SlideShare a Scribd company logo
Numerical Evidence for Darmon Points
M`etodes Efectius en Geometria Algebraica
Xavier Guitart 1 Marc Masdeu 2
1Universitat Polit`ecnica de Catalunya
2Columbia University
June 4, 2013
Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 1 / 28
The Problem
Problem
Given an algebraic curve C defined over Q, find points on
C, defined on prescribed algebraic extensions K of Q.
Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 2 / 28
Mordell-Weil
Louis Mordell Andr´e Weil
Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 3 / 28
Basic Setup
E = elliptic curve defined over Q, and K = Q(
√
dK).
If dK > 0 then K is called real quadratic, and
If dK < 0 then K is called imaginary quadratic.
Theorem (Mordell–Weil)
E(K) = (torsion) ⊕ Zrkalg(E,K)
The algebraic rank rkalg(E, K) is hard to determine.
Attach to E and K an L-function L(E/K, s) as follows.
Let N = conductor(E).
If p is a rational prime, ap(E) = 1 + p − #E(Fp).
If v is a closed point of Spec OK, |v| = size of the residue field κ(v).
L(E/K, s) =
v|N
1 − a|v||v|−s −1
×
v N
1 − a|v||v|−s
+ |v|1−2s −1
Modularity (Wiles et al) =⇒ analytic continuation of L(E/K, s) to C.
Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 4 / 28
Birch and Swinnerton-Dyer
Brian Birch
Peter Swinnerton-Dyer
Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 5 / 28
Birch and Swinnerton-Dyer
Conjecture (BSD, rough version)
ords=1 L(E/K, s) = rkalg(E, K).
The left-hand side is the analytic rank, rkan(E, K).
Consequence
rkan(E, K) ≥ 1 =⇒ ∃PK ∈ E(K) of infinite order.
Fact
Define S(K, N) = { | N : inert in K}.Then rkan(E, K) is ≥ 1 when:
1 K is imaginary quadratic and #S(K, N) is even, or
2 K is real quadratic and #S(K, N) is odd.
Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 6 / 28
Heegner vs Darmon (points)
Kurt Heegner Henri Darmon
Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 7 / 28
Heegner vs Darmon (points)
Fact
The analytic rank rkan(E, K) is ≥ 1 when:
1 K is imaginary quadratic and #S(K, N) is even, or
2 K is real quadratic and #S(K, N) is odd.
In case 1 , one can construct Heegner points on E(K).
Attached to elements τ ∈ K ∩ H.
Gross–Zagier formula =⇒ they have infinite order if rkan(E, K) = 1.
If S(K, N) = ∅, they can be obtained by C-analytic methods.
If S(K, N) = ∅, can use p-adic methods.
Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 8 / 28
Heegner vs Darmon (points)
Fact
The analytic rank rkan(E, K) is ≥ 1 when:
1 K is imaginary quadratic and #S(K, N) is even, or
2 K is real quadratic and #S(K, N) is odd.
In case 2 , Heegner points are not available.
Note that in this case, K ∩ H = ∅!
In 2001, Darmon gave a construction (a.k.a “Stark-Heegner”).
p-adic analytic =⇒ a priori they lie in E(Kp).
Proof of their algebraicity completely open so far.
Darmon’s construction restricted to S(K, N) = {p}.
Greenberg extended to S(K, N) of arbitrary odd size.
We call them Darmon points.
Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 9 / 28
Goals
In this talk we will:
1 Explain what Darmon Points are,
2 Explain how to calculate them, and
“The fun of the subject seems to me to be in the examples.
B. Gross, in a letter to B. Birch, 1982
”3 See some fun examples!
Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 10 / 28
Integration on the p-adic upper-half plane
Definition
The p-adic upper half plane is the rigid-analytic space
Hp = P1
(Cp)  P1
(Qp) ( = Cp  Qp ).
This is the p-adic analogue of H± = C  R.
Ω1
Hp
= space of rigid-analytic one-forms on Hp.
Coleman integral: allows to make sense of
τ2
τ1
ω, for τ1, τ2 ∈ Hp and ω ∈ Ω1
Hp
.
If the residues of ω are all integers, have a multiplicative refinement:
×
τ2
τ1
ω = lim
−→
U U∈U
tU − τ2
tU − τ1
µ(U)
where µ(U) = resA(U) ω.
Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 11 / 28
The p-adic upper half plane
×
τ2
τ1
ω = lim
−→
U U∈U
tU − τ2
tU − τ1
µ(U)
where µ(U) = resA(U) ω.
Bruhat-Tits tree of
GL2(Qp) with p = 2.
Hp having the
Bruhat-Tits as retract.
Annuli A(U) for U a
covering of size p−3.
tU is any point in
U ⊂ P1(Qp).
Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 12 / 28
Darmon points `a la Greenberg
Henri Darmon
Matthew Greenberg
Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 13 / 28
Darmon points `a la Greenberg
Assumption
1 K is real quadratic.
2 S(K, N) = { : | pD} has odd cardinality.
Write N = pDM, and B/Q = quaternion algebra of discriminant D.
Fix ιp : B → M2(Qp).
B×
→ GL2(Qp) acts on Hp by:
a b
c d τ =
aτ + b
cτ + d
.
R an Eichler order of level M (and such that ιp(R) is “nice”
ιp(R) ⊂ a b
c d ∈ M2(Zp) : vp(c) ≥ 1 .
).
Γ = R[1
p ]
×
1
(elements in R[1
p ] of reduced norm 1) → SL2(Qp).
If D = 1, then B = M2(Q) and Γ = a b
c d ∈ SL2(Z[1/p]) : M | c .
Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 14 / 28
Cohomology
Let Ω1
Hp,Z = rigid-analytic differentials having integral residues.
Can attach to E a unique (up to sign) class [ΦE] ∈ H1 Γ, Ω1
Hp,Z .
Uses Hecke action and Jacquet–Langlands correspondence.
Theorem (M. Greenberg)
There exists a unique class [ΦE] ∈ H1(Γ, Ω1
Hp,Z) satisfying:
1 T [ΦE] = a [ΦE] for all primes pDM;
2 U [ΦE] = a [ΦE] for all | DM;
3 Wp[ΦE] = ap[ΦE] (Atkin-Lehner involution);
4 W∞[ΦE] = [ΦE] (Involution at ∞).
Hecke action can be made explicit
Suitable for computation.
Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 15 / 28
Homology
Start with an embedding ψ: K → B.
ψ induces an action of K× on Hp via ιp.
1 Let τψ ∈ Hp be the unique fixed point of K×
2 Set γψ = ψ( 2
), where O×
K = {±1} × .
ψ ; ˜Θψ = [γψ ⊗τψ] ∈ H1(Γ, Div Hp).
Key exact sequence:
H1(Γ, Div0
Hp) // H1(Γ, Div Hp)
deg
// H1(Γ, Z)
Θψ
 ? // ˜Θψ
 // torsion
Challenge: pull
a multiple of
˜Θψ back to Θψ ∈ H1(Γ, Div0
Hp).
Requires algorithms adapted to the nature of Γ.
Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 16 / 28
Conjecture
Recall our data
1 Θψ = [ γ γ ⊗Dγ] ∈ H1(Γ, Div0
Hp)
2 ΦE ∈ Z1(Γ, Ω1
Hp,Z)
Jψ =
γ
×
Dγ
(ΦE)γ ∈ K×
p .
Jψ is well defined modulo powers of the Tate parameter qE
Conjecture (Darmon (D = 1), Greenberg (D  1))
1 Pψ = ΨTate(Jψ) belongs to E(Kab)
2 If rkan(E, K) = 1, then Pψ has infinite order.
Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 17 / 28
Numerical Evidence
Conjecture (Darmon (D = 1), Greenberg (D  1))
1 Pψ = ΨTate(Jψ) belongs to E(Kab)
2 If rkan(E, K) = 1, then Pψ has infinite order.
Numerical Evidence
M = 1 M  1
D = 1 Darmon–Green (2002) Guitart–M. (2012)
(B = M2(Q)) Darmon–Pollack (2006)
D  1 Guitart–M. (2013)
Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 18 / 28
Other directions
E defined over other number field F = Q.
1 F totally real: Greenberg (2009).
No numerical evidence.
2 F quadratic imaginary: Trifkovic (2006).
Numerical evidence when F is Euclidean.
3 F arbitrary: Guitart–Sengun–M. (in progress).
Lift to Jac(X0(N)): Rotger-Longo-Vigni (2012).
No numerical evidence.
Higher weight modular forms: Rotger-Seveso (2012).
No numerical evidence.
Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 19 / 28
Calculating the Cycle
Key Exact Sequence
H1(Γ, Div0
Hp) // H1(Γ, Div Hp)
deg
// H1(Γ, Z)
Θψ
 ? // ˜Θψ
 // torsion
M = 1 M  1
D = 1 Adjacent Cusps Elementary Matrix Decomposition
(B = M2(Q)) (Manin Trick) Go Go
D  1 Commutator Decomposition Go
Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 20 / 28
Commutator decomposition example
G = R×
1 , R maximal order on B = B6.
F = X, Y G = x, y | x2
= y3
= 1 .
Goal: write g ⊗τ as gi ⊗Di, with Di of degree 0.
Take for instance g = yxyxy. Note that wt(x) = 2 and wt(y) = 3.
We trivialize on Fab: g = yxyxy(x−2)(y−3).
To simplify g ⊗τ0 in H1(Γ, Div Hp), use:
1 γ1γ2 ⊗D = γ1 ⊗D + γ2 ⊗γ−1
1 D.
2 γ−1
⊗D = −γ ⊗γD.
Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 21 / 28
Implementation
We have written SAGE code to do all of the above.
Depend on:
1 Overconvergent method for D = 1 (R.Pollack).
2 Finding a presentation for units of orders in B (J.Voight).
Currently depends on MAGMA.
Overconvergent methods (adapted to D  1)
Efficient (polynomial time) integration algorithm.
Apart from checking the conjecture, can use the method to actually
finding the points.
Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 22 / 28
Examples
Please show them
the examples !
Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 23 / 28
p = 5, Curve 15A1
E : y2
+ xy + y = x3
+ x2
− 10x − 10
dK h P+
13 1 −
√
13 + 1, 2
√
13 − 4
28 1 −15
√
7 + 43, 150
√
7 − 402
37 1 −5
9
√
37 + 5
9, 25
27
√
37 − 70
27
73 1 −17
32
√
73 + 77
32, 187
128
√
73 − 1199
128
88 1 −17
9 , 14
27
√
22 + 4
9
97 1 − 25
121
√
97 + 123
121, 375
2662
√
97 − 4749
2662
133 1 103
9 , 92
27
√
133 − 56
9
172 1 −1923
1681, 11781
68921
√
43 + 121
1681
193 1 1885
288
√
193 + 25885
288 , 292175
3456
√
193 + 4056815
3456
Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 24 / 28
p = 3, Curve 21A1
E : y2
+ xy = x3
− 4x − 1
dK h P+
8 1 −9
√
2 + 11, 45
√
2 − 64
29 1 − 9
25
√
29 + 32
25, 63
125
√
29 − 449
125
44 1 − 9
49
√
11 − 52
49, 54
343
√
11 + 557
343
53 1 − 37
169
√
53 + 184
169, 555
2197
√
53 − 5633
2197
92 1 533
46 , 17325
2116
√
23 − 533
92
137 1 − 1959
11449
√
137 + 242
11449, 295809
2450086
√
137 − 162481
2450086
149 1 − 261
2809
√
149 + 2468
2809, 8091
148877
√
149 − 101789
148877
197 1 − 79135143
209961032
√
197 + 977125081
209961032, 1439547386313
1075630366936
√
197 − 9297639417941
537815183468
D h hD(x)
65 2 x2 + 61851
6241
√
65 − 491926
6241 x − 403782
6241
√
65 + 3256777
6241
Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 25 / 28
p = 11, Curve 33A1
E : y2
+ xy = x3
+ x2
− 11x
dK h P +
13 1 − 1
2
√
13 + 3
2
, 1
2
√
13 − 7
2
28 1 22
7
, 55
49
√
7 − 11
7
61 1 − 1
2
√
61 + 5
2
,
√
61 − 11
73 1 − 53339
49928
√
73 + 324687
49928
, 31203315
7888624
√
73 − 290996167
7888624
76 1 −2,
√
19 + 1
109 1 − 143
2
√
109 + 1485
2
, 5577
2
√
109 − 58223
2
172 1 − 51842
21025
, 2065147
3048625
√
43 + 25921
21025
184 1 59488
21609
, 109252
3176523
√
46 − 29744
21609
193 1 94663533349261
678412148664608
√
193 + 1048806825770477
678412148664608
,
147778957920931299317
12494688311813553741184
√
193 + 30862934493092416035541
12494688311813553741184
D h hD(x)
40 2 x2
+ 2849
1681
√
10 − 6347
1681
x − 5082
1681
√
10 + 16819
1681
85 2 x2
+ 119
361
√
85 − 1022
361
x − 168
361
√
85 + 1549
361
145 4 x4
+ 169016003453
83168215321
√
145 − 1621540207320
83168215321
x3
+ − 1534717557538
83168215321
√
145 + 18972823294799
83168215321
x2
+ 5533405190489
83168215321
√
145 − 66553066916820
83168215321
x
+ − 6414913389456
83168215321
√
145 + 77248348177561
83168215321
Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 26 / 28
p = 13, Curve 78A1
Exclusive for MEGA
First examples of Quaternionic Darmon Points.
78 = 2 · 3 · 13, we take p = 13 and D = 6.
E : y2
+ xy = x3
+ x2
− 19x + 685
dK h P+
5 1 10, 18
√
5 − 5
149 1 −10654790
1138489 , 1229396070
1214767763
√
149 + 5327395
1138489
197 1 964090
121 , −67449270
1331
√
197 − 482045
121
293 1 66626
7325 , −23188374
10731125
√
293 − 33313
7325
317 1 36974414
388325 , −226154303712
4308465875
√
317 − 18487207
388325
437 1 971110
339889 , −244302600
198155287
√
437 − 485555
339889
461 1 −146849210
23609881 , 132062657760
114720411779
√
461 + 73424605
23609881
509 1 86626030090
4613262241 , −1193915313019350
313337384670961
√
509 − 43313015045
4613262241
557 1 394312144429886
2528440578125 , 7858947314645355852384
94887001960802734375
√
557 − 197156072214943
2528440578125
Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 27 / 28
Thank you !
Find the slides at: http://www.math.columbia.edu/∼masdeu/
Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 28 / 28
Bibliography
Henri Darmon and Peter Green.
Elliptic curves and class fields of real quadratic fields: Algorithms and evidence.
Exp. Math., 11, No. 1, 37-55, 2002.
Henri Darmon and Robert Pollack.
Efficient calculation of Stark-Heegner points via overconvergent modular symbols.
Israel J. Math., 153:319–354, 2006.
Xavier Guitart and Marc Masdeu.
Elementary matrix Decomposition and the computation of Darmon points with higher conductor.
arXiv.org, 1209.4614, 2012.
Matthew Greenberg.
Stark-Heegner points and the cohomology of quaternionic Shimura varieties.
Duke Math. J., 147(3):541–575, 2009.
David Pollack and Robert Pollack.
A construction of rigid analytic cohomology classes for congruence subgroups of SL3(Z).
Canad. J. Math., 61(3):674–690, 2009.
trifkovic Mak Trifkovic,
Stark-Heegner points on elliptic curves defined over imaginary quadratic fields.
Duke Math. J., 135, No. 3, 415-453, 2006.
Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 1 / 4
Differential forms and measures
Theorem (Teitelbaum?)
The assignment
µ → ω =
P1(Qp)
dz
z − t
dµ(t)
induces an isomorphism Meas0(P1(Qp), Cp) ∼= Ω1
Hp
.
Theorem (Teitelbaum)
τ2
τ1
ω =
P1(Qp)
log
t − τ1
t − τ2
dµ(t).
Proof sketch.
τ2
τ1
ω =
τ2
τ1 P1(Qp)
dz
z − t
dµ(t) =
P1(Qp)
log
t − τ2
t − τ1
dµ(t).
Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 2 / 4
Continued Fractions
Theorem (Manin)
The cusps ∞ and γ∞ can always be connected by a chain of adjacent
cusps ∞ = c0 ∼ c1 ∼ · · · ∼ cr = γ∞.
Effective version: continued fractions.
(γ∞ − ∞) ⊗τ =
i
(gi∞ − gi0) ⊗τ
=
i
(∞ − 0) ⊗τi
=
i
(∞ − 1) ⊗τi + (1 − 0) ⊗τi τi = g−1
i τ
=
i
(∞ − 0) ⊗t−1
τi + (0 − ∞) ⊗tsτi
=
i
(∞ − 0) ⊗(t−1
τi − tsτi)
Back Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 3 / 4
Elementary Matrices
Theorem (Vaserstein (1972), Guitart–M. (2012) (effective version))
Any matrix γ ∈ Γ1(M) can be decomposed as
γ = l1u1 · · · lrur, ui = 1 xi
0 1 , li = 1 0
yi 1 .
Obtain the following:
(ug∞ − ∞) ⊗τ = (g∞ − ∞) ⊗u−1
τ.
and (lg∞ − ∞) ⊗τ simplifies to:
= (lg∞ − 0) ⊗τ + (0 − ∞) ⊗τ
= (g∞ − 0) ⊗l−1
τ + (0 − ∞) ⊗τ
= (g∞ − ∞) ⊗l−1
τ + (∞ − 0) ⊗l−1
τ + (0 − ∞) ⊗τ
= (g∞ − ∞) ⊗l−1
τ + (∞ − 0) ⊗(l−1
τ − τ).
Iterating this process we reduce to a degree-0 divisor. Back
Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 4 / 4

More Related Content

PDF
Darmon Points for fields of mixed signature
PDF
Total Dominating Color Transversal Number of Graphs And Graph Operations
PDF
Typing quantum superpositions and measurement
PDF
Darmon Points for fields of mixed signature
PDF
On Clustering Histograms with k-Means by Using Mixed α-Divergences
PDF
On the equality of the grundy numbers of a graph
PDF
Igv2008
PDF
Divergence center-based clustering and their applications
Darmon Points for fields of mixed signature
Total Dominating Color Transversal Number of Graphs And Graph Operations
Typing quantum superpositions and measurement
Darmon Points for fields of mixed signature
On Clustering Histograms with k-Means by Using Mixed α-Divergences
On the equality of the grundy numbers of a graph
Igv2008
Divergence center-based clustering and their applications

What's hot (20)

PDF
Classification with mixtures of curved Mahalanobis metrics
PDF
Ji2416271633
PDF
Introduction to Szemerédi regularity lemma
PPT
PDF
Patch Matching with Polynomial Exponential Families and Projective Divergences
PDF
Divergence clustering
PDF
X4102188192
PDF
Talk iccf 19_ben_hammouda
PDF
Hierarchical Deterministic Quadrature Methods for Option Pricing under the Ro...
PDF
Computational Information Geometry: A quick review (ICMS)
PDF
2-rankings of Graphs
PDF
Linear Discriminant Analysis (LDA) Under f-Divergence Measures
PDF
Ijmet 10 01_046
PDF
Pattern-based classification of demographic sequences
PDF
Bidimensionality
PDF
THE RESULT FOR THE GRUNDY NUMBER ON P4- CLASSES
PDF
Crystallographic groups
PDF
PDF
SUPER MAGIC CORONATIONS OF GRAPHS
Classification with mixtures of curved Mahalanobis metrics
Ji2416271633
Introduction to Szemerédi regularity lemma
Patch Matching with Polynomial Exponential Families and Projective Divergences
Divergence clustering
X4102188192
Talk iccf 19_ben_hammouda
Hierarchical Deterministic Quadrature Methods for Option Pricing under the Ro...
Computational Information Geometry: A quick review (ICMS)
2-rankings of Graphs
Linear Discriminant Analysis (LDA) Under f-Divergence Measures
Ijmet 10 01_046
Pattern-based classification of demographic sequences
Bidimensionality
THE RESULT FOR THE GRUNDY NUMBER ON P4- CLASSES
Crystallographic groups
SUPER MAGIC CORONATIONS OF GRAPHS
Ad

Viewers also liked (16)

PDF
Darmon points for fields of mixed signature
PDF
p-adic integration and elliptic curves over number fields
PDF
Analytic construction of points on modular elliptic curves
PDF
Darmon Points for fields of mixed signature
PDF
Quaternionic Modular Symbols in Sage
PPTX
dough trading
PDF
Darmon Points: an Overview
PDF
Computing p-adic periods of abelian surfaces from automorphic forms
PDF
p-adic periods of abelian varieties attached to GL2-automorphic forms
PDF
Non-archimedean construction of elliptic curves and abelian surfaces
PDF
Non-archimedean construction of elliptic curves and rational points
PDF
Analytic construction of elliptic curves and rational points
PDF
Darmon Points in mixed signature
PDF
A Unified Perspective for Darmon Points
PDF
Analytic construction of points on modular elliptic curves
PDF
Electrical Condition monitoring part 1
Darmon points for fields of mixed signature
p-adic integration and elliptic curves over number fields
Analytic construction of points on modular elliptic curves
Darmon Points for fields of mixed signature
Quaternionic Modular Symbols in Sage
dough trading
Darmon Points: an Overview
Computing p-adic periods of abelian surfaces from automorphic forms
p-adic periods of abelian varieties attached to GL2-automorphic forms
Non-archimedean construction of elliptic curves and abelian surfaces
Non-archimedean construction of elliptic curves and rational points
Analytic construction of elliptic curves and rational points
Darmon Points in mixed signature
A Unified Perspective for Darmon Points
Analytic construction of points on modular elliptic curves
Electrical Condition monitoring part 1
Ad

Similar to Numerical Evidence for Darmon Points (20)

PDF
Darmon Points: an overview
PDF
Talk at Seminari de Teoria de Nombres de Barcelona 2017
PDF
Towards a theory of p-adic singular moduli attached to global fields
PDF
Complex Hessian Equations on Some Compact Kähler Manifolds (2012)
PPT
Prime numbers
PDF
A Szemeredi-type theorem for subsets of the unit cube
PDF
Rational points on elliptic curves
PDF
Rational points on curves -- BIMR 2025 --
PDF
Quaternionic rigid meromorphic cocycles
PDF
Trilinear embedding for divergence-form operators
PDF
Quaternionic rigid meromorphic cocycles
PDF
A Proof of the Generalized Riemann Hypothesis
PDF
A Proof of the Generalized Riemann Hypothesis
PDF
A disproof of the Riemann hypothesis
PDF
Variations on the method of Coleman-Chabauty
PDF
clock_theorems
PDF
Thesis 6
PDF
A Unifying theory for blockchain and AI
PPTX
matrix theory and linear algebra.pptx
Darmon Points: an overview
Talk at Seminari de Teoria de Nombres de Barcelona 2017
Towards a theory of p-adic singular moduli attached to global fields
Complex Hessian Equations on Some Compact Kähler Manifolds (2012)
Prime numbers
A Szemeredi-type theorem for subsets of the unit cube
Rational points on elliptic curves
Rational points on curves -- BIMR 2025 --
Quaternionic rigid meromorphic cocycles
Trilinear embedding for divergence-form operators
Quaternionic rigid meromorphic cocycles
A Proof of the Generalized Riemann Hypothesis
A Proof of the Generalized Riemann Hypothesis
A disproof of the Riemann hypothesis
Variations on the method of Coleman-Chabauty
clock_theorems
Thesis 6
A Unifying theory for blockchain and AI
matrix theory and linear algebra.pptx

More from mmasdeu (6)

PDF
Efficient calculation of theta functions attached to p-adic Schottky groups
PDF
Las funciones L en teoría de números
PDF
Numerical experiments with plectic Stark-Heegner points
PDF
Sabem resoldre equacions de tercer grau?
PDF
(International) Academic Career
PDF
Distributing Sage / Python Code, The Right Way
Efficient calculation of theta functions attached to p-adic Schottky groups
Las funciones L en teoría de números
Numerical experiments with plectic Stark-Heegner points
Sabem resoldre equacions de tercer grau?
(International) Academic Career
Distributing Sage / Python Code, The Right Way

Recently uploaded (20)

PPTX
Welcome-grrewfefweg-students-of-2024.pptx
PPT
Heredity-grade-9 Heredity-grade-9. Heredity-grade-9.
PPT
LEC Synthetic Biology and its application.ppt
PDF
Communicating Health Policies to Diverse Populations (www.kiu.ac.ug)
PPTX
Understanding the Circulatory System……..
PPTX
INTRODUCTION TO PAEDIATRICS AND PAEDIATRIC HISTORY TAKING-1.pptx
PDF
CHAPTER 3 Cell Structures and Their Functions Lecture Outline.pdf
PPT
Mutation in dna of bacteria and repairss
PPTX
perinatal infections 2-171220190027.pptx
PDF
CHAPTER 2 The Chemical Basis of Life Lecture Outline.pdf
PPTX
GREEN FIELDS SCHOOL PPT ON HOLIDAY HOMEWORK
PDF
Unit 5 Preparations, Reactions, Properties and Isomersim of Organic Compounds...
PPTX
endocrine - management of adrenal incidentaloma.pptx
PPTX
Microbes in human welfare class 12 .pptx
PDF
Science Form five needed shit SCIENEce so
PDF
The Land of Punt — A research by Dhani Irwanto
PDF
Worlds Next Door: A Candidate Giant Planet Imaged in the Habitable Zone of ↵ ...
PPTX
Substance Disorders- part different drugs change body
PDF
Cosmic Outliers: Low-spin Halos Explain the Abundance, Compactness, and Redsh...
PDF
Is Earendel a Star Cluster?: Metal-poor Globular Cluster Progenitors at z ∼ 6
Welcome-grrewfefweg-students-of-2024.pptx
Heredity-grade-9 Heredity-grade-9. Heredity-grade-9.
LEC Synthetic Biology and its application.ppt
Communicating Health Policies to Diverse Populations (www.kiu.ac.ug)
Understanding the Circulatory System……..
INTRODUCTION TO PAEDIATRICS AND PAEDIATRIC HISTORY TAKING-1.pptx
CHAPTER 3 Cell Structures and Their Functions Lecture Outline.pdf
Mutation in dna of bacteria and repairss
perinatal infections 2-171220190027.pptx
CHAPTER 2 The Chemical Basis of Life Lecture Outline.pdf
GREEN FIELDS SCHOOL PPT ON HOLIDAY HOMEWORK
Unit 5 Preparations, Reactions, Properties and Isomersim of Organic Compounds...
endocrine - management of adrenal incidentaloma.pptx
Microbes in human welfare class 12 .pptx
Science Form five needed shit SCIENEce so
The Land of Punt — A research by Dhani Irwanto
Worlds Next Door: A Candidate Giant Planet Imaged in the Habitable Zone of ↵ ...
Substance Disorders- part different drugs change body
Cosmic Outliers: Low-spin Halos Explain the Abundance, Compactness, and Redsh...
Is Earendel a Star Cluster?: Metal-poor Globular Cluster Progenitors at z ∼ 6

Numerical Evidence for Darmon Points

  • 1. Numerical Evidence for Darmon Points M`etodes Efectius en Geometria Algebraica Xavier Guitart 1 Marc Masdeu 2 1Universitat Polit`ecnica de Catalunya 2Columbia University June 4, 2013 Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 1 / 28
  • 2. The Problem Problem Given an algebraic curve C defined over Q, find points on C, defined on prescribed algebraic extensions K of Q. Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 2 / 28
  • 3. Mordell-Weil Louis Mordell Andr´e Weil Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 3 / 28
  • 4. Basic Setup E = elliptic curve defined over Q, and K = Q( √ dK). If dK > 0 then K is called real quadratic, and If dK < 0 then K is called imaginary quadratic. Theorem (Mordell–Weil) E(K) = (torsion) ⊕ Zrkalg(E,K) The algebraic rank rkalg(E, K) is hard to determine. Attach to E and K an L-function L(E/K, s) as follows. Let N = conductor(E). If p is a rational prime, ap(E) = 1 + p − #E(Fp). If v is a closed point of Spec OK, |v| = size of the residue field κ(v). L(E/K, s) = v|N 1 − a|v||v|−s −1 × v N 1 − a|v||v|−s + |v|1−2s −1 Modularity (Wiles et al) =⇒ analytic continuation of L(E/K, s) to C. Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 4 / 28
  • 5. Birch and Swinnerton-Dyer Brian Birch Peter Swinnerton-Dyer Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 5 / 28
  • 6. Birch and Swinnerton-Dyer Conjecture (BSD, rough version) ords=1 L(E/K, s) = rkalg(E, K). The left-hand side is the analytic rank, rkan(E, K). Consequence rkan(E, K) ≥ 1 =⇒ ∃PK ∈ E(K) of infinite order. Fact Define S(K, N) = { | N : inert in K}.Then rkan(E, K) is ≥ 1 when: 1 K is imaginary quadratic and #S(K, N) is even, or 2 K is real quadratic and #S(K, N) is odd. Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 6 / 28
  • 7. Heegner vs Darmon (points) Kurt Heegner Henri Darmon Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 7 / 28
  • 8. Heegner vs Darmon (points) Fact The analytic rank rkan(E, K) is ≥ 1 when: 1 K is imaginary quadratic and #S(K, N) is even, or 2 K is real quadratic and #S(K, N) is odd. In case 1 , one can construct Heegner points on E(K). Attached to elements τ ∈ K ∩ H. Gross–Zagier formula =⇒ they have infinite order if rkan(E, K) = 1. If S(K, N) = ∅, they can be obtained by C-analytic methods. If S(K, N) = ∅, can use p-adic methods. Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 8 / 28
  • 9. Heegner vs Darmon (points) Fact The analytic rank rkan(E, K) is ≥ 1 when: 1 K is imaginary quadratic and #S(K, N) is even, or 2 K is real quadratic and #S(K, N) is odd. In case 2 , Heegner points are not available. Note that in this case, K ∩ H = ∅! In 2001, Darmon gave a construction (a.k.a “Stark-Heegner”). p-adic analytic =⇒ a priori they lie in E(Kp). Proof of their algebraicity completely open so far. Darmon’s construction restricted to S(K, N) = {p}. Greenberg extended to S(K, N) of arbitrary odd size. We call them Darmon points. Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 9 / 28
  • 10. Goals In this talk we will: 1 Explain what Darmon Points are, 2 Explain how to calculate them, and “The fun of the subject seems to me to be in the examples. B. Gross, in a letter to B. Birch, 1982 ”3 See some fun examples! Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 10 / 28
  • 11. Integration on the p-adic upper-half plane Definition The p-adic upper half plane is the rigid-analytic space Hp = P1 (Cp) P1 (Qp) ( = Cp Qp ). This is the p-adic analogue of H± = C R. Ω1 Hp = space of rigid-analytic one-forms on Hp. Coleman integral: allows to make sense of τ2 τ1 ω, for τ1, τ2 ∈ Hp and ω ∈ Ω1 Hp . If the residues of ω are all integers, have a multiplicative refinement: × τ2 τ1 ω = lim −→ U U∈U tU − τ2 tU − τ1 µ(U) where µ(U) = resA(U) ω. Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 11 / 28
  • 12. The p-adic upper half plane × τ2 τ1 ω = lim −→ U U∈U tU − τ2 tU − τ1 µ(U) where µ(U) = resA(U) ω. Bruhat-Tits tree of GL2(Qp) with p = 2. Hp having the Bruhat-Tits as retract. Annuli A(U) for U a covering of size p−3. tU is any point in U ⊂ P1(Qp). Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 12 / 28
  • 13. Darmon points `a la Greenberg Henri Darmon Matthew Greenberg Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 13 / 28
  • 14. Darmon points `a la Greenberg Assumption 1 K is real quadratic. 2 S(K, N) = { : | pD} has odd cardinality. Write N = pDM, and B/Q = quaternion algebra of discriminant D. Fix ιp : B → M2(Qp). B× → GL2(Qp) acts on Hp by: a b c d τ = aτ + b cτ + d . R an Eichler order of level M (and such that ιp(R) is “nice” ιp(R) ⊂ a b c d ∈ M2(Zp) : vp(c) ≥ 1 . ). Γ = R[1 p ] × 1 (elements in R[1 p ] of reduced norm 1) → SL2(Qp). If D = 1, then B = M2(Q) and Γ = a b c d ∈ SL2(Z[1/p]) : M | c . Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 14 / 28
  • 15. Cohomology Let Ω1 Hp,Z = rigid-analytic differentials having integral residues. Can attach to E a unique (up to sign) class [ΦE] ∈ H1 Γ, Ω1 Hp,Z . Uses Hecke action and Jacquet–Langlands correspondence. Theorem (M. Greenberg) There exists a unique class [ΦE] ∈ H1(Γ, Ω1 Hp,Z) satisfying: 1 T [ΦE] = a [ΦE] for all primes pDM; 2 U [ΦE] = a [ΦE] for all | DM; 3 Wp[ΦE] = ap[ΦE] (Atkin-Lehner involution); 4 W∞[ΦE] = [ΦE] (Involution at ∞). Hecke action can be made explicit Suitable for computation. Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 15 / 28
  • 16. Homology Start with an embedding ψ: K → B. ψ induces an action of K× on Hp via ιp. 1 Let τψ ∈ Hp be the unique fixed point of K× 2 Set γψ = ψ( 2 ), where O× K = {±1} × . ψ ; ˜Θψ = [γψ ⊗τψ] ∈ H1(Γ, Div Hp). Key exact sequence: H1(Γ, Div0 Hp) // H1(Γ, Div Hp) deg // H1(Γ, Z) Θψ ? // ˜Θψ // torsion Challenge: pull a multiple of ˜Θψ back to Θψ ∈ H1(Γ, Div0 Hp). Requires algorithms adapted to the nature of Γ. Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 16 / 28
  • 17. Conjecture Recall our data 1 Θψ = [ γ γ ⊗Dγ] ∈ H1(Γ, Div0 Hp) 2 ΦE ∈ Z1(Γ, Ω1 Hp,Z) Jψ = γ × Dγ (ΦE)γ ∈ K× p . Jψ is well defined modulo powers of the Tate parameter qE Conjecture (Darmon (D = 1), Greenberg (D 1)) 1 Pψ = ΨTate(Jψ) belongs to E(Kab) 2 If rkan(E, K) = 1, then Pψ has infinite order. Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 17 / 28
  • 18. Numerical Evidence Conjecture (Darmon (D = 1), Greenberg (D 1)) 1 Pψ = ΨTate(Jψ) belongs to E(Kab) 2 If rkan(E, K) = 1, then Pψ has infinite order. Numerical Evidence M = 1 M 1 D = 1 Darmon–Green (2002) Guitart–M. (2012) (B = M2(Q)) Darmon–Pollack (2006) D 1 Guitart–M. (2013) Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 18 / 28
  • 19. Other directions E defined over other number field F = Q. 1 F totally real: Greenberg (2009). No numerical evidence. 2 F quadratic imaginary: Trifkovic (2006). Numerical evidence when F is Euclidean. 3 F arbitrary: Guitart–Sengun–M. (in progress). Lift to Jac(X0(N)): Rotger-Longo-Vigni (2012). No numerical evidence. Higher weight modular forms: Rotger-Seveso (2012). No numerical evidence. Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 19 / 28
  • 20. Calculating the Cycle Key Exact Sequence H1(Γ, Div0 Hp) // H1(Γ, Div Hp) deg // H1(Γ, Z) Θψ ? // ˜Θψ // torsion M = 1 M 1 D = 1 Adjacent Cusps Elementary Matrix Decomposition (B = M2(Q)) (Manin Trick) Go Go D 1 Commutator Decomposition Go Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 20 / 28
  • 21. Commutator decomposition example G = R× 1 , R maximal order on B = B6. F = X, Y G = x, y | x2 = y3 = 1 . Goal: write g ⊗τ as gi ⊗Di, with Di of degree 0. Take for instance g = yxyxy. Note that wt(x) = 2 and wt(y) = 3. We trivialize on Fab: g = yxyxy(x−2)(y−3). To simplify g ⊗τ0 in H1(Γ, Div Hp), use: 1 γ1γ2 ⊗D = γ1 ⊗D + γ2 ⊗γ−1 1 D. 2 γ−1 ⊗D = −γ ⊗γD. Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 21 / 28
  • 22. Implementation We have written SAGE code to do all of the above. Depend on: 1 Overconvergent method for D = 1 (R.Pollack). 2 Finding a presentation for units of orders in B (J.Voight). Currently depends on MAGMA. Overconvergent methods (adapted to D 1) Efficient (polynomial time) integration algorithm. Apart from checking the conjecture, can use the method to actually finding the points. Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 22 / 28
  • 23. Examples Please show them the examples ! Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 23 / 28
  • 24. p = 5, Curve 15A1 E : y2 + xy + y = x3 + x2 − 10x − 10 dK h P+ 13 1 − √ 13 + 1, 2 √ 13 − 4 28 1 −15 √ 7 + 43, 150 √ 7 − 402 37 1 −5 9 √ 37 + 5 9, 25 27 √ 37 − 70 27 73 1 −17 32 √ 73 + 77 32, 187 128 √ 73 − 1199 128 88 1 −17 9 , 14 27 √ 22 + 4 9 97 1 − 25 121 √ 97 + 123 121, 375 2662 √ 97 − 4749 2662 133 1 103 9 , 92 27 √ 133 − 56 9 172 1 −1923 1681, 11781 68921 √ 43 + 121 1681 193 1 1885 288 √ 193 + 25885 288 , 292175 3456 √ 193 + 4056815 3456 Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 24 / 28
  • 25. p = 3, Curve 21A1 E : y2 + xy = x3 − 4x − 1 dK h P+ 8 1 −9 √ 2 + 11, 45 √ 2 − 64 29 1 − 9 25 √ 29 + 32 25, 63 125 √ 29 − 449 125 44 1 − 9 49 √ 11 − 52 49, 54 343 √ 11 + 557 343 53 1 − 37 169 √ 53 + 184 169, 555 2197 √ 53 − 5633 2197 92 1 533 46 , 17325 2116 √ 23 − 533 92 137 1 − 1959 11449 √ 137 + 242 11449, 295809 2450086 √ 137 − 162481 2450086 149 1 − 261 2809 √ 149 + 2468 2809, 8091 148877 √ 149 − 101789 148877 197 1 − 79135143 209961032 √ 197 + 977125081 209961032, 1439547386313 1075630366936 √ 197 − 9297639417941 537815183468 D h hD(x) 65 2 x2 + 61851 6241 √ 65 − 491926 6241 x − 403782 6241 √ 65 + 3256777 6241 Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 25 / 28
  • 26. p = 11, Curve 33A1 E : y2 + xy = x3 + x2 − 11x dK h P + 13 1 − 1 2 √ 13 + 3 2 , 1 2 √ 13 − 7 2 28 1 22 7 , 55 49 √ 7 − 11 7 61 1 − 1 2 √ 61 + 5 2 , √ 61 − 11 73 1 − 53339 49928 √ 73 + 324687 49928 , 31203315 7888624 √ 73 − 290996167 7888624 76 1 −2, √ 19 + 1 109 1 − 143 2 √ 109 + 1485 2 , 5577 2 √ 109 − 58223 2 172 1 − 51842 21025 , 2065147 3048625 √ 43 + 25921 21025 184 1 59488 21609 , 109252 3176523 √ 46 − 29744 21609 193 1 94663533349261 678412148664608 √ 193 + 1048806825770477 678412148664608 , 147778957920931299317 12494688311813553741184 √ 193 + 30862934493092416035541 12494688311813553741184 D h hD(x) 40 2 x2 + 2849 1681 √ 10 − 6347 1681 x − 5082 1681 √ 10 + 16819 1681 85 2 x2 + 119 361 √ 85 − 1022 361 x − 168 361 √ 85 + 1549 361 145 4 x4 + 169016003453 83168215321 √ 145 − 1621540207320 83168215321 x3 + − 1534717557538 83168215321 √ 145 + 18972823294799 83168215321 x2 + 5533405190489 83168215321 √ 145 − 66553066916820 83168215321 x + − 6414913389456 83168215321 √ 145 + 77248348177561 83168215321 Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 26 / 28
  • 27. p = 13, Curve 78A1 Exclusive for MEGA First examples of Quaternionic Darmon Points. 78 = 2 · 3 · 13, we take p = 13 and D = 6. E : y2 + xy = x3 + x2 − 19x + 685 dK h P+ 5 1 10, 18 √ 5 − 5 149 1 −10654790 1138489 , 1229396070 1214767763 √ 149 + 5327395 1138489 197 1 964090 121 , −67449270 1331 √ 197 − 482045 121 293 1 66626 7325 , −23188374 10731125 √ 293 − 33313 7325 317 1 36974414 388325 , −226154303712 4308465875 √ 317 − 18487207 388325 437 1 971110 339889 , −244302600 198155287 √ 437 − 485555 339889 461 1 −146849210 23609881 , 132062657760 114720411779 √ 461 + 73424605 23609881 509 1 86626030090 4613262241 , −1193915313019350 313337384670961 √ 509 − 43313015045 4613262241 557 1 394312144429886 2528440578125 , 7858947314645355852384 94887001960802734375 √ 557 − 197156072214943 2528440578125 Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 27 / 28
  • 28. Thank you ! Find the slides at: http://www.math.columbia.edu/∼masdeu/ Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 28 / 28
  • 29. Bibliography Henri Darmon and Peter Green. Elliptic curves and class fields of real quadratic fields: Algorithms and evidence. Exp. Math., 11, No. 1, 37-55, 2002. Henri Darmon and Robert Pollack. Efficient calculation of Stark-Heegner points via overconvergent modular symbols. Israel J. Math., 153:319–354, 2006. Xavier Guitart and Marc Masdeu. Elementary matrix Decomposition and the computation of Darmon points with higher conductor. arXiv.org, 1209.4614, 2012. Matthew Greenberg. Stark-Heegner points and the cohomology of quaternionic Shimura varieties. Duke Math. J., 147(3):541–575, 2009. David Pollack and Robert Pollack. A construction of rigid analytic cohomology classes for congruence subgroups of SL3(Z). Canad. J. Math., 61(3):674–690, 2009. trifkovic Mak Trifkovic, Stark-Heegner points on elliptic curves defined over imaginary quadratic fields. Duke Math. J., 135, No. 3, 415-453, 2006. Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 1 / 4
  • 30. Differential forms and measures Theorem (Teitelbaum?) The assignment µ → ω = P1(Qp) dz z − t dµ(t) induces an isomorphism Meas0(P1(Qp), Cp) ∼= Ω1 Hp . Theorem (Teitelbaum) τ2 τ1 ω = P1(Qp) log t − τ1 t − τ2 dµ(t). Proof sketch. τ2 τ1 ω = τ2 τ1 P1(Qp) dz z − t dµ(t) = P1(Qp) log t − τ2 t − τ1 dµ(t). Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 2 / 4
  • 31. Continued Fractions Theorem (Manin) The cusps ∞ and γ∞ can always be connected by a chain of adjacent cusps ∞ = c0 ∼ c1 ∼ · · · ∼ cr = γ∞. Effective version: continued fractions. (γ∞ − ∞) ⊗τ = i (gi∞ − gi0) ⊗τ = i (∞ − 0) ⊗τi = i (∞ − 1) ⊗τi + (1 − 0) ⊗τi τi = g−1 i τ = i (∞ − 0) ⊗t−1 τi + (0 − ∞) ⊗tsτi = i (∞ − 0) ⊗(t−1 τi − tsτi) Back Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 3 / 4
  • 32. Elementary Matrices Theorem (Vaserstein (1972), Guitart–M. (2012) (effective version)) Any matrix γ ∈ Γ1(M) can be decomposed as γ = l1u1 · · · lrur, ui = 1 xi 0 1 , li = 1 0 yi 1 . Obtain the following: (ug∞ − ∞) ⊗τ = (g∞ − ∞) ⊗u−1 τ. and (lg∞ − ∞) ⊗τ simplifies to: = (lg∞ − 0) ⊗τ + (0 − ∞) ⊗τ = (g∞ − 0) ⊗l−1 τ + (0 − ∞) ⊗τ = (g∞ − ∞) ⊗l−1 τ + (∞ − 0) ⊗l−1 τ + (0 − ∞) ⊗τ = (g∞ − ∞) ⊗l−1 τ + (∞ − 0) ⊗(l−1 τ − τ). Iterating this process we reduce to a degree-0 divisor. Back Marc Masdeu Numerical Evidence for Darmon Points June 4, 2013 4 / 4