SlideShare a Scribd company logo
Getting Started in R~Stata
Notes on Exploring Data
(ver. 0.3-Draft)

Oscar Torres-Reyna
Data Consultant
otorres@princeton.edu

http://dss.princeton.edu/training/
What is R/Stata?

What is R?
• “R is a language and environment for statistical computing and graphics”*
• R is offered as open source (i.e. free)
What is Stata?
• It is a multi-purpose statistical package to help you explore, summarize and analyze datasets.
• A dataset is a collection of several pieces of information called variables (usually arranged by
columns). A variable can have one or several values (information for one or several cases).
• Other statistical packages are SPSS and SAS.
Features

Stata

SPSS

SAS

R

Learning curve

Steep/gradual

Gradual/flat

Pretty steep

Pretty steep

User interface

Programming/point-and-click

Mostly point-and-click

Programming

Programming

Very strong

Moderate

Very strong

Very strong

Powerful

Powerful

Powerful/versatile

Powerful/versatile

Very good

Very good

Good

Excellent

Affordable (perpetual
licenses, renew only when
upgrade)

Expensive (but not need to
renew until upgrade, long
term licenses)

Expensive (yearly
renewal)

Open source

Data manipulation
Data analysis
Graphics
Cost

NOTE: The R content presented in this document is mostly based on an early version of Fox, J. and Weisberg, S. (2011) An
R Companion to Applied Regression, Second Edition, Sage; and from class notes from the ICPSR’s workshop Introduction
to the R Statistical Computing Environment taught by John Fox during the summer of 2010.

* http://www.r-project.org/index.html
This is the R screen in Multiple-Document Interface (MDI)…
This is the R screen in Single-Document Interface (SDI)…
Stata’s screen (10.x version)
See here for more info http://dss.princeton.edu/training/StataTutorial.pdf
R

Stata
Working directory

getwd()
# Shows the working directory (wd)
setwd("C:/myfolder/data")
# Changes the wd
setwd("H:myfolderdata") # Changes the wd

pwd
/*Shows the working directory*/
cd c:myfolderdata
/*Changes the wd*/
cd “c:myfolderstata data” /*Notice the spaces*/

Installing packages/user-written programs
install.packages("ABC")
# This will install the
package –-ABC--. A window will pop-up, select a
mirror site to download from (the closest to
where you are) and click ok.
library(ABC)
# Load the package –-ABC-– to your
workspace in R

ssc install abc
/*Will install the user-defined
program ‘abc’. It will be ready to run.
findit abc
/*Will do an online search for
program ‘abc’ or programs that include ‘abc’.
It also searcher your computer.

Getting help
?plot # Get help for an object, in this case for
the –-plot– function. You can also type:
help(plot)
??regression # Search the help pages for anything
that has the word "regression". You can also
type: help.search("regression")
apropos("age")
# Search the word "age" in the
objects available in the current R session.

help tab

/* Get help on the command ‘tab’*/

search regression
/* Search the keywords for the
word ‘regression’*/
hsearch regression
/* Search the help files for
the work ‘regression’. It provides more options
than ‘search’*/

help(package=car) # View documentation in package
‘car’. You can also type:
library(help="car“)
help(DataABC)
# Access codebook for a dataset
called ‘DataABC’ in the package ABC

6
R

Stata
Data from *.csv (copy-and-paste)

# Select the table from the excel file, copy, go
to the R Console and type:

/* Select the table from the excel file, copy, go
to Stata, in the command line type:

mydata <- read.table("clipboard", header=TRUE,
sep="t")

edit
/*The data editor will pop-up and paste the data
(Ctrl-V). Select the link for to include variable
names

Data from *.csv
# Reading the data directly

/* In the command line type */

mydata <- read.csv("c:mydatamydatafile.csv",
header=TRUE)

insheet using "c:mydatamydatafile.csv"

# The will open a window to search for the *.csv
file.
mydata <- read.csv(file.choose(), header = TRUE)

/* Using the menu */
Go to File->Import->”ASCII data created by
spreadsheet”. Click on ‘Browse’ to find the file
and then OK.

Data from/to *.txt (space , tab, comma-separated)
# In the example above, variables have spaces and
missing data is coded as ‘-9’
mydata <- read.table(("C:/myfolder/abc.txt",
header=TRUE, sep="t", na.strings = "-9")

/* See insheet above */
infile var1 var2 str7 var3 using abc.raw

# Export the data

/* Variables with embedded spaces must be enclosed
in quotes */
# Export data

write.table(mydata, file = "test.txt", sep = "t")

outsheet using "c:mydataabc.csv"

7
R

Stata
Data from/to SPSS

install.packages("foreign")
# Need to install
package –-foreign–- first (you do this only once).

/* Need to install the program ‘usespss’ (you do
this only once) */

library(foreign) # Load package –-foreign--

ssc install usespss

mydata.spss <read.spss("http://dss.princeton.edu/training/mydat
a.sav",
to.data.frame = TRUE,
use.value.labels=TRUE,
use.missings = to.data.frame)

/* To read the *.sav type (in one line):

# Where:
#
# ‘to.data.frame’ return a data frame.
#
# ‘use.value.labels’ Convert variables with value
labels into R factors with those levels.
#
# ‘use.missings’ logical: should information on
user-defined missing values be used to set the
corresponding values to NA.
Source: type ?read.spss

help usespss

-------------------------------------------------write.foreign(mydata, codefile="test2.sps",
datafile="test2.raw", package=“SPSS")
# Provides a syntax file (*.sps) to read the *.raw
data file

usespss using
http://dss.princeton.edu/training/mydata.sav
/* For additional information type */

Note: This does not work with SPSS portable files
(*.por)
-------------------------------------------------/* Stata does not convert files to SPSS. You need
to save the data file as a Stata file version 9
that can be read by SPSS v15.0 or later*/
/* From Stata type: */
saveold mydata.dta

/* Saves data to v.9 for SPSS

8
R

Stata
Data from/to SAS

# To read SAS XPORT format (*.xpt)
library(foreign) # Load package –-foreign-mydata.sas <read.xport("http://dss.princeton.edu/training/myda
ta.xpt") # Does not work for files online
mydata.sas <- read.xport("c:/myfolder/mydata.xpt")
# Using package –-Hmisc—
library(Hmisc)
mydata <sasxport.get(http://dss.princeton.edu/training/myd
ata.xpt)
# It works
-------------------------------------------------write.foreign(mydata, codefile="test2.sas",
datafile="test2.raw", package=“SAS")
# Provide a syntax file (*.sas) to read the *.raw
data

/*If you have a file in SAS XPORT format (*.xpt)
you can use ‘fdause’ (or go to File->Import). */
fdause "c:/myfolder/mydata.xpt“
/* Type help fdause for more details */
/* If you have SAS installed in your computer you
can use the program ‘usesas’, which you can
install by typing: */
ssc install usesas
/* To read the *.sas7bcat type (in one line): */
usesas using "c:mydata.sas7bdat”
-------------------------------------------------/* You can export a dataset as SAS XPORT by menu
(go to File->Export) or by typing */
fdasave "c:/myfolder/mydata1.xpt“
/* Type help fdasave for more details */

NOTE: As an alternative, you can use SAS Universal Viewer (freeware from SAS) to read SAS files and save them as *.csv. Saving the file as *.csv removes
variable/value labels, make sure you have the codebook available.

9
R

Stata
Data from/to Stata

library(foreign) # Load package –-foreign-mydata <read.dta("http://dss.princeton.edu/training/studen
ts.dta")
mydata.dta <read.dta("http://dss.princeton.edu/training/mydata
.dta",
convert.factors=TRUE,
convert.dates=TRUE,
convert.underscore=TRUE,
warn.missing.labels=TRUE)
# Where (source: type ?read.dta)
# convert.dates. Convert Stata dates to Date class
# convert.factors. Use Stata value labels to
create factors? (version 6.0 or later).
# convert.underscore. Convert "_" in Stata
variable names to "." in R names?
# warn.missing.labels. Warn if a variable is
specified with value labels and those value labels
are not present in the file.
-------------------------------------------write.dta(mydata, file = "test.dta") # Direct
export to Stata
write.foreign(mydata, codefile="test1.do",
datafile="test1.raw", package="Stata") # Provide a
do-file to read the *.raw data

/* To open a Stata file go to File -> Open, or
type: */
use "c:myfoldermydata.dta"
Or
use "http://dss.princeton.edu/training/mydata.dta"
/* If you need to load a subset of a Stata data
file type */
use var1 var2 using "c:myfoldermydata.dta"
use id city state gender using
"H:WorkMarshallFall10Session12StataStudents.dta", clear
-------------------------------------------------/* To save a dataset as Stata file got File ->
Save As, or type: */
save mydata, replace
save, replace

/*If the fist time*/

/*If already saved as Stata
file*/

10
R

Stata
Data from/to R

load("mydata.RData")
load("mydata.rda")

/* Stata can’t read R data files */

/* Add path to data if necessary */
------------------------------------------------save.image("mywork.RData")
to file *.RData

# Saving all objects

save(object1, object2, file=“mywork.rda") # Saving
selected objects

11
R

Stata
Data from ACII Record form

mydata.dat <read.fwf(file="http://dss.princeton.edu/training/m
ydata.dat",
width=c(7, -16, 2, 2, -4, 2, -10, 2, -110,
3, -6, 2),
col.names=c("w","y","x1","x2","x3", "age",
"sex"),
n=1090)

/* Using infix */

# Reading ASCII record form, numbers represent the
width of variables, negative sign excludes
variables not wanted (you must include these).

dictionary using c:datamydata.dat {
_column(1)
var1
%7.2f
_column(24)
var2
%2f
_column(26) str2 var3
%2s
_column(32)
var4
%2f
_column(44) str2 var5
%2s
_column(156) str3 var5
%3s
_column(165) str2 var5
%2s
}

infix var1 1-7 var2 24-25 str2 var3 26-27 var4 3233 str2 var5 44-45 var6 156-158 var7 165-166 using
"http://dss.princeton.edu/trainingmydata.dat"
-------------------------------------------------/* Using infile */

# To get the width of the variables you must have
a codebook for the data set available (see an
example below).

Label
Label
Label
Label
Label
Label
Label

for
for
for
for
for
for
for

var1
var2
var3
var4
var5
var6
var7

"
"
"
"
"
"
"

/*Do not forget to close the brackets and press enter after the last
bracket*/

# To get the widths for unwanted spaces use the
formula:

Save it as mydata.dct
With infile we run the dictionary by typing:

Start of var(t+1) – End of var(t) - 1

infile using c:datamydata

For other options check
http://dss.princeton.edu/training/DataPrep101.pdf

*Thank you to Scott Kostyshak for useful advice/code.

Data locations usually available in codebooks

"
"
"
"
"
"
"

Var

Rec

var1

1

var3

1

var6

1

var2

var4
var5
var7

Start
1

1

24

1
1

32
44

1

End
7

F7.2

25

F2.0

33
45

F2.0
A2

166

A2

26

27

156

158

165

Format

A2

A3

12
R

Stata
Exploring data

str(mydata)

# Provides the structure of the
dataset
summary(mydata) # Provides basic descriptive
statistics and frequencies
names(mydata)
# Lists variables in the dataset
head(mydata)
# First 6 rows of dataset
head(mydata, n=10)# First 10 rows of dataset
head(mydata, n= -10) # All rows but the last 10
tail(mydata)
# Last 6 rows
tail(mydata, n=10)
# Last 10 rows
tail(mydata, n= -10) # All rows but the first 10
mydata[1:10, ]
# First 10 rows of the
mydata[1:10,1:3] # First 10 rows of data of the
first 3 variables
edit(mydata)
# Open data editor

describe
summarize
ds
list in 1/6
edit
browse

/* Provides the structure of the
dataset*/
/* Provides basic descriptive
statistics for numeric data*/
/* Lists variables in the dataset */
/* First 6 rows */
/* Open data editor (double-click to
edit*/
/* Browse data */

mydata <- edit(data.frame())

Missing data
sum(is.na(mydata))# Number of missing in dataset
rowSums(is.na(data))# Number of missing per
variable
rowMeans(is.na(data))*length(data)# No. of missing
per row
mydata[mydata$age=="& ","age"] <- NA
# NOTE:
Notice hidden spaces.
mydata[mydata$age==999,"age"] <- NA
The function complete.cases() returns a logical vector
indicating which cases are complete.
# list rows of data that have missing values
mydata[!complete.cases(mydata),]
The function na.omit() returns the object with listwise
deletion of missing values.
# create new dataset without missing data
newdata <- na.omit(mydata)

tabmiss

/* # of missing. Need to install, type
scc install tabmiss. Also try findit
tabmiss and follow instructions */

/* For missing values per observation see the
function ‘rowmiss’ and the ‘egen’
command*/

13
R

Stata
Renaming variables

#Using base commands

edit

fix(mydata)
# Rename interactively.
names(mydata)[3] <- "First"

rename oldname newname

# Using library –-reshape-library(reshape)
mydata <- rename(mydata, c(Last.Name="Last"))
mydata <- rename(mydata, c(First.Name="First"))
mydata <- rename(mydata,
c(Student.Status="Status"))
mydata <- rename(mydata,
c(Average.score..grade.="Score"))
mydata <- rename(mydata, c(Height..in.="Height"))
mydata <- rename(mydata,
c(Newspaper.readership..times.wk.="Read"))

/* Open data editor (double-click to edit)

rename
rename
rename
rename
rename
rename

lastname last
firstname first
studentstatus status
averagescoregrade score
heightin height
newspaperreadershiptimeswk read

Variable labels
Use variable names as variable labels

/* Adding labels to variables */
label
label
label
label
label
label
label

variable
variable
variable
variable
variable
variable
variable

w "Weight"
y "Output"
x1 "Predictor 1"
x2 "Predictor 2"
x3 "Predictor 3"
age "Age"
sex "Gender"

14
R

Stata
Value labels

# Use factor() for nominal data

/* Step 1 defining labels */

mydata$sex <- factor(mydata$sex, levels = c(1,2),
labels = c("male", "female"))

label define approve 1 "Approve strongly" 2
"Approve somewhat" 3 "Disapprove somewhat" 4
"Disapprove strongly" 5 "Not sure" 6 "Refused"

# Use ordered() for ordinal data

label define well 1 "Very well" 2 "Fairly well" 3
"Fairly badly" 4 "Very badly" 5 "Not sure" 6
"Refused"

mydata$var2 <- ordered(mydata$var2, levels =
c(1,2,3,4), labels = c("Strongly agree",
"Somewhat agree", "Somewhat disagree",
"Strongly disagree"))
mydata$var8 <- ordered(mydata$var2, levels =
c(1,2,3,4), labels = c("Strongly agree",
"Somewhat agree", "Somewhat disagree",
"Strongly disagree"))
# Making a copy
of the same variable

label define partyid 1 "Party A" 2 "Party B" 3
"Equally party A/B" 4 "Third party candidates" 5
"Not sure" 6 "Refused"
label define gender 1 "Male" 2 "Female“
/* Step 2 applying labels */
label values
label values
tab x1
d x1
destring x1,
label values
label values
label values
tab x3
destring x3,
label values
tab x3
label values

y approve
x1 approve
replace
x1 approve
x2 well
x3 partyid
replace ignore(&)
x3 partyid
sex gender

tab1 y x1 x2 x3 age sex

15
R

Stata
Creating ids/sequence of numbers

# Creating a variable with a sequence of numbers
or to index

/* Creating a variable with a sequence of numbers
or to index */

# Creating a variable with a sequence of numbers
from 1 to n (where ‘n’ is the total number of
observations)

/* Creating a variable with a sequence of numbers
from 1 to n (where ‘n’ is the total number of
observations) */

mydata$id <- seq(dim(mydata)[1])

gen id = _n

# Creating a variable with the total number of
observations

/* Creating a variable with the total number of
observations */

mydata$total <- dim(mydata)[1]

gen total = _N

/* Creating a variable with a sequence of numbers
from 1 to n per category (where ‘n’ is the total
number of observations in each category)(1) */

/* Creating a variable with a sequence of numbers
from 1 to n per category (where ‘n’ is the total
number of observations in each category) */

mydata <- mydata[order(mydata$group),]
idgroup <- tapply(mydata$group, mydata$group,
function(x) seq(1,length(x),1))
mydata$idgroup <- unlist(idgroup)

bysort group: gen id = _n
For more info see:
http://www.stata.com/help.cgi?_n

(1) Thanks to Alex Acs for the code

http://dss.princeton.edu/training/StataTutorial.pdf

16
R

Stata
Recoding variables

library(car)
mydata$Age.rec <- recode(mydata$Age,
"18:19='18to19';
20:29='20to29';
30:39='30to39'")

recode age (18 19 = 1 "18 to 19") ///
(20/28 = 2 "20 to 29") ///
(30/39 = 3 "30 to 39") (else=.),
generate(agegroups) label(agegroups)

mydata$Age.rec <- as.factor(mydata$Age.rec)

Dropping variables
mydata$Age.rec <- NULL
mydata$var1 <- mydata$var2 <- NULL

drop var1
drop var1-var10

Keeping track of your work
# Save the commands used during the session
savehistory(file="mylog.Rhistory")
# Load the commands used in a previous session
loadhistory(file="mylog.Rhistory")
# Display the last 25 commands
history()
# You can read mylog.Rhistory with any word
processor. Notice that the file has to have the
extension *.Rhistory

/* A
to a
file
text

log file helps you save commands and output
text file (*.log) or to a Stata read-only
(*.smcl). The best way is to save it as a
file (*.log)*/

log using mylog.log
/*Start the log*/
log close
/*Close the log*/
log using mylog.log, append /*Add to an existing
log*/
log using mylog.log, replace /*Replace an
existing log*/
/*You can read mylog.log using any word
processor*/

17
R

Stata
Categorical data: Frequencies/Crosstab s

table(mydata$Gender)
table(mydata$Read)
readgender <- table(mydata$Read,mydata$Gender)
prop.table(readgender,1)
# Row proportions
prop.table(readgender,2)
# Col proportions
prop.table(readgender)
# Tot proportions
chisq.test(readgender)
# Do chisq test Ho: no
relathionship
fisher.test(readgender)
# Do fisher'exact test
Ho: no relationship
round(prop.table(readgender,2), 2)
# Round col
prop to 2 digits
round(prop.table(readgender,2), 2)
# Round col
prop to 2 digits
round(100* prop.table(readgender,2), 2)
# Round
col % to 2 digits
round(100* prop.table(readgender,2))
# Round col
% to whole numbers
addmargins(readgender)
# Adding row/col margins

tab gender
tab read

/*Frequencies*/

tab read gender, col row

/*Crosstabs*/

tab read gender, col row chi2 V
/*Crosstabs where chi2 (The null hypothesis (Ho)
is that there is no relationship) and V (measure
of association goes from 0 to 1)*/
bysort studentstatus: tab read gender, colum row

#install.packages("vcd")
library(vcd)
assocstats(majorgender)
# NOTE: Chi-sqr = sum (obs-exp)^2/exp
Degrees of freedom for Chi-sqr are (r-1)*(c-1)
# NOTE: Chi-sqr contribution = (obs-exp)^2/exp
# Cramer's V = sqrt(Chi-sqr/N*min)
Where N is sample size and min is a the minimun of
(r-1) or (c-1)

18
R

Stata
Categorical data: Frequencies/Crosstab s

install.packages("gmodels")
library(gmodels)
mydata$ones <- 1 # Create a new variable of ones
CrossTable(mydata$Major,digits=2)
CrossTable(mydata$Major,mydata$ones, digits=2)
CrossTable(mydata$Gender,mydata$ones, digits=2)
CrossTable(mydata$Major,mydata$Gender,digits=2,
expected=TRUE,dnn=c("Major","Gender"))

tab gender
tab major

/*Frequencies*/

tab major gender, col row

/*Crosstabs*/

tab major gender, col row chi2 V
/*Crosstabs which chi2 (The null hypothesis (Ho)
is that there is no relationship) and V (measure
of association goes from 0 to 1)*/
bysort studentstatus: tab gender major, colum row

CrossTable(mydata$Major,mydata$Gender,digits=2,
dnn=c("Major","Gender"))
chisq.test(mydata$Major,mydata$Gender) # Null
hipothesis: no association
# 3-way crosstabs
test <- xtabs(~Read+Major+Gender, data=mydata)
#install.packages("vcd")
library(vcd)
assocstats(majorgender)

19
R

Stata
Descriptive Statistics

install.packages("pastecs")

summarize

library(pastecs)

summarize, detail /*N, mean, sd, min, max,
variance, skewness, kurtosis,
percentiles*/

stat.desc(mydata)
stat.desc(mydata[,c("Age","SAT","Score","Height",
"Read")])
stat.desc(mydata[,c("Age","SAT","Score")],
basic=TRUE, desc=TRUE, norm=TRUE, p=0.95)
stat.desc(mydata[10:14], basic=TRUE, desc=TRUE,
norm=TRUE, p=0.95)
-----------------------------------------------# Selecting the first 30 observations and first 14
variables

/*N, mean, sd, min, max*/

summarize age, detail
summarize sat, detail
-----------------------------------------------tabstat age sat score heightin read /*Gives the
mean only*/
tabstat

age sat score heightin read,
statistics(n, mean, median, sd, var,
min, max)

mydata2 <- mydata2[1:30,1:14]

tabstat

age sat score heightin read, by(gender)

# Selection using the --subset—

tabstat

age sat score heightin read,
statistics(mean, median) by(gender)

mydata3 <- subset(mydata2, Age >= 20 & Age <= 30)
mydata4 <- subset(mydata2, Age >= 20 & Age <= 30,
select=c(ID, First, Last, Age))
mydata5 <- subset(mydata2, Gender=="Female" &
Status=="Graduate" & Age >= 30)
mydata6 <- subset(mydata2, Gender=="Female" &
Status=="Graduate" & Age == 30)

/*Type help tabstat for a list of all statistics*/

-----------------------------------------------table gender, contents(freq mean age mean score)
tab gender major, sum(sat)

/*Categorical and
continuous*/

bysort studentstatus: tab gender major, sum(sat)

20
R

Stata
Descriptive Statistics

mean(mydata) # Mean of all numeric variables, same
using --sapply--('s' for simplify)
mean(mydata$SAT)
with(mydata, mean(SAT))
median(mydata$SAT)
table(mydata$Country) # Mode by frequencies ->
max(table(mydata$Country)) / names(sort(table(mydata$Country)))[1]
var(mydata$SAT) # Variance
sd(mydata$SAT) # Standard deviation
max(mydata$SAT) # Max value
min(mydata$SAT) # Min value
range(mydata$SAT) # Range
quantile(mydata$SAT)
quantile(mydata$SAT, c(.3,.6,.9))
fivenum(mydata$SAT)
# Boxplot elements. From
help: "Returns Tukey's five number summary
(minimum, lower-hinge, median, upper-hinge,
maximum) for the input data ~ boxplot"
length(mydata$SAT)
# Num of observations when a
variable is specify
length(mydata)
# Number of variables when a
dataset is specify
which.max(mydata$SAT) # From help: "Determines the
location, i.e., index of the (first) minimum or
maximum of a numeric vector"
which.min(mydata$SAT) # From help: "Determines the
location, i.e., index of the (first) minimum or
maximum of a numeric vector”
stderr <- function(x) sqrt(var(x)/length(x))
incster <- tapply(incomes, statef, stderr)

summarize
/*N, mean, sd, min, max*/
summarize, detail /*N, mean, sd, min, max,
variance, skewness, kurtosis,
percentiles*/
summarize age, detail
summarize sat, detail
tabstat age sat score heightin read /*Gives the
mean only*/
tabstat age sat score heightin read,
statistics(n, mean, median, sd, var,
min, max)
/*Type help tabstat for a list of all statistics*/
tabstat
tabstat

age sat score heightin read, by(gender)
age sat score heightin read,
statistics(mean, median) by(gender)

table gender, contents(freq mean age mean score)
tab gender major, sum(sat)
continuous*/

/*Categorical and

bysort studentstatus: tab gender major, sum(sat)

21
R

Stata
Descriptive Statistics

# Descriptive statiscs by groups using --tapply-mean <- tapply(mydata$SAT,mydata$Gender, mean)
# Add na.rm=TRUE to remove missing values in the
estimation
sd <- tapply(mydata$SAT,mydata$Gender, sd)
median <- tapply(mydata$SAT,mydata$Gender, median)
max <- tapply(mydata$SAT,mydata$Gender, max)
cbind(mean, median, sd, max)
round(cbind(mean, median, sd, max),digits=1)
t1 <- round(cbind(mean, median, sd, max),digits=1)
t1

summarize
/*N, mean, sd, min, max*/
summarize, detail /*N, mean, sd, min, max,
variance, skewness, kurtosis,
percentiles*/
summarize age, detail
summarize sat, detail
tabstat age sat score heightin read /*Gives the
mean only*/
tabstat age sat score heightin read,
statistics(n, mean, median, sd, var,
min, max)
/*Type help tabstat for a list of all statistics*/

# Descriptive statistics by groups using -aggregate—

tabstat
tabstat

aggregate(mydata[c("Age","SAT")],by=list(sex=mydat
a$Gender), mean, na.rm=TRUE)
aggregate(mydata[c("Age","SAT")],mydata["Gender"],
mean, na.rm=TRUE)
aggregate(mydata,by=list(sex=mydata$Gender), mean,
na.rm=TRUE)
aggregate(mydata,by=list(sex=mydata$Gender,
major=mydata$Major,
status=mydata$Status), mean,
na.rm=TRUE)
aggregate(mydata$SAT,by=list(sex=mydata$Gender,
major=mydata$Major,
status=mydata$Status), mean,
na.rm=TRUE)
aggregate(mydata[c("SAT")],by=list(sex=mydata$Gend
er, major=mydata$Major,
status=mydata$Status), mean,
na.rm=TRUE)

age sat score heightin read, by(gender)
age sat score heightin read,
statistics(mean, median) by(gender)

table gender, contents(freq mean age mean score)
tab gender major, sum(sat)
continuous*/

/*Categorical and

bysort studentstatus: tab gender major, sum(sat)

22
R

Stata
Histograms

library(car)
head(Prestige)
hist(Prestige$income)
hist(Prestige$income, col="green")
with(Prestige, hist(income)) # Histogram of income
with a nicer title.
with(Prestige, hist(income, breaks="FD",
col="green")) # Applying Freedman/Diaconis rule
p.120 ("Algorithm that chooses bin widths and
locations automatically, based on the sample
size and the spread of the data"
http://www.mathworks.com/help/toolbox/stats/bquc
g6n.html)
box()
hist(Prestige$income, breaks="FD")
# Conditional histograms
par(mfrow=c(1, 2))
hist(mydata$SAT[mydata$Gender=="Female"],
breaks="FD", main="Female",
xlab="SAT",col="green")
hist(mydata$SAT[mydata$Gender=="Male"],
breaks="FD", main="Male",
xlab="SAT", col="green")
# Braces indicate a compound command allowing
several commands with 'with'
command
par(mfrow=c(1, 1))
with(Prestige, {
hist(income, breaks="FD",
freq=FALSE, col="green")
lines(density(income), lwd=2)
lines(density(income,
adjust=0.5),lwd=1)
rug(income)
})

hist sat
hist sat, normal
hist sat, by(gender)

23
R

Stata
Histograms

# Histograms overlaid
hist(mydata$SAT, breaks="FD", col="green")
hist(mydata$SAT[mydata$Gender=="Male"],
breaks="FD", col="gray",
add=TRUE)
legend("topright", c("Female","Male"),
fill=c("green","gray"))

hist sat
hist sat, normal
hist sat, by(gender)

24
R

Stata
Scatterplots

# Scatterplots. Useful to 1) study the mean and
variance functions in the regression of y on x
p.128; 2)to identify outliers and leverage points.

twoway scatter y x

# plot(x,y)

twoway scatter sat age, mlabel(last)

plot(mydata$SAT) # Index plot
plot(mydata$Age, mydata$SAT)
plot(mydata$Age, mydata$SAT, main=“Age/SAT",
xlab=“Age", ylab=“SAT", col="red")
abline(lm(mydata$SAT~mydata$Age), col="blue")
# regression line (y~x)
lines(lowess(mydata$Age, mydata$SAT), col="green")
# lowess line (x,y)
identify(mydata$Age, mydata$SAT,
row.names(mydata))

twoway scatter sat age, mlabel(last) || lfit sat age

# On row.names to identify. "All data frames have
a row names attribute, a character vector of
length the number of rows with no duplicates nor
missing values." (source link below).
# "Use attr(x, "row.names") if you need an integer
value.)" http://stat.ethz.ch/R-manual/Rdevel/library/base/html/row.names.html
mydata$Names <- paste(mydata$Last, mydata$First)
row.names(mydata) <- mydata$Names
plot(mydata$SAT, mydata$Age)
identify(mydata$SAT, mydata$Age,
row.names(mydata))

twoway scatter sat age, title("Figure 1. SAT/Age")

twoway scatter sat age, mlabel(last) || lfit sat age
|| lowess sat age /* locally weighted
scatterplot smoothing */
twoway scatter sat age, mlabel(last) || lfit sat age,
yline(1800) xline(30)
twoway scatter sat age, mlabel(last) by(major, total)
twoway scatter sat age, mlabel(last) by(major, total)
|| lfit sat age
/* Adding confidence intervals */
twoway (lfitci sat age) || (scatter sat age)
/*Reverse order shaded area cover dots*/
twoway (lfitci sat age) || (scatter sat age,
mlabel(last))
twoway (lfitci sat age) || (scatter sat age,
mlabel(last)), title("SAT scores by
age") ytitle("SAT")
twoway scatter sat age, mlabel(last) by(gender,
total)

25
R

Stata
Scatterplots

# Rule on span for lowess, big sample smaller
(~0.3), small sample bigger (~0.7)
library(car)
scatterplot(SAT~Age, data=mydata)
scatterplot(SAT~Age, id.method="identify",
data=mydata)
scatterplot(SAT~Age, id.method="identify",
boxplots= FALSE, data=mydata)
scatterplot(prestige~income, span=0.6, lwd=3,
id.n=4, data=Prestige)
# By groups
scatterplot(SAT~Age|Gender, data=mydata)
scatterplot(SAT~Age|Gender, id.method="identify",
data=mydata)
scatterplot(prestige~income|type, boxplots=FALSE,
span=0.75, data=Prestige)
scatterplot(prestige~income|type, boxplots=FALSE,
span=0.75,
col=gray(c(0,0.5,0.7)),
data=Prestige)

twoway scatter y x
twoway scatter sat age, title("Figure 1. SAT/Age")
twoway scatter sat age, mlabel(last)
twoway scatter sat age, mlabel(last) || lfit sat age
twoway scatter sat age, mlabel(last) || lfit sat age
|| lowess sat age /* locally weighted
scatterplot smoothing */
twoway scatter sat age, mlabel(last) || lfit sat age,
yline(1800) xline(30)
twoway scatter sat age, mlabel(last) by(major, total)
twoway scatter sat age, mlabel(last) by(major, total)
|| lfit sat age
/* Adding confidence intervals */
twoway (lfitci sat age) || (scatter sat age)
/*Reverse order shaded area cover dots*/
twoway (lfitci sat age) || (scatter sat age,
mlabel(last))
twoway (lfitci sat age) || (scatter sat age,
mlabel(last)), title("SAT scores by
age") ytitle("SAT")
twoway scatter sat age, mlabel(last) by(gender,
total)

26
R

Stata
Scatterplots (multiple)

scatterplotMatrix(~ prestige + income + education
+ women, span=0.7, id.n=0,
data=Prestige)

graph matrix
graph matrix

sat age score heightin read
sat age score heightin read, half

pairs(Prestige)

# Pariwise plots. Scatterplots
of all variables in the dataset
pairs(Prestige, gap=0, cex.labels=0.9) # gap
controls the space between
subplot and cex.labels the font
size (Dalgaard:186)

3D Scatterplots
library(car)
scatter3d(prestige ~ income + education, id.n=3,
data=Duncan)

27
R

Stata
Scatterplots (for categorical data)

plot(vocabulary ~ education, data=Vocab)
plot(jitter(vocabulary) ~ jitter(education),
data=Vocab)
plot(jitter(vocabulary, factor=2) ~
jitter(education, factor=2),
data=Vocab)
# cex makes the point half the size, p. 134
plot(jitter(vocabulary, factor=2) ~
jitter(education, factor=2),
col="gray", cex=0.5, data=Vocab)
with(Vocab, {
abline(lm(vocabulary ~
education), lwd=3, lty="dashed")
lines(lowess(education,
vocabulary, f=0.2), lwd=3)
})

/*Categorical data using mydata.dat and the jitter
option*/
/*"scatter will add spherical random noise to your
data before plotting if you specify jitter(#),
where # represents the size of the noise as a
percentage of the graphical area. This can be
useful for creating graphs of categorical data
when the data not jittered, many of the points
would be on top of each other, making it
impossible to tell whether the plotted point
represented one or 1,000 observations.” Source:
Stata’s help page, type: help scatter*/
/*Use mydata.dat*/
graph matrix y x1 x2 x3
scatter y x1, jitter(7) title(xyz)
scatter y x1, jitter(7) msize(0.5)
scatter y x1, jitter(13) msize(0.5)
twoway scatter y x1, jitter(13) msize(0.5) || lfit
y x1
graph matrix x1 x1 x2 x3, jitter(5)
graph matrix y x1 x2 x3, jitter(13) msize(0.5)
graph matrix y x1 x2 x3, jitter(13) msize(0.5)
half

28
References/Useful links
•

DSS Online Training Section http://dss.princeton.edu/training/

•

Princeton DSS Libguides http://libguides.princeton.edu/dss

•

John Fox’s site http://socserv.mcmaster.ca/jfox/

•

Quick-R http://www.statmethods.net/

•

UCLA Resources to learn and use R http://www.ats.ucla.edu/stat/R/

•

UCLA Resources to learn and use Stata http://www.ats.ucla.edu/stat/stata/

•

DSS - Stata http://dss/online_help/stats_packages/stata/

•

DSS - R http://dss.princeton.edu/online_help/stats_packages/r

29
References/Recommended books
•

An R Companion to Applied Regression, Second Edition / John Fox , Sanford Weisberg, Sage Publications, 2011

•

Data Manipulation with R / Phil Spector, Springer, 2008

•

Applied Econometrics with R / Christian Kleiber, Achim Zeileis, Springer, 2008

•

Introductory Statistics with R / Peter Dalgaard, Springer, 2008

•

Complex Surveys. A guide to Analysis Using R / Thomas Lumley, Wiley, 2010

•

Applied Regression Analysis and Generalized Linear Models / John Fox, Sage, 2008

•

R for Stata Users / Robert A. Muenchen, Joseph Hilbe, Springer, 2010

•

Introduction to econometrics / James H. Stock, Mark W. Watson. 2nd ed., Boston: Pearson Addison Wesley,
2007.

•

Data analysis using regression and multilevel/hierarchical models / Andrew Gelman, Jennifer Hill. Cambridge ;
New York : Cambridge University Press, 2007.

•

Econometric analysis / William H. Greene. 6th ed., Upper Saddle River, N.J. : Prentice Hall, 2008.

•

Designing Social Inquiry: Scientific Inference in Qualitative Research / Gary King, Robert O. Keohane, Sidney
Verba, Princeton University Press, 1994.

•

Unifying Political Methodology: The Likelihood Theory of Statistical Inference / Gary King, Cambridge University
Press, 1989

•

Statistical Analysis: an interdisciplinary introduction to univariate & multivariate methods / Sam
Kachigan, New York : Radius Press, c1986

•

Statistics with Stata (updated for version 9) / Lawrence Hamilton, Thomson Books/Cole, 2006
30

More Related Content

PDF
Hive
PDF
Pig
PPTX
Advanced topics in hive
PPTX
Unit 5-lecture-3
PPT
Unit 5-lecture4
PPTX
03 hive query language (hql)
PDF
Import web resources using R Studio
PDF
Import and Export Big Data using R Studio
Hive
Pig
Advanced topics in hive
Unit 5-lecture-3
Unit 5-lecture4
03 hive query language (hql)
Import web resources using R Studio
Import and Export Big Data using R Studio

What's hot (20)

PPTX
Hive and HiveQL - Module6
PDF
Apache hive
PDF
Apache Hive Table Partition and HQL
PPTX
Advance Hive, NoSQL Database (HBase) - Module 7
PDF
Hadoop first mr job - inverted index construction
PPTX
Hive : WareHousing Over hadoop
PDF
Import Database Data using RODBC in R Studio
PDF
Inside Parquet Format
PPTX
Bringing OpenClinica Data into SAS
PPT
Creating a database
PDF
lab56_db
PPTX
Hspark index conf
PPT
Hechsp 001 Chapter 3
PDF
HBaseCon 2012 | HBase Schema Design - Ian Varley, Salesforce
PPTX
Apache hive
PPTX
Spark Sql and DataFrame
PDF
Lightweight ETL pipelines with mara (PyData Berlin September Meetup)
PPTX
02 data warehouse applications with hive
PPTX
Data Warehouse and Business Intelligence - Recipe 4 - Staging area - how to v...
ODT
ACADGILD:: HADOOP LESSON
Hive and HiveQL - Module6
Apache hive
Apache Hive Table Partition and HQL
Advance Hive, NoSQL Database (HBase) - Module 7
Hadoop first mr job - inverted index construction
Hive : WareHousing Over hadoop
Import Database Data using RODBC in R Studio
Inside Parquet Format
Bringing OpenClinica Data into SAS
Creating a database
lab56_db
Hspark index conf
Hechsp 001 Chapter 3
HBaseCon 2012 | HBase Schema Design - Ian Varley, Salesforce
Apache hive
Spark Sql and DataFrame
Lightweight ETL pipelines with mara (PyData Berlin September Meetup)
02 data warehouse applications with hive
Data Warehouse and Business Intelligence - Recipe 4 - Staging area - how to v...
ACADGILD:: HADOOP LESSON
Ad

Viewers also liked (20)

PPT
About us ppt
PPT
Easy R
PPT
Offshoring 101 For Statisticians Techies And A
PPT
r,rstats,r language,r packages
PDF
Modeling science
PDF
1 basics
PPTX
Analytics what to look for sustaining your growing business-
PPTX
C1 t1,t2,t3,t4 complete
PDF
Summer School with DecisionStats brochure
PPTX
Bd class 2 complete
PDF
Introduction to sas
PPT
Ibm big data hadoop summit 2012 james kobielus final 6-13-12(1)
PPTX
Analyze this
PPTX
R basics
PDF
Big data Big Analytics
PPTX
Big data gaurav
PDF
Open source analytics
PPTX
Introduction to sas in spanish
PDF
March meet up new delhi users- Two R GUIs Rattle and Deducer
PDF
Data analytics using the cloud challenges and opportunities for india
About us ppt
Easy R
Offshoring 101 For Statisticians Techies And A
r,rstats,r language,r packages
Modeling science
1 basics
Analytics what to look for sustaining your growing business-
C1 t1,t2,t3,t4 complete
Summer School with DecisionStats brochure
Bd class 2 complete
Introduction to sas
Ibm big data hadoop summit 2012 james kobielus final 6-13-12(1)
Analyze this
R basics
Big data Big Analytics
Big data gaurav
Open source analytics
Introduction to sas in spanish
March meet up new delhi users- Two R GUIs Rattle and Deducer
Data analytics using the cloud challenges and opportunities for india
Ad

Similar to R stata (20)

PDF
1 Installing & getting started with R
PDF
StataTutorial.pdf
PDF
Stata tutorial
PPT
Introduction to Stata
PDF
1 installing & Getting Started with R
PDF
PPT - Introduction to R.pdf
PPTX
introductions to Stata software power point
PPTX
introduction-stata.pptx
PDF
Stata tutorial university of princeton
PPT
Introduction to R for Data Science Technology
PPT
PPT
Slides on introduction to R by ArinBasu MD
PPT
17641.ppt
PPT
Basics of R-Progranmming with instata.ppt
PPT
introduction to R with example, Data science
PPTX
Introduction
PPT
How to obtain and install R.ppt
PDF
Getting started with stata 13
PDF
An introduction to STATA.pdf
PPTX
Introduction - Using Stata
1 Installing & getting started with R
StataTutorial.pdf
Stata tutorial
Introduction to Stata
1 installing & Getting Started with R
PPT - Introduction to R.pdf
introductions to Stata software power point
introduction-stata.pptx
Stata tutorial university of princeton
Introduction to R for Data Science Technology
Slides on introduction to R by ArinBasu MD
17641.ppt
Basics of R-Progranmming with instata.ppt
introduction to R with example, Data science
Introduction
How to obtain and install R.ppt
Getting started with stata 13
An introduction to STATA.pdf
Introduction - Using Stata

More from Ajay Ohri (20)

PDF
Introduction to R ajay Ohri
PPTX
Introduction to R
PDF
Social Media and Fake News in the 2016 Election
PDF
Pyspark
PDF
Download Python for R Users pdf for free
PDF
Install spark on_windows10
DOCX
Ajay ohri Resume
PDF
Statistics for data scientists
PPTX
National seminar on emergence of internet of things (io t) trends and challe...
PDF
Tools and techniques for data science
PPTX
How Big Data ,Cloud Computing ,Data Science can help business
PDF
Training in Analytics and Data Science
PDF
Tradecraft
PDF
Software Testing for Data Scientists
PDF
Craps
PDF
A Data Science Tutorial in Python
PDF
How does cryptography work? by Jeroen Ooms
PDF
Using R for Social Media and Sports Analytics
PDF
Kush stats alpha
PPTX
Summer school python in spanish
Introduction to R ajay Ohri
Introduction to R
Social Media and Fake News in the 2016 Election
Pyspark
Download Python for R Users pdf for free
Install spark on_windows10
Ajay ohri Resume
Statistics for data scientists
National seminar on emergence of internet of things (io t) trends and challe...
Tools and techniques for data science
How Big Data ,Cloud Computing ,Data Science can help business
Training in Analytics and Data Science
Tradecraft
Software Testing for Data Scientists
Craps
A Data Science Tutorial in Python
How does cryptography work? by Jeroen Ooms
Using R for Social Media and Sports Analytics
Kush stats alpha
Summer school python in spanish

Recently uploaded (20)

PDF
Empathic Computing: Creating Shared Understanding
PPTX
ACSFv1EN-58255 AWS Academy Cloud Security Foundations.pptx
PDF
Chapter 3 Spatial Domain Image Processing.pdf
PDF
Unlocking AI with Model Context Protocol (MCP)
PDF
Mobile App Security Testing_ A Comprehensive Guide.pdf
PPTX
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
PPTX
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
PDF
Approach and Philosophy of On baking technology
DOCX
The AUB Centre for AI in Media Proposal.docx
PDF
Reach Out and Touch Someone: Haptics and Empathic Computing
PDF
Machine learning based COVID-19 study performance prediction
PPT
Teaching material agriculture food technology
PPTX
Digital-Transformation-Roadmap-for-Companies.pptx
PDF
cuic standard and advanced reporting.pdf
PDF
Spectral efficient network and resource selection model in 5G networks
PDF
Dropbox Q2 2025 Financial Results & Investor Presentation
PDF
MIND Revenue Release Quarter 2 2025 Press Release
PDF
Diabetes mellitus diagnosis method based random forest with bat algorithm
PPTX
20250228 LYD VKU AI Blended-Learning.pptx
PDF
Assigned Numbers - 2025 - Bluetooth® Document
Empathic Computing: Creating Shared Understanding
ACSFv1EN-58255 AWS Academy Cloud Security Foundations.pptx
Chapter 3 Spatial Domain Image Processing.pdf
Unlocking AI with Model Context Protocol (MCP)
Mobile App Security Testing_ A Comprehensive Guide.pdf
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
Approach and Philosophy of On baking technology
The AUB Centre for AI in Media Proposal.docx
Reach Out and Touch Someone: Haptics and Empathic Computing
Machine learning based COVID-19 study performance prediction
Teaching material agriculture food technology
Digital-Transformation-Roadmap-for-Companies.pptx
cuic standard and advanced reporting.pdf
Spectral efficient network and resource selection model in 5G networks
Dropbox Q2 2025 Financial Results & Investor Presentation
MIND Revenue Release Quarter 2 2025 Press Release
Diabetes mellitus diagnosis method based random forest with bat algorithm
20250228 LYD VKU AI Blended-Learning.pptx
Assigned Numbers - 2025 - Bluetooth® Document

R stata

  • 1. Getting Started in R~Stata Notes on Exploring Data (ver. 0.3-Draft) Oscar Torres-Reyna Data Consultant otorres@princeton.edu http://dss.princeton.edu/training/
  • 2. What is R/Stata? What is R? • “R is a language and environment for statistical computing and graphics”* • R is offered as open source (i.e. free) What is Stata? • It is a multi-purpose statistical package to help you explore, summarize and analyze datasets. • A dataset is a collection of several pieces of information called variables (usually arranged by columns). A variable can have one or several values (information for one or several cases). • Other statistical packages are SPSS and SAS. Features Stata SPSS SAS R Learning curve Steep/gradual Gradual/flat Pretty steep Pretty steep User interface Programming/point-and-click Mostly point-and-click Programming Programming Very strong Moderate Very strong Very strong Powerful Powerful Powerful/versatile Powerful/versatile Very good Very good Good Excellent Affordable (perpetual licenses, renew only when upgrade) Expensive (but not need to renew until upgrade, long term licenses) Expensive (yearly renewal) Open source Data manipulation Data analysis Graphics Cost NOTE: The R content presented in this document is mostly based on an early version of Fox, J. and Weisberg, S. (2011) An R Companion to Applied Regression, Second Edition, Sage; and from class notes from the ICPSR’s workshop Introduction to the R Statistical Computing Environment taught by John Fox during the summer of 2010. * http://www.r-project.org/index.html
  • 3. This is the R screen in Multiple-Document Interface (MDI)…
  • 4. This is the R screen in Single-Document Interface (SDI)…
  • 5. Stata’s screen (10.x version) See here for more info http://dss.princeton.edu/training/StataTutorial.pdf
  • 6. R Stata Working directory getwd() # Shows the working directory (wd) setwd("C:/myfolder/data") # Changes the wd setwd("H:myfolderdata") # Changes the wd pwd /*Shows the working directory*/ cd c:myfolderdata /*Changes the wd*/ cd “c:myfolderstata data” /*Notice the spaces*/ Installing packages/user-written programs install.packages("ABC") # This will install the package –-ABC--. A window will pop-up, select a mirror site to download from (the closest to where you are) and click ok. library(ABC) # Load the package –-ABC-– to your workspace in R ssc install abc /*Will install the user-defined program ‘abc’. It will be ready to run. findit abc /*Will do an online search for program ‘abc’ or programs that include ‘abc’. It also searcher your computer. Getting help ?plot # Get help for an object, in this case for the –-plot– function. You can also type: help(plot) ??regression # Search the help pages for anything that has the word "regression". You can also type: help.search("regression") apropos("age") # Search the word "age" in the objects available in the current R session. help tab /* Get help on the command ‘tab’*/ search regression /* Search the keywords for the word ‘regression’*/ hsearch regression /* Search the help files for the work ‘regression’. It provides more options than ‘search’*/ help(package=car) # View documentation in package ‘car’. You can also type: library(help="car“) help(DataABC) # Access codebook for a dataset called ‘DataABC’ in the package ABC 6
  • 7. R Stata Data from *.csv (copy-and-paste) # Select the table from the excel file, copy, go to the R Console and type: /* Select the table from the excel file, copy, go to Stata, in the command line type: mydata <- read.table("clipboard", header=TRUE, sep="t") edit /*The data editor will pop-up and paste the data (Ctrl-V). Select the link for to include variable names Data from *.csv # Reading the data directly /* In the command line type */ mydata <- read.csv("c:mydatamydatafile.csv", header=TRUE) insheet using "c:mydatamydatafile.csv" # The will open a window to search for the *.csv file. mydata <- read.csv(file.choose(), header = TRUE) /* Using the menu */ Go to File->Import->”ASCII data created by spreadsheet”. Click on ‘Browse’ to find the file and then OK. Data from/to *.txt (space , tab, comma-separated) # In the example above, variables have spaces and missing data is coded as ‘-9’ mydata <- read.table(("C:/myfolder/abc.txt", header=TRUE, sep="t", na.strings = "-9") /* See insheet above */ infile var1 var2 str7 var3 using abc.raw # Export the data /* Variables with embedded spaces must be enclosed in quotes */ # Export data write.table(mydata, file = "test.txt", sep = "t") outsheet using "c:mydataabc.csv" 7
  • 8. R Stata Data from/to SPSS install.packages("foreign") # Need to install package –-foreign–- first (you do this only once). /* Need to install the program ‘usespss’ (you do this only once) */ library(foreign) # Load package –-foreign-- ssc install usespss mydata.spss <read.spss("http://dss.princeton.edu/training/mydat a.sav", to.data.frame = TRUE, use.value.labels=TRUE, use.missings = to.data.frame) /* To read the *.sav type (in one line): # Where: # # ‘to.data.frame’ return a data frame. # # ‘use.value.labels’ Convert variables with value labels into R factors with those levels. # # ‘use.missings’ logical: should information on user-defined missing values be used to set the corresponding values to NA. Source: type ?read.spss help usespss -------------------------------------------------write.foreign(mydata, codefile="test2.sps", datafile="test2.raw", package=“SPSS") # Provides a syntax file (*.sps) to read the *.raw data file usespss using http://dss.princeton.edu/training/mydata.sav /* For additional information type */ Note: This does not work with SPSS portable files (*.por) -------------------------------------------------/* Stata does not convert files to SPSS. You need to save the data file as a Stata file version 9 that can be read by SPSS v15.0 or later*/ /* From Stata type: */ saveold mydata.dta /* Saves data to v.9 for SPSS 8
  • 9. R Stata Data from/to SAS # To read SAS XPORT format (*.xpt) library(foreign) # Load package –-foreign-mydata.sas <read.xport("http://dss.princeton.edu/training/myda ta.xpt") # Does not work for files online mydata.sas <- read.xport("c:/myfolder/mydata.xpt") # Using package –-Hmisc— library(Hmisc) mydata <sasxport.get(http://dss.princeton.edu/training/myd ata.xpt) # It works -------------------------------------------------write.foreign(mydata, codefile="test2.sas", datafile="test2.raw", package=“SAS") # Provide a syntax file (*.sas) to read the *.raw data /*If you have a file in SAS XPORT format (*.xpt) you can use ‘fdause’ (or go to File->Import). */ fdause "c:/myfolder/mydata.xpt“ /* Type help fdause for more details */ /* If you have SAS installed in your computer you can use the program ‘usesas’, which you can install by typing: */ ssc install usesas /* To read the *.sas7bcat type (in one line): */ usesas using "c:mydata.sas7bdat” -------------------------------------------------/* You can export a dataset as SAS XPORT by menu (go to File->Export) or by typing */ fdasave "c:/myfolder/mydata1.xpt“ /* Type help fdasave for more details */ NOTE: As an alternative, you can use SAS Universal Viewer (freeware from SAS) to read SAS files and save them as *.csv. Saving the file as *.csv removes variable/value labels, make sure you have the codebook available. 9
  • 10. R Stata Data from/to Stata library(foreign) # Load package –-foreign-mydata <read.dta("http://dss.princeton.edu/training/studen ts.dta") mydata.dta <read.dta("http://dss.princeton.edu/training/mydata .dta", convert.factors=TRUE, convert.dates=TRUE, convert.underscore=TRUE, warn.missing.labels=TRUE) # Where (source: type ?read.dta) # convert.dates. Convert Stata dates to Date class # convert.factors. Use Stata value labels to create factors? (version 6.0 or later). # convert.underscore. Convert "_" in Stata variable names to "." in R names? # warn.missing.labels. Warn if a variable is specified with value labels and those value labels are not present in the file. -------------------------------------------write.dta(mydata, file = "test.dta") # Direct export to Stata write.foreign(mydata, codefile="test1.do", datafile="test1.raw", package="Stata") # Provide a do-file to read the *.raw data /* To open a Stata file go to File -> Open, or type: */ use "c:myfoldermydata.dta" Or use "http://dss.princeton.edu/training/mydata.dta" /* If you need to load a subset of a Stata data file type */ use var1 var2 using "c:myfoldermydata.dta" use id city state gender using "H:WorkMarshallFall10Session12StataStudents.dta", clear -------------------------------------------------/* To save a dataset as Stata file got File -> Save As, or type: */ save mydata, replace save, replace /*If the fist time*/ /*If already saved as Stata file*/ 10
  • 11. R Stata Data from/to R load("mydata.RData") load("mydata.rda") /* Stata can’t read R data files */ /* Add path to data if necessary */ ------------------------------------------------save.image("mywork.RData") to file *.RData # Saving all objects save(object1, object2, file=“mywork.rda") # Saving selected objects 11
  • 12. R Stata Data from ACII Record form mydata.dat <read.fwf(file="http://dss.princeton.edu/training/m ydata.dat", width=c(7, -16, 2, 2, -4, 2, -10, 2, -110, 3, -6, 2), col.names=c("w","y","x1","x2","x3", "age", "sex"), n=1090) /* Using infix */ # Reading ASCII record form, numbers represent the width of variables, negative sign excludes variables not wanted (you must include these). dictionary using c:datamydata.dat { _column(1) var1 %7.2f _column(24) var2 %2f _column(26) str2 var3 %2s _column(32) var4 %2f _column(44) str2 var5 %2s _column(156) str3 var5 %3s _column(165) str2 var5 %2s } infix var1 1-7 var2 24-25 str2 var3 26-27 var4 3233 str2 var5 44-45 var6 156-158 var7 165-166 using "http://dss.princeton.edu/trainingmydata.dat" -------------------------------------------------/* Using infile */ # To get the width of the variables you must have a codebook for the data set available (see an example below). Label Label Label Label Label Label Label for for for for for for for var1 var2 var3 var4 var5 var6 var7 " " " " " " " /*Do not forget to close the brackets and press enter after the last bracket*/ # To get the widths for unwanted spaces use the formula: Save it as mydata.dct With infile we run the dictionary by typing: Start of var(t+1) – End of var(t) - 1 infile using c:datamydata For other options check http://dss.princeton.edu/training/DataPrep101.pdf *Thank you to Scott Kostyshak for useful advice/code. Data locations usually available in codebooks " " " " " " " Var Rec var1 1 var3 1 var6 1 var2 var4 var5 var7 Start 1 1 24 1 1 32 44 1 End 7 F7.2 25 F2.0 33 45 F2.0 A2 166 A2 26 27 156 158 165 Format A2 A3 12
  • 13. R Stata Exploring data str(mydata) # Provides the structure of the dataset summary(mydata) # Provides basic descriptive statistics and frequencies names(mydata) # Lists variables in the dataset head(mydata) # First 6 rows of dataset head(mydata, n=10)# First 10 rows of dataset head(mydata, n= -10) # All rows but the last 10 tail(mydata) # Last 6 rows tail(mydata, n=10) # Last 10 rows tail(mydata, n= -10) # All rows but the first 10 mydata[1:10, ] # First 10 rows of the mydata[1:10,1:3] # First 10 rows of data of the first 3 variables edit(mydata) # Open data editor describe summarize ds list in 1/6 edit browse /* Provides the structure of the dataset*/ /* Provides basic descriptive statistics for numeric data*/ /* Lists variables in the dataset */ /* First 6 rows */ /* Open data editor (double-click to edit*/ /* Browse data */ mydata <- edit(data.frame()) Missing data sum(is.na(mydata))# Number of missing in dataset rowSums(is.na(data))# Number of missing per variable rowMeans(is.na(data))*length(data)# No. of missing per row mydata[mydata$age=="& ","age"] <- NA # NOTE: Notice hidden spaces. mydata[mydata$age==999,"age"] <- NA The function complete.cases() returns a logical vector indicating which cases are complete. # list rows of data that have missing values mydata[!complete.cases(mydata),] The function na.omit() returns the object with listwise deletion of missing values. # create new dataset without missing data newdata <- na.omit(mydata) tabmiss /* # of missing. Need to install, type scc install tabmiss. Also try findit tabmiss and follow instructions */ /* For missing values per observation see the function ‘rowmiss’ and the ‘egen’ command*/ 13
  • 14. R Stata Renaming variables #Using base commands edit fix(mydata) # Rename interactively. names(mydata)[3] <- "First" rename oldname newname # Using library –-reshape-library(reshape) mydata <- rename(mydata, c(Last.Name="Last")) mydata <- rename(mydata, c(First.Name="First")) mydata <- rename(mydata, c(Student.Status="Status")) mydata <- rename(mydata, c(Average.score..grade.="Score")) mydata <- rename(mydata, c(Height..in.="Height")) mydata <- rename(mydata, c(Newspaper.readership..times.wk.="Read")) /* Open data editor (double-click to edit) rename rename rename rename rename rename lastname last firstname first studentstatus status averagescoregrade score heightin height newspaperreadershiptimeswk read Variable labels Use variable names as variable labels /* Adding labels to variables */ label label label label label label label variable variable variable variable variable variable variable w "Weight" y "Output" x1 "Predictor 1" x2 "Predictor 2" x3 "Predictor 3" age "Age" sex "Gender" 14
  • 15. R Stata Value labels # Use factor() for nominal data /* Step 1 defining labels */ mydata$sex <- factor(mydata$sex, levels = c(1,2), labels = c("male", "female")) label define approve 1 "Approve strongly" 2 "Approve somewhat" 3 "Disapprove somewhat" 4 "Disapprove strongly" 5 "Not sure" 6 "Refused" # Use ordered() for ordinal data label define well 1 "Very well" 2 "Fairly well" 3 "Fairly badly" 4 "Very badly" 5 "Not sure" 6 "Refused" mydata$var2 <- ordered(mydata$var2, levels = c(1,2,3,4), labels = c("Strongly agree", "Somewhat agree", "Somewhat disagree", "Strongly disagree")) mydata$var8 <- ordered(mydata$var2, levels = c(1,2,3,4), labels = c("Strongly agree", "Somewhat agree", "Somewhat disagree", "Strongly disagree")) # Making a copy of the same variable label define partyid 1 "Party A" 2 "Party B" 3 "Equally party A/B" 4 "Third party candidates" 5 "Not sure" 6 "Refused" label define gender 1 "Male" 2 "Female“ /* Step 2 applying labels */ label values label values tab x1 d x1 destring x1, label values label values label values tab x3 destring x3, label values tab x3 label values y approve x1 approve replace x1 approve x2 well x3 partyid replace ignore(&) x3 partyid sex gender tab1 y x1 x2 x3 age sex 15
  • 16. R Stata Creating ids/sequence of numbers # Creating a variable with a sequence of numbers or to index /* Creating a variable with a sequence of numbers or to index */ # Creating a variable with a sequence of numbers from 1 to n (where ‘n’ is the total number of observations) /* Creating a variable with a sequence of numbers from 1 to n (where ‘n’ is the total number of observations) */ mydata$id <- seq(dim(mydata)[1]) gen id = _n # Creating a variable with the total number of observations /* Creating a variable with the total number of observations */ mydata$total <- dim(mydata)[1] gen total = _N /* Creating a variable with a sequence of numbers from 1 to n per category (where ‘n’ is the total number of observations in each category)(1) */ /* Creating a variable with a sequence of numbers from 1 to n per category (where ‘n’ is the total number of observations in each category) */ mydata <- mydata[order(mydata$group),] idgroup <- tapply(mydata$group, mydata$group, function(x) seq(1,length(x),1)) mydata$idgroup <- unlist(idgroup) bysort group: gen id = _n For more info see: http://www.stata.com/help.cgi?_n (1) Thanks to Alex Acs for the code http://dss.princeton.edu/training/StataTutorial.pdf 16
  • 17. R Stata Recoding variables library(car) mydata$Age.rec <- recode(mydata$Age, "18:19='18to19'; 20:29='20to29'; 30:39='30to39'") recode age (18 19 = 1 "18 to 19") /// (20/28 = 2 "20 to 29") /// (30/39 = 3 "30 to 39") (else=.), generate(agegroups) label(agegroups) mydata$Age.rec <- as.factor(mydata$Age.rec) Dropping variables mydata$Age.rec <- NULL mydata$var1 <- mydata$var2 <- NULL drop var1 drop var1-var10 Keeping track of your work # Save the commands used during the session savehistory(file="mylog.Rhistory") # Load the commands used in a previous session loadhistory(file="mylog.Rhistory") # Display the last 25 commands history() # You can read mylog.Rhistory with any word processor. Notice that the file has to have the extension *.Rhistory /* A to a file text log file helps you save commands and output text file (*.log) or to a Stata read-only (*.smcl). The best way is to save it as a file (*.log)*/ log using mylog.log /*Start the log*/ log close /*Close the log*/ log using mylog.log, append /*Add to an existing log*/ log using mylog.log, replace /*Replace an existing log*/ /*You can read mylog.log using any word processor*/ 17
  • 18. R Stata Categorical data: Frequencies/Crosstab s table(mydata$Gender) table(mydata$Read) readgender <- table(mydata$Read,mydata$Gender) prop.table(readgender,1) # Row proportions prop.table(readgender,2) # Col proportions prop.table(readgender) # Tot proportions chisq.test(readgender) # Do chisq test Ho: no relathionship fisher.test(readgender) # Do fisher'exact test Ho: no relationship round(prop.table(readgender,2), 2) # Round col prop to 2 digits round(prop.table(readgender,2), 2) # Round col prop to 2 digits round(100* prop.table(readgender,2), 2) # Round col % to 2 digits round(100* prop.table(readgender,2)) # Round col % to whole numbers addmargins(readgender) # Adding row/col margins tab gender tab read /*Frequencies*/ tab read gender, col row /*Crosstabs*/ tab read gender, col row chi2 V /*Crosstabs where chi2 (The null hypothesis (Ho) is that there is no relationship) and V (measure of association goes from 0 to 1)*/ bysort studentstatus: tab read gender, colum row #install.packages("vcd") library(vcd) assocstats(majorgender) # NOTE: Chi-sqr = sum (obs-exp)^2/exp Degrees of freedom for Chi-sqr are (r-1)*(c-1) # NOTE: Chi-sqr contribution = (obs-exp)^2/exp # Cramer's V = sqrt(Chi-sqr/N*min) Where N is sample size and min is a the minimun of (r-1) or (c-1) 18
  • 19. R Stata Categorical data: Frequencies/Crosstab s install.packages("gmodels") library(gmodels) mydata$ones <- 1 # Create a new variable of ones CrossTable(mydata$Major,digits=2) CrossTable(mydata$Major,mydata$ones, digits=2) CrossTable(mydata$Gender,mydata$ones, digits=2) CrossTable(mydata$Major,mydata$Gender,digits=2, expected=TRUE,dnn=c("Major","Gender")) tab gender tab major /*Frequencies*/ tab major gender, col row /*Crosstabs*/ tab major gender, col row chi2 V /*Crosstabs which chi2 (The null hypothesis (Ho) is that there is no relationship) and V (measure of association goes from 0 to 1)*/ bysort studentstatus: tab gender major, colum row CrossTable(mydata$Major,mydata$Gender,digits=2, dnn=c("Major","Gender")) chisq.test(mydata$Major,mydata$Gender) # Null hipothesis: no association # 3-way crosstabs test <- xtabs(~Read+Major+Gender, data=mydata) #install.packages("vcd") library(vcd) assocstats(majorgender) 19
  • 20. R Stata Descriptive Statistics install.packages("pastecs") summarize library(pastecs) summarize, detail /*N, mean, sd, min, max, variance, skewness, kurtosis, percentiles*/ stat.desc(mydata) stat.desc(mydata[,c("Age","SAT","Score","Height", "Read")]) stat.desc(mydata[,c("Age","SAT","Score")], basic=TRUE, desc=TRUE, norm=TRUE, p=0.95) stat.desc(mydata[10:14], basic=TRUE, desc=TRUE, norm=TRUE, p=0.95) -----------------------------------------------# Selecting the first 30 observations and first 14 variables /*N, mean, sd, min, max*/ summarize age, detail summarize sat, detail -----------------------------------------------tabstat age sat score heightin read /*Gives the mean only*/ tabstat age sat score heightin read, statistics(n, mean, median, sd, var, min, max) mydata2 <- mydata2[1:30,1:14] tabstat age sat score heightin read, by(gender) # Selection using the --subset— tabstat age sat score heightin read, statistics(mean, median) by(gender) mydata3 <- subset(mydata2, Age >= 20 & Age <= 30) mydata4 <- subset(mydata2, Age >= 20 & Age <= 30, select=c(ID, First, Last, Age)) mydata5 <- subset(mydata2, Gender=="Female" & Status=="Graduate" & Age >= 30) mydata6 <- subset(mydata2, Gender=="Female" & Status=="Graduate" & Age == 30) /*Type help tabstat for a list of all statistics*/ -----------------------------------------------table gender, contents(freq mean age mean score) tab gender major, sum(sat) /*Categorical and continuous*/ bysort studentstatus: tab gender major, sum(sat) 20
  • 21. R Stata Descriptive Statistics mean(mydata) # Mean of all numeric variables, same using --sapply--('s' for simplify) mean(mydata$SAT) with(mydata, mean(SAT)) median(mydata$SAT) table(mydata$Country) # Mode by frequencies -> max(table(mydata$Country)) / names(sort(table(mydata$Country)))[1] var(mydata$SAT) # Variance sd(mydata$SAT) # Standard deviation max(mydata$SAT) # Max value min(mydata$SAT) # Min value range(mydata$SAT) # Range quantile(mydata$SAT) quantile(mydata$SAT, c(.3,.6,.9)) fivenum(mydata$SAT) # Boxplot elements. From help: "Returns Tukey's five number summary (minimum, lower-hinge, median, upper-hinge, maximum) for the input data ~ boxplot" length(mydata$SAT) # Num of observations when a variable is specify length(mydata) # Number of variables when a dataset is specify which.max(mydata$SAT) # From help: "Determines the location, i.e., index of the (first) minimum or maximum of a numeric vector" which.min(mydata$SAT) # From help: "Determines the location, i.e., index of the (first) minimum or maximum of a numeric vector” stderr <- function(x) sqrt(var(x)/length(x)) incster <- tapply(incomes, statef, stderr) summarize /*N, mean, sd, min, max*/ summarize, detail /*N, mean, sd, min, max, variance, skewness, kurtosis, percentiles*/ summarize age, detail summarize sat, detail tabstat age sat score heightin read /*Gives the mean only*/ tabstat age sat score heightin read, statistics(n, mean, median, sd, var, min, max) /*Type help tabstat for a list of all statistics*/ tabstat tabstat age sat score heightin read, by(gender) age sat score heightin read, statistics(mean, median) by(gender) table gender, contents(freq mean age mean score) tab gender major, sum(sat) continuous*/ /*Categorical and bysort studentstatus: tab gender major, sum(sat) 21
  • 22. R Stata Descriptive Statistics # Descriptive statiscs by groups using --tapply-mean <- tapply(mydata$SAT,mydata$Gender, mean) # Add na.rm=TRUE to remove missing values in the estimation sd <- tapply(mydata$SAT,mydata$Gender, sd) median <- tapply(mydata$SAT,mydata$Gender, median) max <- tapply(mydata$SAT,mydata$Gender, max) cbind(mean, median, sd, max) round(cbind(mean, median, sd, max),digits=1) t1 <- round(cbind(mean, median, sd, max),digits=1) t1 summarize /*N, mean, sd, min, max*/ summarize, detail /*N, mean, sd, min, max, variance, skewness, kurtosis, percentiles*/ summarize age, detail summarize sat, detail tabstat age sat score heightin read /*Gives the mean only*/ tabstat age sat score heightin read, statistics(n, mean, median, sd, var, min, max) /*Type help tabstat for a list of all statistics*/ # Descriptive statistics by groups using -aggregate— tabstat tabstat aggregate(mydata[c("Age","SAT")],by=list(sex=mydat a$Gender), mean, na.rm=TRUE) aggregate(mydata[c("Age","SAT")],mydata["Gender"], mean, na.rm=TRUE) aggregate(mydata,by=list(sex=mydata$Gender), mean, na.rm=TRUE) aggregate(mydata,by=list(sex=mydata$Gender, major=mydata$Major, status=mydata$Status), mean, na.rm=TRUE) aggregate(mydata$SAT,by=list(sex=mydata$Gender, major=mydata$Major, status=mydata$Status), mean, na.rm=TRUE) aggregate(mydata[c("SAT")],by=list(sex=mydata$Gend er, major=mydata$Major, status=mydata$Status), mean, na.rm=TRUE) age sat score heightin read, by(gender) age sat score heightin read, statistics(mean, median) by(gender) table gender, contents(freq mean age mean score) tab gender major, sum(sat) continuous*/ /*Categorical and bysort studentstatus: tab gender major, sum(sat) 22
  • 23. R Stata Histograms library(car) head(Prestige) hist(Prestige$income) hist(Prestige$income, col="green") with(Prestige, hist(income)) # Histogram of income with a nicer title. with(Prestige, hist(income, breaks="FD", col="green")) # Applying Freedman/Diaconis rule p.120 ("Algorithm that chooses bin widths and locations automatically, based on the sample size and the spread of the data" http://www.mathworks.com/help/toolbox/stats/bquc g6n.html) box() hist(Prestige$income, breaks="FD") # Conditional histograms par(mfrow=c(1, 2)) hist(mydata$SAT[mydata$Gender=="Female"], breaks="FD", main="Female", xlab="SAT",col="green") hist(mydata$SAT[mydata$Gender=="Male"], breaks="FD", main="Male", xlab="SAT", col="green") # Braces indicate a compound command allowing several commands with 'with' command par(mfrow=c(1, 1)) with(Prestige, { hist(income, breaks="FD", freq=FALSE, col="green") lines(density(income), lwd=2) lines(density(income, adjust=0.5),lwd=1) rug(income) }) hist sat hist sat, normal hist sat, by(gender) 23
  • 24. R Stata Histograms # Histograms overlaid hist(mydata$SAT, breaks="FD", col="green") hist(mydata$SAT[mydata$Gender=="Male"], breaks="FD", col="gray", add=TRUE) legend("topright", c("Female","Male"), fill=c("green","gray")) hist sat hist sat, normal hist sat, by(gender) 24
  • 25. R Stata Scatterplots # Scatterplots. Useful to 1) study the mean and variance functions in the regression of y on x p.128; 2)to identify outliers and leverage points. twoway scatter y x # plot(x,y) twoway scatter sat age, mlabel(last) plot(mydata$SAT) # Index plot plot(mydata$Age, mydata$SAT) plot(mydata$Age, mydata$SAT, main=“Age/SAT", xlab=“Age", ylab=“SAT", col="red") abline(lm(mydata$SAT~mydata$Age), col="blue") # regression line (y~x) lines(lowess(mydata$Age, mydata$SAT), col="green") # lowess line (x,y) identify(mydata$Age, mydata$SAT, row.names(mydata)) twoway scatter sat age, mlabel(last) || lfit sat age # On row.names to identify. "All data frames have a row names attribute, a character vector of length the number of rows with no duplicates nor missing values." (source link below). # "Use attr(x, "row.names") if you need an integer value.)" http://stat.ethz.ch/R-manual/Rdevel/library/base/html/row.names.html mydata$Names <- paste(mydata$Last, mydata$First) row.names(mydata) <- mydata$Names plot(mydata$SAT, mydata$Age) identify(mydata$SAT, mydata$Age, row.names(mydata)) twoway scatter sat age, title("Figure 1. SAT/Age") twoway scatter sat age, mlabel(last) || lfit sat age || lowess sat age /* locally weighted scatterplot smoothing */ twoway scatter sat age, mlabel(last) || lfit sat age, yline(1800) xline(30) twoway scatter sat age, mlabel(last) by(major, total) twoway scatter sat age, mlabel(last) by(major, total) || lfit sat age /* Adding confidence intervals */ twoway (lfitci sat age) || (scatter sat age) /*Reverse order shaded area cover dots*/ twoway (lfitci sat age) || (scatter sat age, mlabel(last)) twoway (lfitci sat age) || (scatter sat age, mlabel(last)), title("SAT scores by age") ytitle("SAT") twoway scatter sat age, mlabel(last) by(gender, total) 25
  • 26. R Stata Scatterplots # Rule on span for lowess, big sample smaller (~0.3), small sample bigger (~0.7) library(car) scatterplot(SAT~Age, data=mydata) scatterplot(SAT~Age, id.method="identify", data=mydata) scatterplot(SAT~Age, id.method="identify", boxplots= FALSE, data=mydata) scatterplot(prestige~income, span=0.6, lwd=3, id.n=4, data=Prestige) # By groups scatterplot(SAT~Age|Gender, data=mydata) scatterplot(SAT~Age|Gender, id.method="identify", data=mydata) scatterplot(prestige~income|type, boxplots=FALSE, span=0.75, data=Prestige) scatterplot(prestige~income|type, boxplots=FALSE, span=0.75, col=gray(c(0,0.5,0.7)), data=Prestige) twoway scatter y x twoway scatter sat age, title("Figure 1. SAT/Age") twoway scatter sat age, mlabel(last) twoway scatter sat age, mlabel(last) || lfit sat age twoway scatter sat age, mlabel(last) || lfit sat age || lowess sat age /* locally weighted scatterplot smoothing */ twoway scatter sat age, mlabel(last) || lfit sat age, yline(1800) xline(30) twoway scatter sat age, mlabel(last) by(major, total) twoway scatter sat age, mlabel(last) by(major, total) || lfit sat age /* Adding confidence intervals */ twoway (lfitci sat age) || (scatter sat age) /*Reverse order shaded area cover dots*/ twoway (lfitci sat age) || (scatter sat age, mlabel(last)) twoway (lfitci sat age) || (scatter sat age, mlabel(last)), title("SAT scores by age") ytitle("SAT") twoway scatter sat age, mlabel(last) by(gender, total) 26
  • 27. R Stata Scatterplots (multiple) scatterplotMatrix(~ prestige + income + education + women, span=0.7, id.n=0, data=Prestige) graph matrix graph matrix sat age score heightin read sat age score heightin read, half pairs(Prestige) # Pariwise plots. Scatterplots of all variables in the dataset pairs(Prestige, gap=0, cex.labels=0.9) # gap controls the space between subplot and cex.labels the font size (Dalgaard:186) 3D Scatterplots library(car) scatter3d(prestige ~ income + education, id.n=3, data=Duncan) 27
  • 28. R Stata Scatterplots (for categorical data) plot(vocabulary ~ education, data=Vocab) plot(jitter(vocabulary) ~ jitter(education), data=Vocab) plot(jitter(vocabulary, factor=2) ~ jitter(education, factor=2), data=Vocab) # cex makes the point half the size, p. 134 plot(jitter(vocabulary, factor=2) ~ jitter(education, factor=2), col="gray", cex=0.5, data=Vocab) with(Vocab, { abline(lm(vocabulary ~ education), lwd=3, lty="dashed") lines(lowess(education, vocabulary, f=0.2), lwd=3) }) /*Categorical data using mydata.dat and the jitter option*/ /*"scatter will add spherical random noise to your data before plotting if you specify jitter(#), where # represents the size of the noise as a percentage of the graphical area. This can be useful for creating graphs of categorical data when the data not jittered, many of the points would be on top of each other, making it impossible to tell whether the plotted point represented one or 1,000 observations.” Source: Stata’s help page, type: help scatter*/ /*Use mydata.dat*/ graph matrix y x1 x2 x3 scatter y x1, jitter(7) title(xyz) scatter y x1, jitter(7) msize(0.5) scatter y x1, jitter(13) msize(0.5) twoway scatter y x1, jitter(13) msize(0.5) || lfit y x1 graph matrix x1 x1 x2 x3, jitter(5) graph matrix y x1 x2 x3, jitter(13) msize(0.5) graph matrix y x1 x2 x3, jitter(13) msize(0.5) half 28
  • 29. References/Useful links • DSS Online Training Section http://dss.princeton.edu/training/ • Princeton DSS Libguides http://libguides.princeton.edu/dss • John Fox’s site http://socserv.mcmaster.ca/jfox/ • Quick-R http://www.statmethods.net/ • UCLA Resources to learn and use R http://www.ats.ucla.edu/stat/R/ • UCLA Resources to learn and use Stata http://www.ats.ucla.edu/stat/stata/ • DSS - Stata http://dss/online_help/stats_packages/stata/ • DSS - R http://dss.princeton.edu/online_help/stats_packages/r 29
  • 30. References/Recommended books • An R Companion to Applied Regression, Second Edition / John Fox , Sanford Weisberg, Sage Publications, 2011 • Data Manipulation with R / Phil Spector, Springer, 2008 • Applied Econometrics with R / Christian Kleiber, Achim Zeileis, Springer, 2008 • Introductory Statistics with R / Peter Dalgaard, Springer, 2008 • Complex Surveys. A guide to Analysis Using R / Thomas Lumley, Wiley, 2010 • Applied Regression Analysis and Generalized Linear Models / John Fox, Sage, 2008 • R for Stata Users / Robert A. Muenchen, Joseph Hilbe, Springer, 2010 • Introduction to econometrics / James H. Stock, Mark W. Watson. 2nd ed., Boston: Pearson Addison Wesley, 2007. • Data analysis using regression and multilevel/hierarchical models / Andrew Gelman, Jennifer Hill. Cambridge ; New York : Cambridge University Press, 2007. • Econometric analysis / William H. Greene. 6th ed., Upper Saddle River, N.J. : Prentice Hall, 2008. • Designing Social Inquiry: Scientific Inference in Qualitative Research / Gary King, Robert O. Keohane, Sidney Verba, Princeton University Press, 1994. • Unifying Political Methodology: The Likelihood Theory of Statistical Inference / Gary King, Cambridge University Press, 1989 • Statistical Analysis: an interdisciplinary introduction to univariate & multivariate methods / Sam Kachigan, New York : Radius Press, c1986 • Statistics with Stata (updated for version 9) / Lawrence Hamilton, Thomson Books/Cole, 2006 30