SlideShare a Scribd company logo
QUATERNIONIC RIGID MEROMORPHIC COCYCLES
COMPUTATIONS WITH ARITHMETIC GROUPS
CMS WINTER MEETING
December 3, 2020
Marc Masdeu
Universitat Autònoma de Barcelona
Hilbert’s 12th
Problem
Let K{Q be a number field.
Kronecker’s Jugendtraum
Describe all abelian extensions of K via “modular functions”.
Easiest case: K “ Q.
Theorem (Kronecker–Weber (1853, 1886))
Qab “
Ť
ně1 Q
´
e
2πi
n
¯
“ A transcendental function ( e2πiz )
yields algebraic values
at rational arguments!
Marc Masdeu Quaternionic rigid meromorphic cocycles 1 / 11
K{Q imaginary quadratic: CM theory
The theory of complex multiplication is not
only the most beautiful part of mathematics
but also of the whole of science.
Marc Masdeu Quaternionic rigid meromorphic cocycles 1 / 11
CM theory
Now, suppose K “ Qp
?
Dq with D ă 0.
Replace C with H “ tz P C | =pzq ą 0u.
SL2pZq acts on H via
` a b
c d
˘
z “ az`b
cz`d .
Consider now SL2pZq-invariant meromorphic functions:
SL2pZqzH Ñ C
Fact: every such function is a rational function in
jpzq “
1
q
` 744 ` 196884q ` 21493760q2
` ¨ ¨ ¨ , q “ e2πiz
.
Theorem (Kronecker, Weber, Takagi, Hasse)
If τ satisfies a quadratic polynomial in Zrxs, then jpτq P Qpτqab.
Moreover, we have:
Kab
“
ď
τPK
ď
ně1
K pjpτq, ℘pτ{nqq .
Marc Masdeu Quaternionic rigid meromorphic cocycles 2 / 11
K{Q real quadratic
From now on: K “ Qp
?
Dq real quadratic (i.e. D ą 0).
Problem: The upper-half plane does not contain real points!
In 1999, Darmon proposed to look at a p-adic analogue of H.
Fix a prime p which is inert in K.
So Kp is a quadratic extension of Qp.
Write Hp “ Kp r Qp.
Set Γ “ SL2pZr1{psq, which acts on Hp via
` a b
c d
˘
τ “ aτ`b
cτ`d .
Induces action on O “ OpHpq “ rigid analytic functions on Hp.
And on M “ MpHpq “ FracpOq “ meromorphic functions on Hp.
New Problem: E nonconstant Γ-invariant meromorphic functions!
Marc Masdeu Quaternionic rigid meromorphic cocycles 3 / 11
Darmon–Vonk classes
Henri Darmon Jan Vonk
Marc Masdeu Quaternionic rigid meromorphic cocycles 3 / 11
Darmon–Vonk classes
Fix an embedding K ãÑ R.
For γ P Γ and w P K, set:
δγpwq “
$
’
&
’
%
1 σpwq ă γ8 ă w,
´1 σpwq ą γ8 ą w,
0 else.
Lemma
There is a cohomology class Φˆ
τ P H1pΓ, Mˆ{Kˆ
p q such that
div Φˆ
τ pγq “
ÿ
w
δγpwq ¨ pwq.
Obstruction to lifting Φˆ
τ to H1pΓ, Mˆq is an element of H2pΓ, Kˆ
p q.
Modulo 12-torsion, H2
pΓ, Kˆ
p q – H1
pΓ0ppq, Kˆ
p q.
§ Related to modular forms of weight 2, level Γ0ppq.
Marc Masdeu Quaternionic rigid meromorphic cocycles 4 / 11
Darmon–Vonk classes (II)
Proposition (Darmon–Vonk)
Let p be monstruous prime, i.e. p ď 31 or p P t41, 47, 59, 71u.
Then
`
Φˆ
τ {Φˆ
pτ
˘12
lifts to a cocycle Jˆ
τ P H1
pΓ, Mˆq.
Given τ1 P HRM
p “ tz P Hp | Qpzq real quadraticu, have:
Γτ1 “ StabΓpτ1
q “ xγτ1 y.
Assume that τ1 R Γτ.
Since γτ1 τ1 “ τ1, the following quantity is well-defined
Jppτ, τ1
q “ Jˆ
τ pγτ1 qpτ1
q P Kˆ
p .
Conjecture (Darmon–Vonk)
If τ1 R Γτ, the quantity Jppτ, τ1q belongs to QpτqabQpτ1qab.
Marc Masdeu Quaternionic rigid meromorphic cocycles 5 / 11
Quaternionic generalisation
Joint work with Xavier Guitart (UB) and Xavier Xarles (UAB).
Xavier Guitart Xavier Xarles
We generalized the construction of Darmon–Vonk to quaternion algebras
over totally real fields, avoiding the S-arithmetic group Γ.
Marc Masdeu Quaternionic rigid meromorphic cocycles 5 / 11
Quaternionic generalisation: homology
B indefinite quaternion algebra split at p.
Choose splittings ι8 : B ãÑ M2pRq and ιp : B ãÑ M2pQpq.
Choose R Ă B maximal order, and set Γ0p1q “ Rˆ
1 (norm-one units).
Notation: ∆pτq “ Div Γ0p1qτ, and ∆0pτq “ Div0
Γ0p1qτ.
If ψ: O ãÑ R is an optimal embedding (O Ă K an order),
γψ “ ψpuq, xuy “ Oˆ
1 {tors.
If γψτψ “ τψ, then θ̄ψ “ rγψ bτψs P H1pΓ0p1q, ∆pτψqq.
If H1pΓ0p1q, Zq is torsion, then θψ P H1pΓ0p1q, ∆0pτψqq.
§ θψ considered by M.Greenberg ; quaternionic Darmon points.
§ If H1pΓ0p1q, Zq non-torsion, may use Hecke operators to lift θ̄ψ.
Marc Masdeu Quaternionic rigid meromorphic cocycles 6 / 11
Quaternionic generalisation: cohomology
Fix x P H. ι8pγψq “
` a b
c d
˘
P GL2pRq has two fixed points on P1pRq:
τ˘
8 “
a ´ d ˘
a
pd ´ aq2 ` 4bc
2c
.
ιppγψq fixes two points τ˘ P Hp.
Given γ P Γ0p1q, and w˘ “ γwτ˘
8 P Γ0p1qτ˘
8, set δγpwq:
x
γx
w+
w−
C(x, γx)
C(w−
, w+
)
δγ(w) = 1
Fact: The set tw` P Γ0p1qτ`
8 | δγpwq ‰ 0u is finite.
; γ ÞÑ
ř
w δγpwq ¨ pwq P Z1pΓ0p1q, ∆pτqq.
; rϕψs P H1pΓ0p1q, ∆pτqq (independent of the choice of x).
If H1pΓ0p1q, Zq is torsion, can lift to H1pΓ0p1q, ∆0pτqq.
Marc Masdeu Quaternionic rigid meromorphic cocycles 7 / 11
Pairings and overconvergent cohomology
rϕψ1 s P H1
pΓ0p1q, ∆0pτψ1 qq, θψ2 P H1pΓ0p1q, ∆0pτψ2 qq
Obvious pairing: cross-ratio (Weil pairing):
pQ ´ P, Q1 ´ P1q ÞÑ pQ1´QqpP1´Pq
pQ1´PqpP1´Qq P pQpψ1qQpψ2qqˆ.
More subtle: construct Φ P H1pΓ0ppq, Kpxtyq.
H1 pΓ0ppq, Kpxtyq`
–

  // H1pΓ0ppq, Kpxtyq
1´Up
// // H1pΓ0ppq, Kpxtyqnilp
M2pΓ0ppqq Φ
P rTr ϕψ1 s P H1pΓ0ppq, Kpptq{Kˆ
p q
dlogp
OO
Essentially, Φ “
ř
ně0 Un
p pTr ϕψ1 q .
Have natural pairing
Kpxty ˆ ∆0pτψ2 q Ñ Kˆ
p , pf, Q ´ Pq ÞÑ expp
şQ
P fpzqdz.
Theorem (Guitart–M.–Xarles)
xΦ, cores θψ2 y ˆ xϕψ1 , θψ2 yWeil
¨
“ Jppψ1, ψ2q.
Marc Masdeu Quaternionic rigid meromorphic cocycles 8 / 11
Examples
The fun of the subject
seems to me to be in
the examples.
Marc Masdeu Quaternionic rigid meromorphic cocycles 8 / 11
Large genus example
Let p “ 37 (not monstruous). Note that dim H1pΓ0ppq, Qq “ 5.
Consider K1 “ Qp
?
57q, K2 “ Qp
?
61q.
We get
J37pψ1, ψ2q “ 17662185365697700344487705388816
`9911534933329042169401982379602
˜
1 `
?
57
2
¸
` Op3720
q
We check that J37pψ1, ψ2q is the image of an element
α P M “ Qp
?
´3,
?
´19,
?
57q such that ι37pαq » J37pψ1, ψ2q.
Ideal generated by α is supported over primes of norms 11 and 17,
as predicted by an analogue of the Gross–Zagier factorisation
theorem (they could only be 11, 17, 23, 31, 37, 67, 79).
Marc Masdeu Quaternionic rigid meromorphic cocycles 9 / 11
Quaternionic example
B “
´
6,´1
Q
¯
, discriminant 6.
R “ x1, i, 1 ` i ` j, i ` ky.
OK1 “ Zp1`
?
53
2 q and ψ1p1`
?
53
2 q “ 1{2 ´ 3{2i ´ 1{2j.
§ ; γψ1
“ 51{2 ` 21{2i ` 7{2j.
OK2 “ Zp
?
23q and ψ2p
?
23q “ 2i ` j.
§ ; γψ2
“ 1151 ` 480i ` 240j.
We get
Jppψ1, ψ2q “ 50971141466526826096289662898361868496463698468806135561183036939036
`9674029354607221223815165708202713711819464972332940921086896674730
1 `
?
53
2
`Op597
q
The period Jppψ1, ψ2q satisfies, modulo roots of unity, the polynomial
fpxq “ 41177889x4
`7867012x3
`33058502x2
`7867012x`41177889.
One has L “ K1K2pfq is the compositum of the narrow class fields
of K1 and K2, as predicted by the conjecture.
Marc Masdeu Quaternionic rigid meromorphic cocycles 10 / 11
Exchange of primes (global object?)
Idea: Compare Jp with discpBq “ q ¨ r vs Jq with discpBq “ p ¨ r.
K1 “ Qp
?
53q (h`
K1
“ 1), K2 “ Qp
?
23q (h`
K2
“ 2).
Calculate J3p53, 23q P Q32 using B of discriminant 10.
§ 2263329212681251489468 ` 6644010739654744556634 1`
?
53
2
` Op346
q
Calculate J5p53, 23q P Q52 using B of discriminant 6.
§ 76500603105371600283097752216081 ` 71876326310173029976331143056540 1`
?
53
2
` Op547
q
Compositum M of the narrow class fields is generated by a root of
x8
´ 4x7
` 84x6
´ 238x5
` 1869x4
´ 3346x3
` 7260x2
´ 5626x ` 3497.
There is ι3 : M ãÑ Q32 and ι5 : M ãÑ Q52 .
We check that there is α P M and units u1, u2 in Qp
?
53,
?
23q Ă M
such that:
§ ι3pαu1q “ J3p53, 23q and ι5pαu2q “ J5p53, 23q.
Ideal generated by α is supported over primes of norms 2 and 31.
Marc Masdeu Quaternionic rigid meromorphic cocycles 11 / 11
Merci !
http://www.mat.uab.cat/˜masdeu/
Marc Masdeu Quaternionic rigid meromorphic cocycles 11 / 11
Example over real quadratic
F “ Qp
?
5q, and let w “ 1`
?
5
2 .
B{F of discriminant 2OF given by B “
´
´w,´2
F
¯
.
R “ x1, i, 2w ` 2i ` j, 2w ` 2 ` 2wi ` ky maximal order.
p “ p´3w ` 2q, of norm 11.
K1 “ Fp
?
1 ´ 2wq, and ψ1 : OK1 ãÑ R given by
?
1 ´ 2w ÞÑ pw ´ 2qi ´ j.
§ ; γψ1 “ w ´ 2 ` p2w ´ 3qi ` pw ´ 1qj.
K2 “ Fp
?
9 ´ 14wq, and ψ2 : OK2 ãÑ R, given by
?
9 ´ 14w ÞÑ p´3w ` 2qi ` pw ´ 2qk.
§ ; γψ2 “ ´55w ` 88 ` p´50w ` 81qi ` p34w ´ 55qk.
Obtain
Jppψ1, ψ2q “ 2650833861085011569846208847449970229624664608755690791954838 ` Op11
59
q,
Jppψ1, ψ2q satisfies the polynomial
25420x4
´ 227820x3
` 2200011x2
´ 27566220x ` 372174220.
This generates a quadratic unramified extension of K1K2.
Marc Masdeu Quaternionic rigid meromorphic cocycles 1 / 4
Tables for D “ 6, p “ 5
Plus table
8 12 53 77 92 93
8 - - 3, 5 2, 3 5
12 - 5 ? 2 -
53 - 5 ? 3, 23, 31 2, 5, 41
77 3, 5 ? ? ? ?
92 2, 3 2 3, 23, 31 ? ?
93 5 - 2, 5, 41 ? ?
Minus table
8 12 53 77 92 93
8 H - 3, 5 2, 3 2, 5
12 H 2,5 ? H H
53 - 2, 5 3, 5 2, 3, 23, 31 2, 5, 41
77 3, 5 ? 3, 5 ? ?
92 2, 3 H 2, 3, 23, 31 ? ?
93 2, 5 H 2, 5, 41 ? ?
Marc Masdeu Quaternionic rigid meromorphic cocycles 2 / 4
Tables for D “ 10, p “ 3
Plus table
5 8 53 77 92
5 - - 3 2, 3
8 - - 3, 5 2, 3
53 - - 3, 5, 31 2, 3, 23, 31
77 3 3, 5 3, 5, 31 ?
92 2, 3 2, 3 2, 3, 23, 31 ?
Minus table
5 8 53 77 92
5 - - 3 3
8 - - 3, 5 2, 3
53 - - ? 3, 23, 31
77 3 3, 5 ? ?
92 3 2, 3 3, 23, 31 ?
Marc Masdeu Quaternionic rigid meromorphic cocycles 3 / 4
Tables for D “ 22, p “ 3
Plus table
8 29 44 77
8 - - 2
29 - 3 2
44 - 3 2, 11
77 2 2 2, 11
Minus table
8 29 44 77
8 - H ?
29 - ? ?
44 H ? ?
77 ? ? ?
Marc Masdeu Quaternionic rigid meromorphic cocycles 4 / 4

More Related Content

PDF
Numerical experiments with plectic Stark-Heegner points
PDF
Towards a theory of p-adic singular moduli attached to global fields
PDF
Computing p-adic periods of abelian surfaces from automorphic forms
PDF
Non-archimedean construction of elliptic curves and abelian surfaces
PDF
p-adic integration and elliptic curves over number fields
PDF
Lie Convexity for Super-Standard Arrow
PDF
p-adic periods of abelian varieties attached to GL2-automorphic forms
PDF
N. Bilic - "Hamiltonian Method in the Braneworld" 3/3
Numerical experiments with plectic Stark-Heegner points
Towards a theory of p-adic singular moduli attached to global fields
Computing p-adic periods of abelian surfaces from automorphic forms
Non-archimedean construction of elliptic curves and abelian surfaces
p-adic integration and elliptic curves over number fields
Lie Convexity for Super-Standard Arrow
p-adic periods of abelian varieties attached to GL2-automorphic forms
N. Bilic - "Hamiltonian Method in the Braneworld" 3/3

What's hot (19)

PDF
D. Vulcanov - On Cosmologies with non-Minimally Coupled Scalar Field and the ...
PDF
N. Bilic - "Hamiltonian Method in the Braneworld" 1/3
PPTX
Metric space
PDF
Goldberg-Coxeter construction for 3- or 4-valent plane maps
PDF
Exact Quasi-Classical Asymptoticbeyond Maslov Canonical Operator and Quantum ...
PDF
Talk given at the Twelfth Workshop on Non-Perurbative Quantum Chromodynamics ...
PDF
ALL-SCALE cosmological perturbations and SCREENING OF GRAVITY in inhomogeneou...
PDF
Complexity of exact solutions of many body systems: nonequilibrium steady sta...
PDF
M. Walker, S. Duplij. Cho-Duan-Ge decomposition of QCD in the constraintless ...
PDF
Zero. Probabilystic Foundation of Theoretyical Physics
PDF
Matrix Transformations on Paranormed Sequence Spaces Related To De La Vallée-...
PDF
LPS talk notes
PDF
Born reciprocity
PDF
Functional analysis in mechanics
PDF
Functional analysis in mechanics 2e
PPTX
Tsp is NP-Complete
PPT
Unit III Knowledge Representation in AI K.Sundar,AP/CSE,VEC
PDF
Testing for mixtures by seeking components
PDF
QMC: Transition Workshop - Probabilistic Integrators for Deterministic Differ...
D. Vulcanov - On Cosmologies with non-Minimally Coupled Scalar Field and the ...
N. Bilic - "Hamiltonian Method in the Braneworld" 1/3
Metric space
Goldberg-Coxeter construction for 3- or 4-valent plane maps
Exact Quasi-Classical Asymptoticbeyond Maslov Canonical Operator and Quantum ...
Talk given at the Twelfth Workshop on Non-Perurbative Quantum Chromodynamics ...
ALL-SCALE cosmological perturbations and SCREENING OF GRAVITY in inhomogeneou...
Complexity of exact solutions of many body systems: nonequilibrium steady sta...
M. Walker, S. Duplij. Cho-Duan-Ge decomposition of QCD in the constraintless ...
Zero. Probabilystic Foundation of Theoretyical Physics
Matrix Transformations on Paranormed Sequence Spaces Related To De La Vallée-...
LPS talk notes
Born reciprocity
Functional analysis in mechanics
Functional analysis in mechanics 2e
Tsp is NP-Complete
Unit III Knowledge Representation in AI K.Sundar,AP/CSE,VEC
Testing for mixtures by seeking components
QMC: Transition Workshop - Probabilistic Integrators for Deterministic Differ...
Ad

Similar to Quaternionic rigid meromorphic cocycles (20)

PDF
Quaternionic rigid meromorphic cocycles
PDF
Darmon points for fields of mixed signature
PDF
Quaternionic Modular Symbols in Sage
PDF
Analytic construction of elliptic curves and rational points
PDF
Non-archimedean construction of elliptic curves and rational points
PDF
PDF
Talk at Seminari de Teoria de Nombres de Barcelona 2017
PDF
Numerical Evidence for Darmon Points
PDF
Commensurabilities Among Lattices In Pu 1n Am132 Volume 132 Pierre Deligne G ...
PDF
Darmon Points: an Overview
PDF
Complex Hessian Equations on Some Compact Kähler Manifolds (2012)
PDF
On The Number of Representations of a Positive Integer By Certain Binary Quad...
PDF
Independence Complexes
PDF
Rigid Local Systems Am139 Volume 139 Nicholas M Katz
PDF
Introduction to abstract algebra
PDF
Darmon Points: an overview
PDF
Number Theory for Security
PDF
A Unifying theory for blockchain and AI
PDF
annals-v181-n1-p06-p
Quaternionic rigid meromorphic cocycles
Darmon points for fields of mixed signature
Quaternionic Modular Symbols in Sage
Analytic construction of elliptic curves and rational points
Non-archimedean construction of elliptic curves and rational points
Talk at Seminari de Teoria de Nombres de Barcelona 2017
Numerical Evidence for Darmon Points
Commensurabilities Among Lattices In Pu 1n Am132 Volume 132 Pierre Deligne G ...
Darmon Points: an Overview
Complex Hessian Equations on Some Compact Kähler Manifolds (2012)
On The Number of Representations of a Positive Integer By Certain Binary Quad...
Independence Complexes
Rigid Local Systems Am139 Volume 139 Nicholas M Katz
Introduction to abstract algebra
Darmon Points: an overview
Number Theory for Security
A Unifying theory for blockchain and AI
annals-v181-n1-p06-p
Ad

More from mmasdeu (15)

PDF
Rational points on curves -- BIMR 2025 --
PDF
Efficient calculation of theta functions attached to p-adic Schottky groups
PDF
Las funciones L en teoría de números
PDF
Sabem resoldre equacions de tercer grau?
PDF
Variations on the method of Coleman-Chabauty
PDF
(International) Academic Career
PDF
Rational points on elliptic curves
PDF
Distributing Sage / Python Code, The Right Way
PDF
Analytic construction of points on modular elliptic curves
PDF
Analytic construction of points on modular elliptic curves
PDF
Darmon Points in mixed signature
PDF
Darmon Points for fields of mixed signature
PDF
A Unified Perspective for Darmon Points
PDF
Darmon Points for fields of mixed signature
PDF
Darmon Points for fields of mixed signature
Rational points on curves -- BIMR 2025 --
Efficient calculation of theta functions attached to p-adic Schottky groups
Las funciones L en teoría de números
Sabem resoldre equacions de tercer grau?
Variations on the method of Coleman-Chabauty
(International) Academic Career
Rational points on elliptic curves
Distributing Sage / Python Code, The Right Way
Analytic construction of points on modular elliptic curves
Analytic construction of points on modular elliptic curves
Darmon Points in mixed signature
Darmon Points for fields of mixed signature
A Unified Perspective for Darmon Points
Darmon Points for fields of mixed signature
Darmon Points for fields of mixed signature

Recently uploaded (20)

PPTX
SCIENCE 4 Q2W5 PPT.pptx Lesson About Plnts and animals and their habitat
PPTX
Microbes in human welfare class 12 .pptx
PPTX
INTRODUCTION TO PAEDIATRICS AND PAEDIATRIC HISTORY TAKING-1.pptx
PDF
GROUP 2 ORIGINAL PPT. pdf Hhfiwhwifhww0ojuwoadwsfjofjwsofjw
PPT
6.1 High Risk New Born. Padetric health ppt
PDF
lecture 2026 of Sjogren's syndrome l .pdf
PPTX
Understanding the Circulatory System……..
PPT
Animal tissues, epithelial, muscle, connective, nervous tissue
PPTX
Welcome-grrewfefweg-students-of-2024.pptx
PDF
BET Eukaryotic signal Transduction BET Eukaryotic signal Transduction.pdf
PPTX
Seminar Hypertension and Kidney diseases.pptx
PPT
1. INTRODUCTION TO EPIDEMIOLOGY.pptx for community medicine
PPTX
Hypertension_Training_materials_English_2024[1] (1).pptx
PDF
Warm, water-depleted rocky exoplanets with surfaceionic liquids: A proposed c...
PDF
Science Form five needed shit SCIENEce so
PPTX
Introcution to Microbes Burton's Biology for the Health
PPT
Mutation in dna of bacteria and repairss
PPTX
Fluid dynamics vivavoce presentation of prakash
PDF
CHAPTER 3 Cell Structures and Their Functions Lecture Outline.pdf
PPTX
GREEN FIELDS SCHOOL PPT ON HOLIDAY HOMEWORK
SCIENCE 4 Q2W5 PPT.pptx Lesson About Plnts and animals and their habitat
Microbes in human welfare class 12 .pptx
INTRODUCTION TO PAEDIATRICS AND PAEDIATRIC HISTORY TAKING-1.pptx
GROUP 2 ORIGINAL PPT. pdf Hhfiwhwifhww0ojuwoadwsfjofjwsofjw
6.1 High Risk New Born. Padetric health ppt
lecture 2026 of Sjogren's syndrome l .pdf
Understanding the Circulatory System……..
Animal tissues, epithelial, muscle, connective, nervous tissue
Welcome-grrewfefweg-students-of-2024.pptx
BET Eukaryotic signal Transduction BET Eukaryotic signal Transduction.pdf
Seminar Hypertension and Kidney diseases.pptx
1. INTRODUCTION TO EPIDEMIOLOGY.pptx for community medicine
Hypertension_Training_materials_English_2024[1] (1).pptx
Warm, water-depleted rocky exoplanets with surfaceionic liquids: A proposed c...
Science Form five needed shit SCIENEce so
Introcution to Microbes Burton's Biology for the Health
Mutation in dna of bacteria and repairss
Fluid dynamics vivavoce presentation of prakash
CHAPTER 3 Cell Structures and Their Functions Lecture Outline.pdf
GREEN FIELDS SCHOOL PPT ON HOLIDAY HOMEWORK

Quaternionic rigid meromorphic cocycles

  • 1. QUATERNIONIC RIGID MEROMORPHIC COCYCLES COMPUTATIONS WITH ARITHMETIC GROUPS CMS WINTER MEETING December 3, 2020 Marc Masdeu Universitat Autònoma de Barcelona
  • 2. Hilbert’s 12th Problem Let K{Q be a number field. Kronecker’s Jugendtraum Describe all abelian extensions of K via “modular functions”. Easiest case: K “ Q. Theorem (Kronecker–Weber (1853, 1886)) Qab “ Ť ně1 Q ´ e 2πi n ¯ “ A transcendental function ( e2πiz ) yields algebraic values at rational arguments! Marc Masdeu Quaternionic rigid meromorphic cocycles 1 / 11
  • 3. K{Q imaginary quadratic: CM theory The theory of complex multiplication is not only the most beautiful part of mathematics but also of the whole of science. Marc Masdeu Quaternionic rigid meromorphic cocycles 1 / 11
  • 4. CM theory Now, suppose K “ Qp ? Dq with D ă 0. Replace C with H “ tz P C | =pzq ą 0u. SL2pZq acts on H via ` a b c d ˘ z “ az`b cz`d . Consider now SL2pZq-invariant meromorphic functions: SL2pZqzH Ñ C Fact: every such function is a rational function in jpzq “ 1 q ` 744 ` 196884q ` 21493760q2 ` ¨ ¨ ¨ , q “ e2πiz . Theorem (Kronecker, Weber, Takagi, Hasse) If τ satisfies a quadratic polynomial in Zrxs, then jpτq P Qpτqab. Moreover, we have: Kab “ ď τPK ď ně1 K pjpτq, ℘pτ{nqq . Marc Masdeu Quaternionic rigid meromorphic cocycles 2 / 11
  • 5. K{Q real quadratic From now on: K “ Qp ? Dq real quadratic (i.e. D ą 0). Problem: The upper-half plane does not contain real points! In 1999, Darmon proposed to look at a p-adic analogue of H. Fix a prime p which is inert in K. So Kp is a quadratic extension of Qp. Write Hp “ Kp r Qp. Set Γ “ SL2pZr1{psq, which acts on Hp via ` a b c d ˘ τ “ aτ`b cτ`d . Induces action on O “ OpHpq “ rigid analytic functions on Hp. And on M “ MpHpq “ FracpOq “ meromorphic functions on Hp. New Problem: E nonconstant Γ-invariant meromorphic functions! Marc Masdeu Quaternionic rigid meromorphic cocycles 3 / 11
  • 6. Darmon–Vonk classes Henri Darmon Jan Vonk Marc Masdeu Quaternionic rigid meromorphic cocycles 3 / 11
  • 7. Darmon–Vonk classes Fix an embedding K ãÑ R. For γ P Γ and w P K, set: δγpwq “ $ ’ & ’ % 1 σpwq ă γ8 ă w, ´1 σpwq ą γ8 ą w, 0 else. Lemma There is a cohomology class Φˆ τ P H1pΓ, Mˆ{Kˆ p q such that div Φˆ τ pγq “ ÿ w δγpwq ¨ pwq. Obstruction to lifting Φˆ τ to H1pΓ, Mˆq is an element of H2pΓ, Kˆ p q. Modulo 12-torsion, H2 pΓ, Kˆ p q – H1 pΓ0ppq, Kˆ p q. § Related to modular forms of weight 2, level Γ0ppq. Marc Masdeu Quaternionic rigid meromorphic cocycles 4 / 11
  • 8. Darmon–Vonk classes (II) Proposition (Darmon–Vonk) Let p be monstruous prime, i.e. p ď 31 or p P t41, 47, 59, 71u. Then ` Φˆ τ {Φˆ pτ ˘12 lifts to a cocycle Jˆ τ P H1 pΓ, Mˆq. Given τ1 P HRM p “ tz P Hp | Qpzq real quadraticu, have: Γτ1 “ StabΓpτ1 q “ xγτ1 y. Assume that τ1 R Γτ. Since γτ1 τ1 “ τ1, the following quantity is well-defined Jppτ, τ1 q “ Jˆ τ pγτ1 qpτ1 q P Kˆ p . Conjecture (Darmon–Vonk) If τ1 R Γτ, the quantity Jppτ, τ1q belongs to QpτqabQpτ1qab. Marc Masdeu Quaternionic rigid meromorphic cocycles 5 / 11
  • 9. Quaternionic generalisation Joint work with Xavier Guitart (UB) and Xavier Xarles (UAB). Xavier Guitart Xavier Xarles We generalized the construction of Darmon–Vonk to quaternion algebras over totally real fields, avoiding the S-arithmetic group Γ. Marc Masdeu Quaternionic rigid meromorphic cocycles 5 / 11
  • 10. Quaternionic generalisation: homology B indefinite quaternion algebra split at p. Choose splittings ι8 : B ãÑ M2pRq and ιp : B ãÑ M2pQpq. Choose R Ă B maximal order, and set Γ0p1q “ Rˆ 1 (norm-one units). Notation: ∆pτq “ Div Γ0p1qτ, and ∆0pτq “ Div0 Γ0p1qτ. If ψ: O ãÑ R is an optimal embedding (O Ă K an order), γψ “ ψpuq, xuy “ Oˆ 1 {tors. If γψτψ “ τψ, then θ̄ψ “ rγψ bτψs P H1pΓ0p1q, ∆pτψqq. If H1pΓ0p1q, Zq is torsion, then θψ P H1pΓ0p1q, ∆0pτψqq. § θψ considered by M.Greenberg ; quaternionic Darmon points. § If H1pΓ0p1q, Zq non-torsion, may use Hecke operators to lift θ̄ψ. Marc Masdeu Quaternionic rigid meromorphic cocycles 6 / 11
  • 11. Quaternionic generalisation: cohomology Fix x P H. ι8pγψq “ ` a b c d ˘ P GL2pRq has two fixed points on P1pRq: τ˘ 8 “ a ´ d ˘ a pd ´ aq2 ` 4bc 2c . ιppγψq fixes two points τ˘ P Hp. Given γ P Γ0p1q, and w˘ “ γwτ˘ 8 P Γ0p1qτ˘ 8, set δγpwq: x γx w+ w− C(x, γx) C(w− , w+ ) δγ(w) = 1 Fact: The set tw` P Γ0p1qτ` 8 | δγpwq ‰ 0u is finite. ; γ ÞÑ ř w δγpwq ¨ pwq P Z1pΓ0p1q, ∆pτqq. ; rϕψs P H1pΓ0p1q, ∆pτqq (independent of the choice of x). If H1pΓ0p1q, Zq is torsion, can lift to H1pΓ0p1q, ∆0pτqq. Marc Masdeu Quaternionic rigid meromorphic cocycles 7 / 11
  • 12. Pairings and overconvergent cohomology rϕψ1 s P H1 pΓ0p1q, ∆0pτψ1 qq, θψ2 P H1pΓ0p1q, ∆0pτψ2 qq Obvious pairing: cross-ratio (Weil pairing): pQ ´ P, Q1 ´ P1q ÞÑ pQ1´QqpP1´Pq pQ1´PqpP1´Qq P pQpψ1qQpψ2qqˆ. More subtle: construct Φ P H1pΓ0ppq, Kpxtyq. H1 pΓ0ppq, Kpxtyq` –  // H1pΓ0ppq, Kpxtyq 1´Up // // H1pΓ0ppq, Kpxtyqnilp M2pΓ0ppqq Φ P rTr ϕψ1 s P H1pΓ0ppq, Kpptq{Kˆ p q dlogp OO Essentially, Φ “ ř ně0 Un p pTr ϕψ1 q . Have natural pairing Kpxty ˆ ∆0pτψ2 q Ñ Kˆ p , pf, Q ´ Pq ÞÑ expp şQ P fpzqdz. Theorem (Guitart–M.–Xarles) xΦ, cores θψ2 y ˆ xϕψ1 , θψ2 yWeil ¨ “ Jppψ1, ψ2q. Marc Masdeu Quaternionic rigid meromorphic cocycles 8 / 11
  • 13. Examples The fun of the subject seems to me to be in the examples. Marc Masdeu Quaternionic rigid meromorphic cocycles 8 / 11
  • 14. Large genus example Let p “ 37 (not monstruous). Note that dim H1pΓ0ppq, Qq “ 5. Consider K1 “ Qp ? 57q, K2 “ Qp ? 61q. We get J37pψ1, ψ2q “ 17662185365697700344487705388816 `9911534933329042169401982379602 ˜ 1 ` ? 57 2 ¸ ` Op3720 q We check that J37pψ1, ψ2q is the image of an element α P M “ Qp ? ´3, ? ´19, ? 57q such that ι37pαq » J37pψ1, ψ2q. Ideal generated by α is supported over primes of norms 11 and 17, as predicted by an analogue of the Gross–Zagier factorisation theorem (they could only be 11, 17, 23, 31, 37, 67, 79). Marc Masdeu Quaternionic rigid meromorphic cocycles 9 / 11
  • 15. Quaternionic example B “ ´ 6,´1 Q ¯ , discriminant 6. R “ x1, i, 1 ` i ` j, i ` ky. OK1 “ Zp1` ? 53 2 q and ψ1p1` ? 53 2 q “ 1{2 ´ 3{2i ´ 1{2j. § ; γψ1 “ 51{2 ` 21{2i ` 7{2j. OK2 “ Zp ? 23q and ψ2p ? 23q “ 2i ` j. § ; γψ2 “ 1151 ` 480i ` 240j. We get Jppψ1, ψ2q “ 50971141466526826096289662898361868496463698468806135561183036939036 `9674029354607221223815165708202713711819464972332940921086896674730 1 ` ? 53 2 `Op597 q The period Jppψ1, ψ2q satisfies, modulo roots of unity, the polynomial fpxq “ 41177889x4 `7867012x3 `33058502x2 `7867012x`41177889. One has L “ K1K2pfq is the compositum of the narrow class fields of K1 and K2, as predicted by the conjecture. Marc Masdeu Quaternionic rigid meromorphic cocycles 10 / 11
  • 16. Exchange of primes (global object?) Idea: Compare Jp with discpBq “ q ¨ r vs Jq with discpBq “ p ¨ r. K1 “ Qp ? 53q (h` K1 “ 1), K2 “ Qp ? 23q (h` K2 “ 2). Calculate J3p53, 23q P Q32 using B of discriminant 10. § 2263329212681251489468 ` 6644010739654744556634 1` ? 53 2 ` Op346 q Calculate J5p53, 23q P Q52 using B of discriminant 6. § 76500603105371600283097752216081 ` 71876326310173029976331143056540 1` ? 53 2 ` Op547 q Compositum M of the narrow class fields is generated by a root of x8 ´ 4x7 ` 84x6 ´ 238x5 ` 1869x4 ´ 3346x3 ` 7260x2 ´ 5626x ` 3497. There is ι3 : M ãÑ Q32 and ι5 : M ãÑ Q52 . We check that there is α P M and units u1, u2 in Qp ? 53, ? 23q Ă M such that: § ι3pαu1q “ J3p53, 23q and ι5pαu2q “ J5p53, 23q. Ideal generated by α is supported over primes of norms 2 and 31. Marc Masdeu Quaternionic rigid meromorphic cocycles 11 / 11
  • 17. Merci ! http://www.mat.uab.cat/˜masdeu/ Marc Masdeu Quaternionic rigid meromorphic cocycles 11 / 11
  • 18. Example over real quadratic F “ Qp ? 5q, and let w “ 1` ? 5 2 . B{F of discriminant 2OF given by B “ ´ ´w,´2 F ¯ . R “ x1, i, 2w ` 2i ` j, 2w ` 2 ` 2wi ` ky maximal order. p “ p´3w ` 2q, of norm 11. K1 “ Fp ? 1 ´ 2wq, and ψ1 : OK1 ãÑ R given by ? 1 ´ 2w ÞÑ pw ´ 2qi ´ j. § ; γψ1 “ w ´ 2 ` p2w ´ 3qi ` pw ´ 1qj. K2 “ Fp ? 9 ´ 14wq, and ψ2 : OK2 ãÑ R, given by ? 9 ´ 14w ÞÑ p´3w ` 2qi ` pw ´ 2qk. § ; γψ2 “ ´55w ` 88 ` p´50w ` 81qi ` p34w ´ 55qk. Obtain Jppψ1, ψ2q “ 2650833861085011569846208847449970229624664608755690791954838 ` Op11 59 q, Jppψ1, ψ2q satisfies the polynomial 25420x4 ´ 227820x3 ` 2200011x2 ´ 27566220x ` 372174220. This generates a quadratic unramified extension of K1K2. Marc Masdeu Quaternionic rigid meromorphic cocycles 1 / 4
  • 19. Tables for D “ 6, p “ 5 Plus table 8 12 53 77 92 93 8 - - 3, 5 2, 3 5 12 - 5 ? 2 - 53 - 5 ? 3, 23, 31 2, 5, 41 77 3, 5 ? ? ? ? 92 2, 3 2 3, 23, 31 ? ? 93 5 - 2, 5, 41 ? ? Minus table 8 12 53 77 92 93 8 H - 3, 5 2, 3 2, 5 12 H 2,5 ? H H 53 - 2, 5 3, 5 2, 3, 23, 31 2, 5, 41 77 3, 5 ? 3, 5 ? ? 92 2, 3 H 2, 3, 23, 31 ? ? 93 2, 5 H 2, 5, 41 ? ? Marc Masdeu Quaternionic rigid meromorphic cocycles 2 / 4
  • 20. Tables for D “ 10, p “ 3 Plus table 5 8 53 77 92 5 - - 3 2, 3 8 - - 3, 5 2, 3 53 - - 3, 5, 31 2, 3, 23, 31 77 3 3, 5 3, 5, 31 ? 92 2, 3 2, 3 2, 3, 23, 31 ? Minus table 5 8 53 77 92 5 - - 3 3 8 - - 3, 5 2, 3 53 - - ? 3, 23, 31 77 3 3, 5 ? ? 92 3 2, 3 3, 23, 31 ? Marc Masdeu Quaternionic rigid meromorphic cocycles 3 / 4
  • 21. Tables for D “ 22, p “ 3 Plus table 8 29 44 77 8 - - 2 29 - 3 2 44 - 3 2, 11 77 2 2 2, 11 Minus table 8 29 44 77 8 - H ? 29 - ? ? 44 H ? ? 77 ? ? ? Marc Masdeu Quaternionic rigid meromorphic cocycles 4 / 4