SlideShare a Scribd company logo
MULDER: Querying the Linked Data Web
by Bridging RDF Molecule Templates
Kemele M. Endris, Mikhail Galkin, I. Lytra, M. Mami, M.E. Vidal, Sören Auer
DEXA 2017 - August 28-31, 2017
Lyon, France
2
Geonames
Motivating Example
NYTimes SWDF
Federated Query Engine
3
SPARQL Query
#triples of Triple patterns in each Data Source
TP1
TP2
TP3
32,581
117,915
0
Geonames
TP1
TP2
TP3
31,763
0
1,761
NYTimes
TP1
TP2
TP3
319
1,112
0
SWDF
SELECT DISTINCT ?s
WHERE {
?s foaf:page ?page .
?s owl:sameAs ?same.
?s geo:inCountry ?inCountry
}
TP1
TP2
TP3
Motivating Example
4
SELECT DISTINCT ?s
WHERE {
?s foaf:page ?page .
?s owl:sameAs ?same.
?s geo:inCountry ?inCountry
}
TP1
Data Sources Selected by Federated Engines
ANAPSID SSGS ANAPSID SSGM
TP2
TP3
TP1
TP2
TP3
TP1
TP2
TP3
@SWDF, Geonames
@SWDF, Geonames, NYTimes
@NYTimes @NYTimes
@NYTimes
@SWDF
@SWDF, Geonames
Motivating Example
5
FedX ANAPSID SSGS ANAPSID SSGM
32,900
371
32,900
150,790
1,249
1,761 1,761
239.4 sec 0.338 sec 88.9 sec
20 0 19
Execution
time:
#Triples:
SELECT DISTINCT ?s
WHERE {
?s foaf:page ?page .
?s owl:sameAs ?same.
?s geo:inCountry ?inCountry
}
TP1
TP2
TP3
#Triples Found & Execution Time
Complete!
Motivating Example
TP1
TP2
TP2
TP3TP3
TP1
6
FedX ANAPSID SSGS ANAPSID SSGM
SWDF + Geonames SWDF SWDF + Geonames
SWDF + Geonames + NYTimes SWDF NYTimes
NYTimes NYTimes NYTimes
TP1
TP2
TP3
Data Sources Selected by Federated Engines
239.4 sec 0.338 sec 88.9 sec
20 0 19
Execution time:
#Triples:
● The best decomposition:
TP1 -----> Geonames
TP2 -----> NYTimes & Geonames
TP3 -----> NYTimes
Complete!
TP1
TP2
TP3
Motivating Example
7
Source Selection &
Decomposition
Query Planning
Query Execution
Query
Result
SPARQL
Query
Query Federation Basic Components
Source
Descriptions
8
● MULDER relies on RDF
molecule templates for
source selection, and query
decomposition and
optimization
MULDER: Architecture
9
• RDF Molecule Templates (RDF-MTs)
• describe the set of properties associated with same type of RDF Molecules
• RDF Molecule - a set of triples that share same subject
MULDER: Source Description Model
dbo:Fictional_
Character
dbo:occupation
dbo:series
dbo:portrayer
dbo:City
owl:sameAs
dbo:birthplace
geo:Feature
geo:population
dbo:Person
dbo:occupation
dbo:series
dbo:portrayer
owl:sameAs
10
• RDF-MTs define a community of RDF molecules that share same
characteristics, e.g., having same rdf:type, or wikidata:P31
(instance of)
• RDF-MTs are defined in terms of:
• Web service API interfaces
• Type of Molecule
• Set of predicates
• Intra and inter links between RDF-MTs
RDF Molecule Templates
11
dbr:Fox_
Mulder
dbr:David_
Duchovny
dbr:FBI
dbr:X_Files
dbo:Fictional_
Character
dbo:Person
rdf:type
rdf:type
dbo:occupation
dbo:series
dbo:portrayer
DBpedia
RDF Molecule (1)
12
RDF Molecule Templates (RDF-MTs) (1)
dbo:Fictional
_Character
dbo:occupation
dbo:series
dbo:portrayer
dbo:Person
dbo:occupation
dbo:series
dbo:portrayer
dbr:Fox_
Mulder
dbr:David_
Duchovny
dbr:FBI
dbr:X_Files
dbo:Fictional_
Character
dbo:Person
rdf:type
rdf:type
dbo:occupation
dbo:series
dbo:portrayer
DBpedia
13
RDF Molecule (2)
DBpedia
owl:sameAs
rdf:type
dbr:Fox_
Mulder
dbr:David_
Duchovny
dbr:FBI
dbr:X_Files
dbo:Fictional_
Character
dbo:Person
rdf:type
rdf:type
dbo:occupation
dbo:series
dbo:portrayer
dbo:birthplace
dbr:New_York
_City
mdb:141
dbo:Fictional
_Character
dbo:occupation
dbo:series
dbo:portrayer
dbo:Person
dbo:occupation
dbo:series
dbo:portrayer
14
RDF-MTs (2)
DBpedia
owl:sameAs
rdf:type
dbr:Fox_
Mulder
dbr:David_
Duchovny
dbr:FBI
dbr:X_Files
dbo:Fictional_
Character
dbo:Person
rdf:type
rdf:type
dbo:occupation
dbo:series
dbo:portrayer
dbo:birthplace
dbr:New_York
_City
mdb:141
dbo:Fictional
_Character
dbo:occupation
dbo:series
dbo:portrayer
dbo:Person
dbo:occupation
dbo:series
dbo:portrayer
owl:sameAs dbo:birthplace
15
RDF Molecule (3)
dbr:Fox_
Mulder
dbr:David_
Duchovny
dbr:FBI
dbr:X_Files
dbo:Fictional_
Character
dbo:Person
rdf:type
rdf:type
dbo:occupation
dbo:series
dbo:portrayer
dbr:New_York
_Citydbo:City
dbo:birthplace
rdf:type
rdf:type
DBpedia
geo:5128581
owl:sameAs
owl:sameAs
mdb:141
dbo:Fictional
_Character
dbo:occupation
dbo:series
dbo:portrayer
dbo:Person
dbo:occupation
dbo:series
dbo:portrayer
owl:sameAs dbo:birthplace
16
RDF-MTs (3)
dbr:Fox_
Mulder
dbr:David_
Duchovny
dbr:FBI
dbr:X_Files
dbo:Fictional_
Character
dbo:Person
rdf:type
rdf:type
dbo:occupation
dbo:series
dbo:portrayer
dbr:New_York
_Citydbo:City
dbo:birthplace
rdf:type
rdf:type
DBpedia
geo:5128581
owl:sameAs
owl:sameAs
mdb:141
dbo:Fictional
_Character
dbo:occupation
dbo:series
dbo:portrayer
dbo:Person
dbo:occupation
dbo:series
dbo:portrayer
owl:sameAs dbo:birthplace
owl:sameAs
dbo:City
17
RDF Molecule (4)
geo:Feature
dbr:Fox_
Mulder
dbr:David_
Duchovny
dbr:FBI
dbr:X_Files
dbo:Fictional_
Character
dbo:Person
rdf:type
rdf:type
dbo:occupation
dbo:series
dbo:portrayer
dbr:New_York
_Citydbo:City
dbo:birthplace
rdf:type
rdf:type
DBpedia
Geonames
8175133
geo:population
rdf:type
geo:5128581
owl:sameAs
owl:sameAs
mdb:141
owl:sameAs
dbo:City
dbo:Fictional
_Character
dbo:occupation
dbo:series
dbo:portrayer
dbo:Person
dbo:occupation
dbo:series
dbo:portrayer
owl:sameAs dbo:birthplace
18
RDF-MTs (4)
owl:sameAs
geo:Feature
dbr:Fox_
Mulder
dbr:David_
Duchovny
dbr:FBI
dbr:X_Files
dbo:Fictional_
Character
dbo:Person
rdf:type
rdf:type
dbo:occupation
dbo:series
dbo:portrayer
dbr:New_York
_Citydbo:City
dbo:birthplace
rdf:type
rdf:type
DBpedia
Geonames
8175133
geo:population
rdf:type
geo:5128581
owl:sameAs
owl:sameAs
mdb:141
dbo:City
geo:Feature
geo:population
dbo:Fictional
_Character
dbo:occupation
dbo:series
dbo:portrayer
dbo:Person
dbo:occupation
dbo:series
dbo:portrayer
owl:sameAs dbo:birthplace
19
RDF-MTs: Intra and Inter Links
owl:sameAs
geo:Feature
dbr:Fox_
Mulder
dbr:David_
Duchovny
dbr:FBI
dbr:X_Files
dbo:Fictional_
Character
dbo:Person
rdf:type
rdf:type
dbo:occupation
dbo:series
dbo:portrayer
dbr:New_York
_Citydbo:City
dbo:birthplace
rdf:type
rdf:type
DBpedia
Geonames
8175133
geo:population
rdf:type
geo:5128581
owl:sameAs
owl:sameAs
mdb:141
dbo:City
geo:Feature
geo:population
dbo:Fictional
_Character
dbo:occupation
dbo:series
dbo:Person
dbo:occupation
dbo:series
dbo:portrayer
owl:sameAs
dbo:portrayer
dbo:birthplace
20
• MULDER creates a query decomposition with service graph
patterns (SGPs) of star-shaped subqueries built according to
RDF-MTs
• Star-shaped subqueries (SSQs) are a set of triple patterns that share the
same subject (variable or constant)
• minimize execution time and maximize answer completeness by selecting
only relevant sources
MULDER: Decomposition & Source Selection
21
SELECT DISTINCT ?rper ?city ?ppl
WHERE {
?fc dbo:series dbr:X_Files .
?fc dbo:occupation ?occup .
?fc dbo:portrayer ?rper .
?rper owl:sameAs ?same .
?rper dbo:birthplace ?city .
?city owl:sameAs ?feat .
?feat geo:population ?ppl .
}
Query Decomposition
22
?rper
?fc
?occup
dbr:X_Files
SSQ1
SELECT DISTINCT ?rper ?city ?ppl
WHERE {
?fc dbo:series dbr:X_Files .
?fc dbo:occupation ?occup .
?fc dbo:portrayer ?rper .
?rper owl:sameAs ?same .
?rper dbo:birthplace ?city .
?city owl:sameAs ?feat .
?feat geo:population ?ppl .
}
t1
t2
t3
t4
t5
t6
t7
SSQ1
SSQ2
SSQ3
SSQ4
Star-shaped Subqueries (SSQs)
23
t1 t2
t3
t4
t5
t6 t7
dbo:portrayer
dbo:birthplace
owl:sameAs
SELECT DISTINCT ?rper ?city ?ppl
WHERE {
?fc dbo:series dbr:X_Files .
?fc dbo:occupation ?occup .
?fc dbo:portrayer ?rper .
?rper owl:sameAs ?same .
?rper dbo:birthplace ?city .
?city owl:sameAs ?feat .
?feat geo:population ?ppl .
}
t1
t2
t3
t4
t5
t6
t7
SSQ1
SSQ2
SSQ3
SSQ4
Joinable SSQs
24
Matching SSQs Vs RDF-MTs
dbo:Fictional
_Character
dbo:occupation
dbo:series
dbo:portrayer
dbo:City
owl:sameAs
dbo:birthplace
geo:Feature
geo:population
dbo:Person
dbo:occupation
dbo:seriesdbo:portrayer
owl:sameAs
t1 t2
t3
t4
t5
t6
t7
dbo:portrayer
dbo:birthplace
owl:sameAs
t1 t2
t3
dbo:portrayer
t6 owl:sameAs
?
dbo:Person
dbo:Person
dbo:Person
dbo:Fictional_
Character
dbo:City geo:Feature
25
Matching SSQs Vs RDF-MTs
dbo:Fictional
_Character
dbo:occupation
dbo:series
dbo:portrayer
dbo:City
owl:sameAs
dbo:birthplace
geo:Feature
geo:population
dbo:Person
dbo:occupation
dbo:seriesdbo:portrayer
owl:sameAs
t1 t2
t3
t4
t5
t6
t7
dbo:portrayer
dbo:birthplace
owl:sameAs
t1 t2
t3
dbo:portrayer
t6 owl:sameAs ?
dbo:Person
dbo:Person
dbo:Person
dbo:Fictional_
Character
dbo:City geo:Feature
26
• Sources associated to SSQs determined from RDF-MTs metadata
• An SSQ that matches more than one RDF-MT in the same dataset will be
decomposed to a single service endpoint
• An SSQ that have matching RDF-MTs from more than one dataset will be
decomposed to each service endpoint of datasets
Source Selection
27
t1 t2
t3
t4
t5
t6 t7
dbo:portrayer
dbo:birthplace
owl:sameAs
dbo:portrayer
Person@DBpedia
t1 t2
t3
Person@DBpedia
Fictional_Character@DBpedia
Feature@GeonamesCity@DBpedia
Source Selection
28
t4
t5
t6 t7
dbo:portrayer
dbo:birthplace
owl:sameAs
Person@DBpedia
Person/Fictional_Character@DBpedia
Feature@GeonamesCity@DBpedia
Source Selection
t1 t2
t3
29
• MULDER implements a greedy
heuristic based approach to
generate a bushy plan
• leaves correspond to SSQs
• number of joins between SSQs is
maximized while the plan height is
minimized
Query Planning
t1 t2
t3
t4
t5
t6
t7
DBpedia DBpedia GeonamesDBpedia
JOIN
JOIN
JOIN
30
• Research Questions:
RQ1) Do different source descriptions have impact on query
processing in terms of efficiency and effectiveness?
RQ2) Are RDF-MT based query processing techniques able to
enhance query execution time and completeness?
Experimental Study
31
• Metrics
• Execution time: elapsed time between the submission of a query to an
engine and the delivery of the answers (timeout: 300 sec)
• Cardinality: number of answers returned
• Completeness: query result percentage w.r.t answers from union of all
datasets
Experimental Setup
32
➢ Goal: assess query performance of MULDER utilizing different
source descriptions: RDF-Molecule, METIS, and SemEP based
source descriptions
• METIS and SemEP are community detection algorithms used for
graph partitioning
• METIS and SemEP based Molecule templates are composed of predicates
with similar co-occurrence values
• Each predicate is assigned to only one community
Experiment I
33
• BSBM1
: Berlin SPARQL Benchmark
• Builds around an e-commerce use case where a set of products is offered
by different vendors and consumers have posted reviews about products.
• supports the creation of arbitrarily large datasets
• Eight RDF classes
• Product, ProductType, ProductFeature, Vendor, Person, Review, Publisher, and Offer
• Data Generated:
• 200M triples
• Queries:
• 12 queries, with 20 query mixes
Experiment I: Benchmark
1. http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/spec/
34
Results: Exp I
Performance of MULDER source descriptions
★ RDF-MT based source descriptions allow MULDER
to identify query decompositions and plans that
speed up query processing, while answer
completeness is not affected (RQ1)
○ RDF-MTs help MULDER reduce intermediate
results by selecting only relevant sources
35
➢ Goal: Compares MULDER with state of the art federated query
engines: FedX and ANAPSID
• FedX:
• Sends ASK queries to discover the structure of data sources at query time
• implements blocking join operators; i.e., results delivered after all data
received from sources
• ANAPSID:
• Sources described in terms of set of RDF properties in each data source
• source descriptions computed beforehand
• implements non-blocking operator; i.e., results delivered as soon as they
arrive from sources
Experiment II
36
• Setup I:
• Data: BSBM 200M triples
• Query: 12 queries, with 20 query mixes
• Setup II:
• Data: FedBench - 10 datasets, in two collections:
• Cross-domain: LinkedMDB, DBPedia, GeoNames, NYTimes, SWDF, Jamendo
• Life Science: Drugbank, DBpedia, KEGG, CheBI
• Query: 35 queries
• 25 FedBench queries, includes Cross Domain (CD), Linked Data (LD) and Life Science
(LS) queries
• 10 complex (C) queries over FedBench datasets (M. Vidal, et.al)
Experiment II: Benchmarks
37
FedBench: Connection between RDF-MTs
38
Results: Exp II-I
● Performance of MULDER compared to other
Federated Engines on synthetic dataset (BSBM)
● ANAPSID returns query answers fast but at the cost
of completeness,
● FedX is slower than MULDER and ANAPSID
★ MULDER better identify decomposition and plan
that minimizes execution time and answer
completeness by utilizing RDF-MTs, compared to
FedX and ANAPSID! (RQ2)
39
Results: Exp II-II
● Performance of MULDER compared to other Federated
Engines on FedBench dataset
○ Answer completeness and execution time
● Quadrants:
○ I and III: indicates bad performance and
incomplete results
○ II: (almost) complete but slower execution time
○ IV: indicates best execution time and (almost)
complete results
★ MULDER - RDF-MTs performs better in terms of
execution time and answer completeness
compared to FedX and ANAPSID! (RQ2)
40
• MULDER is a query engine for federated access to SPARQL
endpoints:
• uses RDF-MTs to describe data source interfaces
• RDF-MTs enable MULDER decomposition and planning methods to identify
efficient and effective query plans compared to METIS and SemeEP based
source descriptions (RQ1)
• MULDER significantly reduces query execution time and increases
answer completeness compared to FedX and ANAPSID, by selecting
relevant sources and creating best execution plan (RQ2)
Conclusion
41
• Integrate additional web access interfaces: such as TPFs and
RESTful APIs
• Empower RDF-MTs with additional information such as: link
selectivity, statistics, etc
Future Work
42
Thank you!!
Follow me @KemeleM
endris@cs.uni-bonn.de
kemele.endris@gmail.com
University of Bonn,
Fraunhofer IAIS
Germany
Full experimental data:
https://github.com/EIS-Bonn/MULDER
Thank you
for your attention!
wdaqua.eu
wdaqua.eu
43

More Related Content

PDF
ParlBench: a SPARQL-benchmark for electronic publishing applications.
PDF
TermPicker: Enabling the Reuse of Vocabulary Terms by Exploiting Data from th...
PDF
A Generic Mapping-based Query Translation from SPARQL to Various Target Datab...
PDF
Framester: A Wide Coverage Linguistic Linked Data Hub
PPT
Spot Sigs
PDF
Stretching the Life of Twitter Classifiers with Time-Stamped Semantic Graphs
PDF
Machine-Interpretable Dataset and Service Descriptions for Heterogeneous Data...
PPT
(Re-) Discovering Lost Web Pages
ParlBench: a SPARQL-benchmark for electronic publishing applications.
TermPicker: Enabling the Reuse of Vocabulary Terms by Exploiting Data from th...
A Generic Mapping-based Query Translation from SPARQL to Various Target Datab...
Framester: A Wide Coverage Linguistic Linked Data Hub
Spot Sigs
Stretching the Life of Twitter Classifiers with Time-Stamped Semantic Graphs
Machine-Interpretable Dataset and Service Descriptions for Heterogeneous Data...
(Re-) Discovering Lost Web Pages

What's hot (13)

PPTX
Democratizing Big Semantic Data management
PPTX
HiBISCuS: Hypergraph-Based Source Selection for SPARQL Endpoint Federation
PDF
Another RDF Encoding Form
PPTX
Federated Query Formulation and Processing Through BioFed
PPTX
Efficient source selection for sparql endpoint federation
PDF
Link Discovery Tutorial Part V: Hands-On
PDF
Spell Checking in Deezer Search Engine
PDF
Link Discovery Tutorial Part I: Efficiency
PPT
Gathering Alternative Surface Forms for DBpedia Entities
PDF
[Master Thesis]: SPARQL Query Rewriting with Paths
PPTX
Federated SPARQL query processing over the Web of Data
PPTX
Federated SPARQL Query Processing ISWC2015 Tutorial
PPTX
SPARQL1.1 Tutorial, given in UChile by Axel Polleres (DERI)
Democratizing Big Semantic Data management
HiBISCuS: Hypergraph-Based Source Selection for SPARQL Endpoint Federation
Another RDF Encoding Form
Federated Query Formulation and Processing Through BioFed
Efficient source selection for sparql endpoint federation
Link Discovery Tutorial Part V: Hands-On
Spell Checking in Deezer Search Engine
Link Discovery Tutorial Part I: Efficiency
Gathering Alternative Surface Forms for DBpedia Entities
[Master Thesis]: SPARQL Query Rewriting with Paths
Federated SPARQL query processing over the Web of Data
Federated SPARQL Query Processing ISWC2015 Tutorial
SPARQL1.1 Tutorial, given in UChile by Axel Polleres (DERI)
Ad

Similar to MULDER: Querying the Linked Data Web by Bridging RDF Molecule Templates (20)

PDF
Bio ontologies and semantic technologies
PDF
A Hands On Overview Of The Semantic Web
PPTX
First Steps in Semantic Data Modelling and Search & Analytics in the Cloud
PDF
Linked Open Data
PPTX
Infromation Reprentation, Structured Data and Semantics
PDF
Semantic Web Technology
PPTX
Publishing "5 star" data: the case for RDF
PDF
Semantic Web talk TEMPLATE
PDF
Rdf data-model-and-storage
PPTX
GDG Meets U event - Big data & Wikidata - no lies codelab
PDF
2011 4IZ440 Semantic Web – RDF, SPARQL, and software APIs
PDF
Bio ontologies and semantic technologies
ODP
State of the Semantic Web
PDF
Transforming Your Data with GraphDB: GraphDB Fundamentals, Jan 2018
PPTX
A Little SPARQL in your Analytics
PPTX
Ks2009 Semanticweb In Action
PDF
RDF: what and why plus a SPARQL tutorial
PPTX
Integrating Heterogeneous Data Sources in the Web of Data
PPT
Re-using Media on the Web: Media fragment re-mixing and playout
ODP
Riding the Semantic Web
Bio ontologies and semantic technologies
A Hands On Overview Of The Semantic Web
First Steps in Semantic Data Modelling and Search & Analytics in the Cloud
Linked Open Data
Infromation Reprentation, Structured Data and Semantics
Semantic Web Technology
Publishing "5 star" data: the case for RDF
Semantic Web talk TEMPLATE
Rdf data-model-and-storage
GDG Meets U event - Big data & Wikidata - no lies codelab
2011 4IZ440 Semantic Web – RDF, SPARQL, and software APIs
Bio ontologies and semantic technologies
State of the Semantic Web
Transforming Your Data with GraphDB: GraphDB Fundamentals, Jan 2018
A Little SPARQL in your Analytics
Ks2009 Semanticweb In Action
RDF: what and why plus a SPARQL tutorial
Integrating Heterogeneous Data Sources in the Web of Data
Re-using Media on the Web: Media fragment re-mixing and playout
Riding the Semantic Web
Ad

Recently uploaded (20)

PPTX
neck nodes and dissection types and lymph nodes levels
PPTX
G5Q1W8 PPT SCIENCE.pptx 2025-2026 GRADE 5
PPTX
INTRODUCTION TO EVS | Concept of sustainability
PDF
HPLC-PPT.docx high performance liquid chromatography
PPTX
2Systematics of Living Organisms t-.pptx
PPTX
DRUG THERAPY FOR SHOCK gjjjgfhhhhh.pptx.
PPTX
The KM-GBF monitoring framework – status & key messages.pptx
PDF
. Radiology Case Scenariosssssssssssssss
DOCX
Q1_LE_Mathematics 8_Lesson 5_Week 5.docx
PPT
protein biochemistry.ppt for university classes
PDF
VARICELLA VACCINATION: A POTENTIAL STRATEGY FOR PREVENTING MULTIPLE SCLEROSIS
PDF
IFIT3 RNA-binding activity primores influenza A viruz infection and translati...
PDF
Mastering Bioreactors and Media Sterilization: A Complete Guide to Sterile Fe...
PPTX
7. General Toxicologyfor clinical phrmacy.pptx
PPTX
2. Earth - The Living Planet Module 2ELS
PPTX
2. Earth - The Living Planet earth and life
PPTX
TOTAL hIP ARTHROPLASTY Presentation.pptx
PPTX
Classification Systems_TAXONOMY_SCIENCE8.pptx
PPTX
ANEMIA WITH LEUKOPENIA MDS 07_25.pptx htggtftgt fredrctvg
PPTX
cpcsea ppt.pptxssssssssssssssjjdjdndndddd
neck nodes and dissection types and lymph nodes levels
G5Q1W8 PPT SCIENCE.pptx 2025-2026 GRADE 5
INTRODUCTION TO EVS | Concept of sustainability
HPLC-PPT.docx high performance liquid chromatography
2Systematics of Living Organisms t-.pptx
DRUG THERAPY FOR SHOCK gjjjgfhhhhh.pptx.
The KM-GBF monitoring framework – status & key messages.pptx
. Radiology Case Scenariosssssssssssssss
Q1_LE_Mathematics 8_Lesson 5_Week 5.docx
protein biochemistry.ppt for university classes
VARICELLA VACCINATION: A POTENTIAL STRATEGY FOR PREVENTING MULTIPLE SCLEROSIS
IFIT3 RNA-binding activity primores influenza A viruz infection and translati...
Mastering Bioreactors and Media Sterilization: A Complete Guide to Sterile Fe...
7. General Toxicologyfor clinical phrmacy.pptx
2. Earth - The Living Planet Module 2ELS
2. Earth - The Living Planet earth and life
TOTAL hIP ARTHROPLASTY Presentation.pptx
Classification Systems_TAXONOMY_SCIENCE8.pptx
ANEMIA WITH LEUKOPENIA MDS 07_25.pptx htggtftgt fredrctvg
cpcsea ppt.pptxssssssssssssssjjdjdndndddd

MULDER: Querying the Linked Data Web by Bridging RDF Molecule Templates