ( ) ( ) In a completely analogous way, we obtain Definition of ( ) ( ) :- ( ) ( )( ) ( ) ( ) ( )( ) , ( ) ( ) ( ) Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the theorem. Particular case : If ( )( ) ( )( ) ( )( ) ( )( ) and in this case ( )( ) ( ̅ )( ) if in addition ( ) ( ) ( ) ( ) ( ) then ( ) ( )( ) and as a consequence ( ) ( )( ) ( ) this also ( ) defines ( ) for the special case . Analogously if ( )( ) ( )( ) ( )( ) ( )( ) and then ( ) ( ) ( ) ( ) ( ̅ ) if in addition ( ) ( )( ) then ( ) ( )( ) ( ) This is an important consequence of the relation between ( ) and ( ̅ ) and definition of ( )( ) ( ) ( ) 526 527 527 We can prove the following 528 Theorem 3: If ( )( ) ( )( ) are independent on , and the conditions ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) , ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) as defined, then the system 529 If ( )( ) ( )( ) are independent on , and the conditions 530. 358
  • 56. Advances in Physics Theories and Applications www.iiste.org ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Vol 7, 2012 ( )( ) ( )( ) ( )( ) ( )( ) 531 ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) 532 ( )( ) ( )( ) ( )( ) ( )( ) , 533 ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) 534 ( )( ) ( )( ) as defined are satisfied , then the system If ( )( ) ( )( ) are independent on , and the conditions 535 ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) , ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) as defined are satisfied , then the system If ( )( ) ( )( ) are independent on , and the conditions 536 ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) , ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) as defined are satisfied , then the system If ( )( ) ( )( ) are independent on , and the conditions 537 ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) , ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) as defined satisfied , then the system If ( )( ) ( )( ) are independent on , and the conditions 538 ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) , 539 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 359
  • 57. Advances in Physics Theories and Applications www.iiste.org ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Vol 7, 2012 ( )( ) ( )( ) as defined are satisfied , then the system ( )( ) [( )( ) ( )( ) ( )] 540 ( )( ) [( )( ) ( )( ) ( )] 541 ( )( ) [( )( ) ( )( ) ( )] 542 ( )( ) ( )( ) ( )( ) ( ) 543 ( )( ) ( )( ) ( )( ) ( ) 544 ( )( ) ( )( ) ( )( ) ( ) 545 has a unique positive solution , which is an equilibrium solution for the system 546 ( )( ) [( )( ) ( )( ) ( )] 547 ( )( ) [( )( ) ( )( ) ( )] 548 ( )( ) [( )( ) ( )( ) ( )] 549 ( )( ) ( )( ) ( )( ) ( ) 550 ( )( ) ( )( ) ( )( ) ( ) 551 ( )( ) ( )( ) ( )( ) ( ) 552 has a unique positive solution , which is an equilibrium solution for 553 ( )( ) [( )( ) ( )( ) ( )] 554 ( )( ) [( )( ) ( )( ) ( )] 555 ( )( ) [( )( ) ( )( ) ( )] 556 ( )( ) ( )( ) ( )( ) ( ) 557 ( )( ) ( )( ) ( )( ) ( ) 558 ( )( ) ( )( ) ( )( ) ( ) 559 has a unique positive solution , which is an equilibrium solution 560 ( )( ) [( )( ) ( )( ) ( )] 561 ( )( ) [( )( ) ( )( ) ( )] 563 ( )( ) [( )( ) ( )( ) ( )] 564 ( )( ) ( )( ) ( )( ) (( )) 565 ( )( ) ( )( ) ( )( ) (( )) 566 ( )( ) ( )( ) ( )( ) (( )) 567 360
  • 58. Advances in Physics Theories and Applications www.iiste.org ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Vol 7, 2012 has a unique positive solution , which is an equilibrium solution for the system 568 ( )( ) [( )( ) ( )( ) ( )] 569 ( )( ) [( )( ) ( )( ) ( )] 570 ( )( ) [( )( ) ( )( ) ( )] 571 ( )( ) ( )( ) ( )( ) ( ) 572 ( )( ) ( )( ) ( )( ) ( ) 573 ( )( ) ( )( ) ( )( ) ( ) 574 has a unique positive solution , which is an equilibrium solution for the system 575 ( )( ) [( )( ) ( )( ) ( )] 576 ( )( ) [( )( ) ( )( ) ( )] 577 ( )( ) [( )( ) ( )( ) ( )] 578 ( )( ) ( )( ) ( )( ) ( ) 579 ( )( ) ( )( ) ( )( ) ( ) 580 ( )( ) ( )( ) ( )( ) ( ) 584 has a unique positive solution , which is an equilibrium solution for the system 582 583 584 (a) Indeed the first two equations have a nontrivial solution if ( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( )( )( ) ( ) 585 (a) Indeed the first two equations have a nontrivial solution if ( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( ) ( ) ( )( )( ) ( ) 586 361
  • 59. Advances in Physics Theories and Applications www.iiste.org ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Vol 7, 2012 587 (a) Indeed the first two equations have a nontrivial solution if ( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( ) ( ) ( )( )( ) ( ) 588 (a) Indeed the first two equations have a nontrivial solution if ( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( )( )( ) ( ) ( ) 589 (a) Indeed the first two equations have a nontrivial solution if ( ) ( ) ( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( )( )( )( ) 560 (a) Indeed the first two equations have a nontrivial solution if ( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( )( )( ) ( ) ( ) Definition and uniqueness of :- 561 After hypothesis ( ) ( ) and the functions ( )( ) ( ) being increasing, it follows that there exists a unique for which ( ) . With this value , we obtain from the three first equations ( )( ) ( )( ) , [( )( ) ( )( ) ( )] [( )( ) ( )( ) ( )] Definition and uniqueness of :- 562 After hypothesis ( ) ( ) and the functions ( )( ) ( ) being increasing, it follows that there exists a unique for which ( ) . With this value , we obtain from the three first equations ( )( ) ( )( ) 563 , [( )( ) ( )( ) ( )] [( )( ) ( )( ) ( )] Definition and uniqueness of :- 564 After hypothesis ( ) ( ) and the functions ( )( ) ( ) being increasing, it follows that there exists a unique for which ( ) . With this value , we obtain from the three first equations ( )( ) ( )( ) , [( )( ) ( )( ) ( )] [( )( ) ( )( ) ( )] 362
  • 60. Advances in Physics Theories and Applications www.iiste.org ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Vol 7, 2012 565 Definition and uniqueness of :- 566 After hypothesis ( ) ( ) and the functions ( )( ) ( ) being increasing, it follows that there exists a unique for which ( ) . With this value , we obtain from the three first equations ( )( ) ( )( ) , [( )( ) ( )( ) ( )] [( )( ) ( )( ) ( )] Definition and uniqueness of :- 567 After hypothesis ( ) ( ) and the functions ( )( ) ( ) being increasing, it follows that there exists a unique for which ( ) . With this value , we obtain from the three first equations ( )( ) ( )( ) , [( )( ) ( )( ) ( )] [( )( ) ( )( ) ( )] Definition and uniqueness of :- 568 After hypothesis ( ) ( ) and the functions ( )( ) ( ) being increasing, it follows that there exists a unique for which ( ) . With this value , we obtain from the three first equations ( )( ) ( )( ) , [( )( ) ( )( ) ( )] [( )( ) ( )( ) ( )] (e) By the same argument, the equations 92,93 admit solutions if 569 ( ) ( )( ) ( )( ) ( )( ) ( )( ) [( )( ) ( )( ) ( ) ( )( ) ( )( ) ( )] ( )( ) ( )( )( ) ( ) Where in ( ) must be replaced by their values from 96. It is easy to see that is a decreasing function in taking into account the hypothesis ( ) ( ) it follows that there exists a unique such that ( ) (f) By the same argument, the equations 92,93 admit solutions if 570 ( ) ( )( ) ( )( ) ( )( ) ( )( ) [( )( ) ( )( ) ( ) ( )( ) ( )( ) ( )] ( )( ) ( )( )( ) ( ) Where in ( )( ) must be replaced by their values from 96. It is easy to see that 571 is a decreasing function in taking into account the hypothesis ( ) ( ) it follows that there exists a unique such that (( ) ) (g) By the same argument, the concatenated equations admit solutions if 572 ( ) ( )( ) ( )( ) ( )( ) ( )( ) [( )( ) ( )( ) ( ) ( )( ) ( )( ) ( )] ( )( ) ( )( )( ) ( ) 363
  • 61. Advances in Physics Theories and Applications www.iiste.org ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Vol 7, 2012 Where in ( ) must be replaced by their values from 96. It is easy to see that is a decreasing function in taking into account the hypothesis ( ) ( ) it follows that there exists a unique such that (( ) ) 573 (h) By the same argument, the equations of modules admit solutions if 574 ( ) ( )( ) ( )( ) ( )( ) ( )( ) [( )( ) ( )( ) ( ) ( )( ) ( )( ) ( )] ( )( ) ( )( )( ) ( ) Where in ( )( ) must be replaced by their values from 96. It is easy to see that is a decreasing function in taking into account the hypothesis ( ) ( ) it follows that there exists a unique such that (( ) ) (i) By the same argument, the equations (modules) admit solutions if 575 ( ) ( )( ) ( )( ) ( )( ) ( )( ) [( )( ) ( )( ) ( ) ( )( ) ( )( ) ( )] ( )( ) ( )( )( ) ( ) Where in ( )( ) must be replaced by their values from 96. It is easy to see that is a decreasing function in taking into account the hypothesis ( ) ( ) it follows that there exists a unique such that (( ) ) (j) By the same argument, the equations (modules) admit solutions if 578 579 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 580 ( ) ( ) ( ) ( ) ( ) ( ) [( ) ( ) ( ) ( ) ( ) ( )] ( ) ( )( ) ( ) 581 Where in ( )( ) must be replaced by their values It is easy to see that is a decreasing function in taking into account the hypothesis ( ) ( ) it follows that there exists a unique such that ( ) Finally we obtain the unique solution of 89 to 94 582 ( ) , ( ) and ( )( ) ( )( ) , [( )( ) ( )( ) ( )] [( )( ) ( )( ) ( )] ( )( ) ( )( ) , [( )( ) ( )( ) ( )] [( )( ) ( )( )( )] Obviously, these values represent an equilibrium solution Finally we obtain the unique solution 583 (( )) , ( ) and 584 364
  • 62. Advances in Physics Theories and Applications www.iiste.org ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Vol 7, 2012 ( )( ) ( )( ) 585 , [( )( ) ( )( ) ( )] [( )( ) ( )( ) ( )] ( )( ) ( )( ) 586 , [( )( ) ( )( ) (( ) )] [( )( ) ( )( ) (( ) )] Obviously, these values represent an equilibrium solution 587 Finally we obtain the unique solution 588 (( )) , ( ) and ( )( ) ( )( ) , [( )( ) ( )( ) ( )] [( )( ) ( )( ) ( )] ( )( ) ( )( ) , [( )( ) ( )( ) ( )] [( )( ) ( )( ) ( )] Obviously, these values represent an equilibrium solution Finally we obtain the unique solution 589 ( ) , ( ) and ( )( ) ( )( ) , [( )( ) ( )( ) ( )] [( )( ) ( )( ) ( )] ( )( ) ( )( ) 590 , [( )( ) ( )( ) (( ) )] [( )( ) ( )( ) (( ) )] Obviously, these values represent an equilibrium solution Finally we obtain the unique solution 591 (( )) , ( ) and ( )( ) ( )( ) , [( )( ) ( )( ) ( )] [( )( ) ( )( ) ( )] ( )( ) ( )( ) 592 , [( )( ) ( )( ) (( ) )] [( )( ) ( )( ) (( ) )] Obviously, these values represent an equilibrium solution Finally we obtain the unique solution 593 (( )) , ( ) and ( )( ) ( )( ) , [( )( ) ( )( ) ( )] [( )( ) ( )( ) ( )] ( )( ) ( )( ) 594 , [( )( ) ( )( ) (( ) )] [( )( ) ( )( ) (( ) )] Obviously, these values represent an equilibrium solution ASYMPTOTIC STABILITY ANALYSIS 595 365
  • 63. Advances in Physics Theories and Applications www.iiste.org ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Vol 7, 2012 Theorem 4: If the conditions of the previous theorem are satisfied and if the functions ( )( ) ( )( ) Belong to ( ) ( ) then the above equilibrium point is asymptotically stable. Proof: Denote Definition of :- , 596 ( )( ) ( ) ( )( ) ( ) ( ) , ( ) Then taking into account equations (global) and neglecting the terms of power 2, we obtain 597 (( )( ) ( )( ) ) ( )( ) ( )( ) 598 (( )( ) ( )( ) ) ( )( ) ( )( ) 599 (( )( ) ( )( ) ) ( )( ) ( )( ) 600 (( )( ) ( )( ) ) ( )( ) ∑ ( ( )( ) ) 601 (( )( ) ( )( ) ) ( )( ) ∑ ( ( )( ) ) 602 (( )( ) ( )( ) ) ( )( ) ∑ ( ( )( ) ) 603 If the conditions of the previous theorem are satisfied and if the functions ( )( ) ( )( ) 604 Belong to ( ) ( ) then the above equilibrium point is asymptotically stable Denote 605 Definition of :- , 606 ( )( ) ( )( ) 607 ( ) ( )( ) , (( ) ) taking into account equations (global)and neglecting the terms of power 2, we obtain 608 (( )( ) ( )( ) ) ( )( ) ( )( ) 609 (( )( ) ( )( ) ) ( )( ) ( )( ) 610 (( )( ) ( )( ) ) ( )( ) ( )( ) 611 (( )( ) ( )( ) ) ( )( ) ∑ ( ( )( ) ) 612 (( )( ) ( )( ) ) ( )( ) ∑ ( ( )( ) ) 613 (( )( ) ( )( ) ) ( )( ) ∑ ( ( )( ) ) 614 366
  • 64. Advances in Physics Theories and Applications www.iiste.org ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Vol 7, 2012 If the conditions of the previous theorem are satisfied and if the functions ( )( ) ( )( ) 615 Belong to ( ) ( ) then the above equilibrium point is asymptotically stabl Denote Definition of :- , ( )( ) ( )( ) ( ) ( )( ) , (( ) ) 616 Then taking into account equations (global) and neglecting the terms of power 2, we obtain 617 (( )( ) ( )( ) ) ( )( ) ( )( ) 618 (( )( ) ( )( ) ) ( )( ) ( )( ) 619 (( )( ) ( )( ) ) ( )( ) ( )( ) 6120 (( )( ) ( )( ) ) ( )( ) ∑ ( ( )( ) ) 621 (( )( ) ( )( ) ) ( )( ) ∑ ( ( )( ) ) 622 (( )( ) ( )( ) ) ( )( ) ∑ ( ( )( ) ) 623 If the conditions of the previous theorem are satisfied and if the functions ( )( ) ( )( ) 624 Belong to ( ) ( ) then the above equilibrium point is asymptotically stabl Denote Definition of :- 625 , ( )( ) ( )( ) ( ) ( )( ) , (( ) ) Then taking into account equations (global) and neglecting the terms of power 2, we obtain 626 (( )( ) ( )( ) ) ( )( ) ( )( ) 627 (( )( ) ( )( ) ) ( )( ) ( )( ) 628 (( )( ) ( )( ) ) ( )( ) ( )( ) 629 (( )( ) ( )( ) ) ( )( ) ∑ ( ( )( ) ) 630 367
  • 65. Advances in Physics Theories and Applications www.iiste.org ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Vol 7, 2012 (( )( ) ( )( ) ) ( )( ) ∑ ( ( )( ) ) 631 (( )( ) ( )( ) ) ( )( ) ∑ ( ( )( ) ) 632 633 If the conditions of the previous theorem are satisfied and if the functions ( )( ) ( )( ) Belong to ( ) ( ) then the above equilibrium point is asymptotically stable Denote Definition of :- 634 , ( )( ) ( )( ) ( ) ( )( ) , (( ) ) Then taking into account equations (global) and neglecting the terms of power 2, we obtain 635 (( )( ) ( )( ) ) ( )( ) ( )( ) 636 (( )( ) ( )( ) ) ( )( ) ( )( ) 637 (( )( ) ( )( ) ) ( )( ) ( )( ) 638 (( )( ) ( )( ) ) ( )( ) ∑ ( ( )( ) ) 639 (( )( ) ( )( ) ) ( )( ) ∑ ( ( )( ) ) 640 (( )( ) ( )( ) ) ( )( ) ∑ ( ( )( ) ) 641 If the conditions of the previous theorem are satisfied and if the functions ( )( ) ( )( ) 642 Belong to ( ) ( ) then the above equilibrium point is asymptotically stable Denote Definition of :- 643 , ( )( ) ( )( ) ( ) ( )( ) , (( ) ) Then taking into account equations(global) and neglecting the terms of power 2, we obtain 644 (( )( ) ( )( ) ) ( )( ) ( )( ) 645 (( )( ) ( )( ) ) ( )( ) ( )( ) 646 368
  • 66. Advances in Physics Theories and Applications www.iiste.org ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Vol 7, 2012 (( )( ) ( )( ) ) ( )( ) ( )( ) 647 (( )( ) ( )( ) ) ( )( ) ∑ ( ( )( ) ) 648 (( )( ) ( )( ) ) ( )( ) ∑ ( ( )( ) ) 649 (( )( ) ( )( ) ) ( )( ) ∑ ( ( )( ) ) 650 651 The characteristic equation of this system is 652 (( )( ) ( )( ) ( )( ) ) (( )( ) ( )( ) ( )( ) ) [((( )( ) ( )( ) ( )( ) )( )( ) ( )( ) ( )( ) )] 653 ((( )( ) ( )( ) ( )( ) ) ( )( ) ( )( ) ( )( ) ) ((( )( ) ( )( ) ( )( ) )( )( ) ( )( ) ( )( ) ) ((( )( ) ( )( ) ( )( ) ) ( )( ) ( )( ) ( )( ) ) ((( )( ) ) (( )( ) ( )( ) ( )( ) ( )( ) ) ( ) ( ) ) ((( )( ) ) (( )( ) ( )( ) ( )( ) ( )( ) ) ( ) ( ) ) ((( )( ) ) (( )( ) ( )( ) ( )( ) ( )( ) ) ( ) ( ) ) ( )( ) (( )( ) ( )( ) ( )( ) ) (( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ) ((( )( ) ( )( ) ( )( ) ) ( )( ) ( )( ) ( )( ) ) + (( )( ) ( )( ) ( )( ) ) (( )( ) ( )( ) ( )( ) ) [((( )( ) ( )( ) ( )( ) )( )( ) ( )( ) ( )( ) )] ((( )( ) ( )( ) ( )( ) ) ( )( ) ( )( ) ( )( ) ) ((( )( ) ( )( ) ( )( ) )( )( ) ( )( ) ( )( ) ) ((( )( ) ( )( ) ( )( ) ) ( )( ) ( )( ) ( )( ) ) ((( )( ) ) (( )( ) ( )( ) ( )( ) ( )( ) ) ( ) ( ) ) 369
  • 67. Advances in Physics Theories and Applications www.iiste.org ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Vol 7, 2012 ((( )( ) ) (( )( ) ( )( ) ( )( ) ( )( ) ) ( )( ) ) ((( )( ) ) (( )( ) ( )( ) ( )( ) ( )( ) ) ( ) ( ) ) ( )( ) (( )( ) ( )( ) ( )( ) ) (( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ) ((( )( ) ( )( ) ( )( ) ) ( )( ) ( )( ) ( )( ) ) + (( )( ) ( )( ) ( )( ) ) (( )( ) ( )( ) ( )( ) ) [((( )( ) ( )( ) ( )( ) )( )( ) ( )( ) ( )( ) )] ((( )( ) ( )( ) ( )( ) ) ( )( ) ( )( ) ( )( ) ) ((( )( ) ( )( ) ( )( ) )( )( ) ( )( ) ( )( ) ) ((( )( ) ( )( ) ( )( ) ) ( )( ) ( )( ) ( )( ) ) ((( )( ) ) (( )( ) ( )( ) ( )( ) ( )( ) ) ( )( ) ) ((( )( ) ) (( )( ) ( )( ) ( )( ) ( )( ) ) ( )( ) ) ((( )( ) ) (( )( ) ( )( ) ( )( ) ( )( ) ) ( )( ) ) ( )( ) (( )( ) ( )( ) ( )( ) ) (( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ) ((( )( ) ( )( ) ( )( ) ) ( )( ) ( )( ) ( )( ) ) + (( )( ) ( )( ) ( )( ) ) (( )( ) ( )( ) ( )( ) ) [((( )( ) ( )( ) ( )( ) )( )( ) ( )( ) ( )( ) )] ((( )( ) ( )( ) ( )( ) ) ( )( ) ( )( ) ( )( ) ) ((( )( ) ( )( ) ( )( ) )( )( ) ( )( ) ( )( ) ) ((( )( ) ( )( ) ( )( ) ) ( )( ) ( )( ) ( )( ) ) ((( )( ) ) (( )( ) ( )( ) ( )( ) ( )( ) ) ( )( ) ) 370
  • 68. Advances in Physics Theories and Applications www.iiste.org ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Vol 7, 2012 ((( )( ) ) (( )( ) ( )( ) ( )( ) ( )( ) ) ( ) ( ) ) ((( )( ) ) (( )( ) ( )( ) ( )( ) ( )( ) ) ( )( ) ) ( )( ) (( )( ) ( )( ) ( )( ) ) (( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ) ((( )( ) ( )( ) ( )( ) ) ( )( ) ( )( ) ( )( ) ) + (( )( ) ( )( ) ( )( ) ) (( )( ) ( )( ) ( )( ) ) [((( )( ) ( )( ) ( )( ) )( )( ) ( )( ) ( )( ) )] ((( )( ) ( )( ) ( )( ) ) ( )( ) ( )( ) ( )( ) ) ((( )( ) ( )( ) ( )( ) )( )( ) ( )( ) ( )( ) ) ((( )( ) ( )( ) ( )( ) ) ( )( ) ( )( ) ( )( ) ) ((( )( ) ) (( )( ) ( )( ) ( )( ) ( )( ) ) ( )( ) ) ((( )( ) ) (( )( ) ( )( ) ( )( ) ( )( ) ) ( )( ) ) ((( )( ) ) (( )( ) ( )( ) ( )( ) ( )( ) ) ( )( ) ) ( )( ) (( )( ) ( )( ) ( )( ) ) (( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ) ((( )( ) ( )( ) ( )( ) ) ( )( ) ( )( ) ( )( ) ) + (( )( ) ( )( ) ( )( ) ) (( )( ) ( )( ) ( )( ) ) [((( )( ) ( )( ) ( )( ) )( )( ) ( )( ) ( )( ) )] ((( )( ) ( )( ) ( )( ) ) ( )( ) ( )( ) ( )( ) ) ((( )( ) ( )( ) ( )( ) )( )( ) ( )( ) ( )( ) ) ((( )( ) ( )( ) ( )( ) ) ( )( ) ( )( ) ( )( ) ) ((( )( ) ) (( )( ) ( )( ) ( )( ) ( )( ) ) ( )( ) ) 371
  • 69. Advances in Physics Theories and Applications www.iiste.org ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Vol 7, 2012 ((( )( ) ) (( )( ) ( )( ) ( )( ) ( )( ) ) ( ) ( ) ) ((( )( ) ) (( )( ) ( )( ) ( )( ) ( )( ) ) ( )( ) ) ( )( ) (( )( ) ( )( ) ( )( ) ) (( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ) ((( )( ) ( )( ) ( )( ) ) ( )( ) ( )( ) ( )( ) ) And as one sees, all the coefficients are positive. It follows that all the roots have negative real part, and this proves the theorem. IV. Acknowledgments: ======================================================================= The introduction is a collection of information from various articles, Books, News Paper reports, Home Pages Of authors, Journal Reviews, Nature ‘s L:etters,Article Abstracts, Research papers, Abstracts Of Research Papers, Stanford Encyclopedia, Web Pages, Ask a Physicist Column, Deliberations with Professors, the internet including Wikipedia. We acknowledge all authors who have contributed to the same. In the eventuality of the fact that there has been any act of omission on the part of the authors, we regret with great deal of compunction, contrition, regret, trepidiation and remorse. As Newton said, it is only because erudite and eminent people allowed one to piggy ride on their backs; probably an attempt has been made to look slightly further. Once again, it is stated that the references are only illustrative and not comprehensive V. REFERENCES ================================================================ ========= 1. Dr K N Prasanna Kumar, Prof B S Kiranagi, Prof C S Bagewadi - MEASUREMENT DISTURBS EXPLANATION OF QUANTUM MECHANICAL STATES-A HIDDEN VARIABLE THEORY - published at: "International Journal of Scientific and Research Publications, Volume 2, Issue 5, May 2012 Edition". 2. DR K N PRASANNA KUMAR, PROF B S KIRANAGI and PROF C S BAGEWADI - CLASSIC 2 FLAVOUR COLOR SUPERCONDUCTIVITY AND ORDINARY NUCLEAR MATTER-A NEW PARADIGM STATEMENT - published at: "International Journal of Scientific and Research Publications, Volume 2, Issue 5, May 2012 Edition". 3. A HAIMOVICI: “On the growth of a two species ecological system divided on age groups”. Tensor, Vol 37 (1982),Commemoration volume dedicated to Professor Akitsugu Kawaguchi on his 80th birthday 4. FRTJOF CAPRA: “The web of life” Flamingo, Harper Collins See "Dissipative structures” pages 172-188 372
  • 70. Advances in Physics Theories and Applications www.iiste.org ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Vol 7, 2012 5. HEYLIGHEN F. (2001): "The Science of Self-organization and Adaptivity", in L. D. Kiel, (ed) . Knowledge Management, Organizational Intelligence and Learning, and Complexity, in: The Encyclopedia of Life Support Systems ((EOLSS), (Eolss Publishers, Oxford) [http://www.eolss.net 6. MATSUI, T, H. Masunaga, S. M. Kreidenweis, R. A. Pielke Sr., W.-K. Tao, M. Chin, and Y. J Kaufman (2006), “Satellite-based assessment of marine low cloud variability associated with aerosol, atmospheric stability, and the diurnal cycle”, J. Geophys. Res., 111, D17204, doi:10.1029/2005JD006097 7. STEVENS, B, G. Feingold, W.R. Cotton and R.L. Walko, “Elements of the microphysical structure of numerically simulated nonprecipitating stratocumulus” J. Atmos. Sci., 53, 980-1006 8. FEINGOLD, G, Koren, I; Wang, HL; Xue, HW; Brewer, WA (2010), “Precipitation-generated oscillations in open cellular cloud fields” Nature, 466 (7308) 849-852, doi: 10.1038/nature09314, Published 12-Aug 2010 373
  • 71. Advances in Physics Theories and Applications www.iiste.org ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Vol 7, 2012 (9)^ a b c Einstein, A. (1905), "Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig?", Annalen der Physik 18: 639 Bibcode 1905AnP...323..639E,DOI:10.1002/andp.19053231314. See also the English translation. (10)^ a b Paul Allen Tipler, Ralph A. Llewellyn (2003-01), Modern Physics, W. H. Freeman and Company, pp. 87–88, ISBN 0-7167-4345-0 (11)^ a b Rainville, S. et al. World Year of Physics: A direct test of E=mc2. Nature 438, 1096-1097 (22 December 2005) | doi: 10.1038/4381096a; Published online 21 December 2005. (12)^ In F. Fernflores. The Equivalence of Mass and Energy. Stanford Encyclopedia of Philosophy (13)^ Note that the relativistic mass, in contrast to the rest mass m0, is not a relativistic invariant, and that the velocity is not a Minkowski four-vector, in contrast to the quantity , where is the differential of the proper time. However, the energy-momentum four-vector is a genuine Minkowski four-vector, and the intrinsic origin of the square-root in the definition of the relativistic mass is the distinction between dτ and dt. (14)^ Relativity DeMystified, D. McMahon, Mc Graw Hill (USA), 2006, ISBN 0-07-145545-0 (15)^ Dynamics and Relativity, J.R. Forshaw, A.G. Smith, Wiley, 2009, ISBN 978-0-470-01460-8 (16)^ Hans, H. S.; Puri, S. P. (2003). Mechanics (2 ed.). Tata McGraw-Hill. p. 433. ISBN 0-07- 047360-9., Chapter 12 page 433 (17)^ E. F. Taylor and J. A. Wheeler, Spacetime Physics, W.H. Freeman and Co., NY. 1992.ISBN 0-7167-2327-1, see pp. 248-9 for discussion of mass remaining constant after detonation of nuclear bombs, until heat is allowed to escape. (18)^ Mould, Richard A. (2002). Basic relativity (2 ed.). Springer. p. 126. ISBN 0-387-95210- 1., Chapter 5 page 126 (19)^ Chow, Tail L. (2006). Introduction to electromagnetic theory: a modern perspective. Jones & Bartlett Learning. p. 392. ISBN 0-7637-3827-1., Chapter 10 page 392 (20)^ [2] Cockcroft-Walton experiment (21)^ a b c Conversions used: 1956 International (Steam) Table (IT) values where one calorie 374
  • 72. Advances in Physics Theories and Applications www.iiste.org ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Vol 7, 2012 ≡ 4.1868 J and one BTU ≡ 1055.05585262 J. Weapons designers' conversion value of one gram TNT ≡ 1000 calories used. (22)^ Assuming the dam is generating at its peak capacity of 6,809 MW. (23)^ Assuming a 90/10 alloy of Pt/Ir by weight, a Cp of 25.9 for Pt and 25.1 for Ir, a Pt-dominated average Cp of 25.8, 5.134 moles of metal, and 132 J.K-1 for the prototype. A variation of ± picograms is of course, much smaller than the actual uncertainty in the mass of the international 1.5 prototype, which are ± micrograms. 2 (24)^ [3] Article on Earth rotation energy. Divided by c^2. (25)^ a b Earth's gravitational self-energy is 4.6 × 10-10 that of Earth's total mass, or 2.7 trillion metric tons. Citation: The Apache Point Observatory Lunar Laser-Ranging Operation (APOLLO), T. W. Murphy, Jr. et al. University of Washington, Dept. of Physics (132 kB PDF, here.). (26)^ There is usually more than one possible way to define a field energy, because any field can be made to couple to gravity in many different ways. By general scaling arguments, the correct answer at everyday distances, which are long compared to the quantum gravity scale, should be minimal coupling, which means that no powers of the curvature tensor appear. Any non-minimal couplings, along with other higher order terms, are presumably only determined by a theory of quantum gravity, and within string theory, they only start to contribute to experiments at the string scale. (27)^ G. 't Hooft, "Computation of the quantum effects due to a four-dimensional pseudoparticle", Physical Review D14:3432–3450 (1976). (28)^ A. Belavin, A. M. Polyakov, A. Schwarz, Yu. Tyupkin, "Pseudoparticle Solutions to Yang Mills Equations", Physics Letters 59B:85 (1975). (29)^ F. Klinkhammer, N. Manton, "A Saddle Point Solution in the Weinberg Salam Theory", Physical Review D 30:2212. (30)^ Rubakov V. A. "Monopole Catalysis of Proton Decay", Reports on Progress in Physics 51:189–241 (1988). (31)^ S.W. Hawking "Black Holes Explosions?" Nature 248:30 (1974). (32)^ Einstein, A. (1905), "Zur Elektrodynamik bewegter Körper." (PDF), Annalen der Physik 17: 891–921, Bibcode 1905AnP...322...891E,DOI:10.1002/andp.19053221004. English translation. 375
  • 73. Advances in Physics Theories and Applications www.iiste.org ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Vol 7, 2012 (33)^ See e.g. Lev B.Okun, The concept of Mass, Physics Today 42 (6), June 1969, p. 31– 36, http://www.physicstoday.org/vol-42/iss-6/vol42no6p31_36.pdf (34)^ Max Jammer (1999), Concepts of mass in contemporary physics and philosophy, Princeton University Press, p. 51, ISBN 0-691-01017-X (35)^ Eriksen, Erik; Vøyenli, Kjell (1976), "The classical and relativistic concepts of mass",Foundations of Physics (Springer) 6: 115– 124, Bibcode 1976FoPh....6..115E,DOI:10.1007/BF00708670 (36)^ a b Jannsen, M., Mecklenburg, M. (2007), From classical to relativistic mechanics: Electromagnetic models of the electron., in V. F. Hendricks, et al., , Interactions: Mathematics, Physics and Philosophy (Dordrecht: Springer): 65–134 (37)^ a b Whittaker, E.T. (1951–1953), 2. Edition: A History of the theories of aether and electricity, vol. 1: The classical theories / vol. 2: The modern theories 1900–1926, London: Nelson (38)^ Miller, Arthur I. (1981), Albert Einstein's special theory of relativity. Emergence (1905) and early interpretation (1905–1911), Reading: Addison–Wesley, ISBN 0-201-04679-2 (39)^ a b Darrigol, O. (2005), "The Genesis of the theory of relativity." (PDF), Séminaire Poincaré1: 1–22 (40)^ Philip Ball (Aug 23, 2011). "Did Einstein discover E = mc2?” Physics World. (41)^ Ives, Herbert E. (1952), "Derivation of the mass-energy relation", Journal of the Optical Society of America 42 (8): 540–543, DOI:10.1364/JOSA.42.000540 (42)^ Jammer, Max (1961/1997). Concepts of Mass in Classical and Modern Physics. New York: Dover. ISBN 0-486-29998-8. (43)^ Stachel, John; Torretti, Roberto (1982), "Einstein's first derivation of mass-energy equivalence", American Journal of Physics 50 (8): 760– 763, Bibcode1982AmJPh..50..760S, DOI:10.1119/1.12764 (44)^ Ohanian, Hans (2008), "Did Einstein prove E=mc2?", Studies In History and Philosophy of Science Part B 40 (2): 167–173, arXiv:0805.1400,DOI:10.1016/j.shpsb.2009.03.002 376
  • 74. Advances in Physics Theories and Applications www.iiste.org ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Vol 7, 2012 (45)^ Hecht, Eugene (2011), "How Einstein confirmed E0=mc2", American Journal of Physics 79 (6): 591–600, Bibcode 2011AmJPh..79..591H, DOI:10.1119/1.3549223 (46)^ Rohrlich, Fritz (1990), "An elementary derivation of E=mc2", American Journal of Physics 58 (4): 348–349, Bibcode 1990AmJPh..58..348R, DOI:10.1119/1.16168 (47) (1996). Lise Meitner: A Life in Physics. California Studies in the History of Science. 13. Berkeley: University of California Press. pp. 236–237. ISBN 0-520-20860- (48)^ UIBK.ac.at (49)^ J. J. L. Morton; et al. (2008). "Solid-state quantum memory using the 31P nuclear spin". Nature 455 (7216): 1085–1088. Bibcode 2008Natur.455.1085M.DOI:10.1038/nature07295. (50)^ S. Weisner (1983). "Conjugate coding". Association of Computing Machinery, Special Interest Group in Algorithms and Computation Theory 15: 78–88. (51)^ A. Zelinger, Dance of the Photons: From Einstein to Quantum Teleportation, Farrar, Straus & Giroux, New York, 2010, pp. 189, 192, ISBN 0374239665 (52)^ B. Schumacher (1995). "Quantum coding". Physical Review A 51 (4): 2738– 2747. Bibcode 1995PhRvA..51.2738S. DOI:10.1103/PhysRevA.51.2738. (53)^ a b Straumann, N (2000). "On Pauli's invention of non-abelian Kaluza-Klein Theory in 1953". ArXiv: gr-qc/0012054 [gr-qc]. (54)^ See Abraham Pais' account of this period as well as L. Susskind's "Superstrings, Physics World on the first non-abelian gauge theory" where Susskind wrote that Yang–Mills was "rediscovered" only because Pauli had chosen not to publish. (55)^ Reifler, N (2007). "Conditions for exact equivalence of Kaluza-Klein and Yang-Mills theories". ArXiv: gr-qc/0707.3790 [gr-qc]. (56)^ Yang, C. N.; Mills, R. (1954). "Conservation of Isotopic Spin and Isotopic Gauge Invariance". Physical Review 96 (1): 191– 377
  • 75. Advances in Physics Theories and Applications www.iiste.org ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Vol 7, 2012 195. Bibcode 1954PhRv...96...191Y.DOI:10.1103/PhysRev.96.191. (57)^ Caprini, I.; Colangelo, G.; Leutwyler, H. (2006). "Mass and width of the lowest resonance in QCD". Physical Review Letters 96 (13): 132001. ArXiv: hep- ph/0512364.Bibcode 2006PhRvL..96m2001C. DOI:10.1103/PhysRevLett.96.132001. (58)^ Yndurain, F. J.; Garcia-Martin, R.; Pelaez, J. R. (2007). "Experimental status of the ππ isoscalar S wave at low energy: f0 (600) pole and scattering length". Physical Review D76 (7): 074034. ArXiv:hep- ph/0701025. Bibcode 2007PhRvD..76g4034G.DOI:10.1103/PhysRevD.76.074034. (59)^ Novikov, V. A.; Shifman, M. A.; A. I. Vainshtein, A. I.; Zakharov, V. I. (1983). "Exact Gell- Mann-Low Function of Supersymmetric Yang-Mills Theories From Instanton Calculus”. Nuclear 229 (2): 381–393. Bibcode 1983NuPhB.229..381N.DOI:10.1016/0550-3213(83)90338-3. (60)^ Ryttov, T.; Sannino, F. (2008). "Super symmetry Inspired QCD Beta Function". Physical Review D 78 (6): 065001. Bibcode 2008PhRvD..78f5001R.DOI:10.1103/PhysRevD.78.065001 (61)^ Bogolubsky, I. L.; Ilgenfritz, E.-M.; A. I. Müller-Preussker, M.; Sternbeck, A. (2009). "Lattice gluodynamics computation of Landau-gauge Green's functions in the deep infrared". Physics Letters B 676 (1-3): 69–73. Bibcode 2009PhLB..676...69B.DOI:10.1016/j.physletb.2009.04.076. 378
  • 76. Advances in Physics Theories and Applications www.iiste.org ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Vol 7, 2012 First Author: 1Mr. K. N.Prasanna Kumar has three doctorates one each in Mathematics, Economics, Political Science. Thesis was based on Mathematical Modeling. He was recently awarded D.litt. for his work on ‘Mathematical Models in Political Science’--- Department of studies in Mathematics, Kuvempu University, Shimoga, Karnataka, India Corresponding Author:drknpkumar@gmail.com Second Author: 2Prof. B.S Kiranagi is the Former Chairman of the Department of Studies in Mathematics, Manasa Gangotri and present Professor Emeritus of UGC in the Department. Professor Kiranagi has guided over 25 students and he has received many encomiums and laurels for his contribution to Co homology Groups and Mathematical Sciences. Known for his prolific writing, and one of the senior most Professors of the country, he has over 150 publications to his credit. A prolific writer and a prodigious thinker, he has to his credit several books on Lie Groups, Co Homology Groups, and other mathematical application topics, and excellent publication history.-- UGC Emeritus Professor (Department of studies in Mathematics), Manasagangotri, University of Mysore, Karnataka, India Third Author: 3Prof. C.S. Bagewadi is the present Chairman of Department of Mathematics and Department of Studies in Computer Science and has guided over 25 students. He has published articles in both national and international journals. Professor Bagewadi specializes in Differential Geometry and its wide-ranging ramifications. He has to his credit more than 159 research papers. Several Books on Differential Geometry, Differential Equations are coauthored by him--- Chairman, Department of studies in Mathematics and Computer science, Jnanasahyadri Kuvempu University, Shankarghatta, Shimoga district, Karnataka, India ============================================================================== 379