SlideShare a Scribd company logo
Reducing Concentration Uncertainty
in Geological Structures
by
Conditioning on Boreholes
Using
The Coupled Markov Chain
Approach
Amro Elfeki
Section Hydrology,
Dept. of Water Management,
TU Delft,
The Netherlands.
Outlines
• Motivation of this research.
• Methodology:
• Markov Chain in One-dimension.
• Markov Chain in Multi-dimensions: Coupled Markov Chain (CMC).
• Application of CMC at the Schelluinen study area (Bierkens, 94).
• Comparison between:
CMC (Elfeki and Dekking, 2001) and
SIS (Sequential Indicator Simulation, Gomez-Hernandez and
Srivastava, 1990) .
• Flow and Transport Models in a Monte-Carlo Framework.
• Geostatistical Results.
• Transport Results.
• Conclusions.
Motivation and Issues
Motivation of this research:
• Test the applicability of CMC model on field data at many sites.
• Compare CMC with SIS (well-known model in geostatistics).
• Incorporating CMC model in flow and transport models to study
uncertainty in concentration fields.
• Deviate from the literature:
- Non-Gaussian stochastic fields: (Markovian fields),
- Statistically heterogeneous fields, and
- Non-uniformity of the flow field (in the mean) due to
boundary conditions.
Geological and Parameter Uncertainties
Unconditional CMC
1 2 3 4
0 50 100 150 200 250 300
-50
0
0 50 100 150 200 250 300
-50
0
time = 1600 days
0 50 100 150 200 250 300
-50
0
0 50 100 150 200 250 300
-50
0
0 50 100 150 200 250 300
-50
0
0 50 100 150 200 250 300
-40
-20
0
0 50 100 150 200 250 300
-40
-20
0
Geology is Certain and Parameters are Uncertain
Geology is Uncertain and Parameters are Certain
0 0.01 0.1 1
C
C
actualC
C
C
Elfeki, Uffink and Barends, 1998
Geological Uncertainty:
Geological configuration.
Parameter Uncertainty:
Conductivity value of each unit.
Application of CMC at MADE Site
0 50 100 150 200 250
-10
-5
0
0 50 100 150 200 250
-10
-5
0
0 50 100 150 200 250
-10
-5
0
0
0.1
1
10
100
0 50 100 150 200 250
-10
-5
0
1
2
3
4
5
0 50 100 150 200 250
-10
-5
0
Elfeki, 2003 (in review)
Real field situation:
Data is in the form of boreholes.
Geological prediction is needed at unsampled locations.
( )
Markov property (One-Step transition probability)
Pr( )
Pr( ) : ,
Marginal Distribution
lim
Conditioning on the Fut
N
i i-1 i-2 i-3 0k l n pr
i i-1k l lk
N
klk
| , , S ,...,S S S SZ Z Z Z Z
| pS SZ Z
p w
     
  

( )
1 ( 1)
ure
Pr ( )
N i
kq lk
i i Nk l q N i
lq
p p
| ,S S SZ Z Z
p

  
   
S S
o d
One-dimensional Markov Chain
Dark Grey (Boundary Cells)
Light Grey (Previously Generated Cells)
White (Unknown Cells)
i-1,j i,j
i,j-1
1,1
Nx,Ny
Nx,1
1,Ny
Nx,j
, , 1, , 1
, 1, , 1 ,,
Unconditioinal Coupled Markov Chains
: Pr( | , ) . 1,...
Conditioinal Coupled Markov Chains
: Pr( | , , )x
h v
lk mk
lm k i j k i j l i j m h v
lf mf
f
i j k i j l i j m N j qlm k q
h
lk
.p p
p Z S Z S Z S k n
.p p
p Z S Z S Z S Z S
.p
 
 
     
     

( )
( )
, 1,... .
x
x
h N i v
kq mk
h h N i v
lf fq mf
f
.p p
k n
. .p p p




Coupled Markov Chain “CMC” in 2D
(Elfeki and Dekking, 2001)
CMC vs. Conventional Methods
CMC Conventional Methods
Based on conditional
probability (transition
matrix).
Based on variogram or
autocovariance.
Marginal Probability. Sill.
Asymmetry can be
described.
Asymmetry is
impossible to describe.
A model of spatial
dependence is not
necessary.
A model of spatial
dependence is needed
for implementation.
Compute only the one-
step transition and the
model takes care of the
n-step transition
probability.
Need to compute many
lags for the variogram
or auto-correlations.
(unreliable at large
lags)
Schelluinen study area, The Netherlands
Soil
Coding
Soil description
1 Channel deposits (sand)
2 Natural levee deposits (fine sand, sandy
clay, silty clay)
3 Crevasse splay deposits (fine sand,
sandy clay, silty clay)
4 Flood basin deposits (clay, humic clay)
5 Organic deposits (peaty clay, peat)
6 Subsoil (sand)
0 80 160 240
-10
-5
0
0 200 400 600 800 1000 1200 1400 1600
-10
-5
0
1 2 3 4 5 6
Data from Bierkens, 1994
Parameter Estimation and Procedure
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
Geological Image
Domain Discretization
Generated Realization
0 50 100 150 200
-10
-5
0
Superposition of the Grid over
the Geological Image and
Estimation of Transition Probability
Boreholes Locations
0 50 100 150 200
-10
-5
0
Parameters Estimation Conditional Simulation
1
v
v lk
lk n
v
lq
q
T
p
T



Horizontal transition probability matrix of 1650 m section
calculated over sampling intervals of 25 m.
Soil 1 2 3 4 5 6
1 0.979 0.004 0.001 0.006 0.009 0.001
2 0.020 0.965 0.001 0.008 0.006 0.000
3 0.003 0.002 0.966 0.013 0.016 0.000
4 0.000 0.001 0.009 0.983 0.007 0.000
5 0.001 0.001 0.006 0.007 0.984 0.001
6 0.000 0.000 0.001 0.000 0.002 0.997
Vertical transition probability matrix 1650 m section calculated
over sampling intervals of 0.25 m.
Soil 1 2 3 4 5 6
1 0.945 0.000 0.009 0.000 0.009 0.037
2 0.071 0.796 0.021 0.041 0.071 0.000
3 0.000 0.000 0.797 0.086 0.089 0.028
4 0.003 0.013 0.041 0.714 0.222 0.007
5 0.004 0.012 0.047 0.119 0.768 0.050
6 0.000 0.000 0.000 0.000 0.000 1.000
Transition Probabilities (1650 x10 m)
Transition Probabilities (240 x10 m)
Horizontal transition probability matrix Vertical transition probability matrix
State 3 4 5 6 State 3 4 5 6
3 0.979 0.010 0.011 0.000 3 0.969 0.027 0.004 0.000
4 0.011 0.974 0.015 0.000 4 0.008 0.724 0.268 0.000
5 0.008 0.120 0.977 0.003 5 0.025 0.139 0.791 0.045
6 0.010 0.000 0.007 0.983 6 0.000 0.000 0.000 1.000
0 80 160 240
-10
-5
0 3
4
5
6
Sampling intervals
Dx = 2 m
Dy= 0.25 m
0.966 0.013 0.016 0.000
0.009 0.983 0.007 0.000
0.006 0.007 0.984 0.001
0.001 0.000 0.002 0.997
0.797 0.086 0.089 0.028
0.041 0.714 0.222 0.007
0.047 0.119 0.768 0.050
0.000 0.000 0.000 1.000
Horizontal Transition Probability from 1650x10
Vertical Transition Probability from 1650x10
Parameter Numerical Value
Time step 5 [day]
Longitudinal dispersivity 0.1 [m]
Transverse dispersivity 0.01 [m]
Effective porosity 0.30 [-]
Injected tracer mass 1000 [grams]
Head difference at the site 1.0 [m]
Monte-Carlo Runs 50 MC
Number of particles 10,000 [particles]
Physical and Simulation Parameters
Soil Properties at the core scale from Bierkens, 1996 (Table 1).
Soil
Coding
Soil type Wi
6 Fine & loamy sand 0.12 0.60 1.76 4.40 0.09
5 Peat 0.39 -2.00 1.7 0.30 2.99
3 Sand & silty clay 0.19 -4.97 3.49 0.1 5.86
4 Clay & humic clay 0.30 -7.00 2.49 0.01 10.1
2
( )iLog K( )iLog K ( / )iK m day 2
iK
Convergence:
~14000 Iterations
Accuracy 0.00001
( , ) ( , ) 0
( , )
( , )
x
y
K x y K x y
x x y y
K x yV
x
K x yV
y
  
  
  
   
    
   






Flow Model













Contaminant Source
Plume at Time, t
Impermeable boundary
Impermeable boundary
is the hydraulic head,
Vx and Vy are pore velocities,
is the hydraulic conductivity, and
is the effective porosity.

( , )K x y

Hydrodynamic Condition:
Non-uniform Flow in the Mean
due to Boundary Conditions.
Transport Model
Governing equation of solute transport :
C is concentration
Vx and Vy are pore velocities, and
Dxx , Dyy , Dxy , Dyx are pore-scale dispersion coefficients
x y xx xy yx yy
C C C C C C CV V D D D D
t x y x x y y x y
   
   
   
   
   
             
        
* - i j
mij ijL L T
VV
D V D
V
   
       
     
*mD
ij
L

T

is effective molecular diffusion,
is delta function,
is longitudinal dispersivity, and
is lateral dispersivity.
1 1
1 1
cos sin sin cos
. / . / . / . /
n n n n
p p x p p yL T L T
n n n n
p p x x y p p y y xL T L T
X X V t Z Z Y Y V t Z Z
X X V t Z V V Z V V Y Y V t Z V V Z V V
    
 
         
         
6 4 4 4 44 7 4 4 4 4 486 7 8
dispersive termadvective term
    1 22 2xy yxx x
p p x L T
D VD V
X t t X t V t Z V t Z V t
x y V V
 
 
 
 
 

          
 
    1 22 2yx yy y x
p p y L T
D D V V
Y t t Y t V t Z V t Z V t
x y V V
 
 
 
 
 
 
          
 
The displacement is a normally distributed random variable, whose
mean is the advective movement and whose deviation from the mean
is the dispersive movement.
instantaneous injection
+ uniform flow
Random Walk Method
Application of SIS at the Site
Geological
Section
Deterministic
and
Stochastic
Zones
In
SIS Model
Bierkens, 1996
Comparison between CMC and SIS (1)
0 200 400 600 800 1000 1200 1400 1600
-10
-5
0
Conditioning on half of the drillings
SIS Model
Simulation
CMC Model
Simulation
Geological
Section
Bierkens, 1996
Comparison between CMC and SIS (2)
0 200 400 600 800 1000 1200 1400 1600
-10
-5
0
Conditioning on all drillings
SIS Model
Simulation
CMC Model
Simulation
Geological
Section
Bierkens, 1996
Monte-Carlo on CMC
0.00 500.00 1000.00 1500.00
-10.00
-5.00
0.00
1 2 3 4 5 6
0.00 500.00 1000.00 1500.00
-10.00
-5.00
0.00
0.00 500.00 1000.00 1500.00
-10.00
-5.00
0.00
0.00 500.00 1000.00 1500.00
-10.00
-5.00
0.00
0.00 500.00 1000.00 1500.00
-10.00
-5.00
0.00
0.00 500.00 1000.00 1500.00
-10.00
-5.00
0.00
0.00 500.00 1000.00 1500.00
-10.00
-5.00
0.00
0.00 500.00 1000.00 1500.00
-10.00
-5.00
0.00
0
0.25
0.5
0.75
1
0.00 500.00 1000.00 1500.00
-10.00
-5.00
0.00
State # 6
State # 1 State # 2
State # 3
State # 4
State # 5
Coding of the States
Schematic Image of the Geological
Cross Section
39 Boreholes for Conditioning Conditioned Single Realization
Effect of Conditioning on 240 x10m Sec.
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
1 2 3 4
Lithology Coding
0 80 160 240
-10
-5
0
1
2
3
4
31 boreholes
25 boreholes
9 boreholes
2 boreholes
Ensemble Indicator Function
0.00 50.00 100.00 150.00 200.00
-10.00
-5.00
0.00
0.00 50.00 100.00 150.00 200.00
-10.00
-5.00
0.00
0.00 50.00 100.00 150.00 200.00
-10.00
-5.00
0.00
0.00 50.00 100.00 150.00 200.00
-10.00
-5.00
0.00
0.00 50.00 100.00 150.00 200.00
-10.00
-5.00
0.00
0.00 50.00 100.00 150.00 200.00
-10.00
-5.00
0.00
0.00 50.00 100.00 150.00 200.00
-10.00
-5.00
0.00
0.00 50.00 100.00 150.00 200.00
-10.00
-5.00
0.00
0.00 50.00 100.00 150.00 200.00
-10.00
-5.00
0.00
0.00 50.00 100.00 150.00 200.00
-10.00
-5.00
0.00
0.00 50.00 100.00 150.00 200.00
-10.00
-5.00
0.00
0.00 50.00 100.00 150.00 200.00
-10.00
-5.00
0.00
2 Boreholes
0.00 50.00 100.00 150.00 200.00
-10.00
-5.00
0.00
0.00 50.00 100.00 150.00 200.00
-10.00
-5.00
0.00
0.00 50.00 100.00 150.00 200.00
-10.00
-5.00
0.00
0.00 50.00 100.00 150.00 200.00
-10.00
-5.00
0.00
0.00 50.00 100.00 150.00 200.00
-10.00
-5.00
0.00
0.00 50.00 100.00 150.00 200.00
-10.00
-5.00
0.00
0.00 50.00 100.00 150.00 200.00
-10.00
-5.00
0.00
0.00 50.00 100.00 150.00 200.00
-10.00
-5.00
0.00
0.00 50.00 100.00 150.00 200.00
-10.00
-5.00
0.00
0.00 50.00 100.00 150.00 200.00
-10.00
-5.00
0.00
0.00 50.00 100.00 150.00 200.00
-10.00
-5.00
0.00
0.00 50.00 100.00 150.00 200.00
-10.00
-5.00
0.00
0.00 50.00 100.00 150.00 200.00
-10.00
-5.00
0.00
0.00 50.00 100.00 150.00 200.00
-10.00
-5.00
0.00
0.00 50.00 100.00 150.00 200.00
-10.00
-5.00
0.00
0.00 50.00 100.00 150.00 200.00
-10.00
-5.00
0.00
0 0.25 0.5 0.75 1
3 Boreholes
5 Boreholes
9 Boreholes
21 Boreholes
25 Boreholes
31 Boreholes
0 50 100 150 200
-10
-5
0
1 2 3 4
0 50 100 150 200 250
Lag (m)
0
0.5
1
1.5
2
2.5
Gamma(LnK)
Original Section
Conditioning on 2 boreholes
Conditioning on 3 boreholes
Conditioning on 5 boreholes
Conditioning on 9 boreholes
Conditioning on 25 boreholes
0 2 4 6 8 10
Lag (m)
0
4
8
12
16
Gamma(LnK)
Original Section
Conditioning on 2 boreholes
Conditioning on 3 boreholes
Conditioning on 5 boreholes
Conditioning on 9 boreholes
Conditioning on 25 boreholes
Effect of Conditioning on Variogram
 
( )
2
1
1
( ) ( ) ( )
2 ( )
n
i i
i
= Y Y
n 
 
s
s x x s
s
Measure of Variability
Effect of Conditioning on S. R. Plume
mg/lit
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0
0.1
1
10
3 4
Lithology Coding
6 5
T= 82 years
# drillings
2
3
5
9
25
31
Effect of Conditioning Single Realiz. Cmax
0 4 8 12 16 20 24 28 32
No. of Conditioning Boreholes
0
40
80
120
160
200
240
PeakConcentration(mg/lit)
Single Realization Cmax (t = 34.2 Years)
Single Realization Cmax (t = 68.4 Years)
Single Realization Cmax (t = 95.8 Years)
Single Realization Cmax (t = 136.9 Years)
Original Section (t = 34.2 Years)
Original Section (t = 68.4 Years)
Original Section (t = 95.8 Years)
Original Section (t = 136.9 Years)
Practical convergence
is reached after
about 21 boreholes
0 50 100 150 200
-10
-5
0
First Moment (Single Realization)
0 10000 20000 30000 40000
Time (days)
0
20
40
60
80
100
120
X_CoordinateoftheCentroid(m)
Original Section
Conditioning on 2 boreholes
Conditioning on 3 boreholes
Conditioning on 5 boreholes
Conditioning on 9 boreholes
Conditioning on 25 boreholes
0 10000 20000 30000 40000
Time (days)
-10
-8
-6
-4
-2
0
Y_CoordinateoftheCentroid(m)
Original Section
Conditioning on 2 boreholes
Conditioning on 3 boreholes
Conditioning on 5 boreholes
Conditioning on 9 boreholes
Conditioning on 25 boreholes
Trend is reached at
3 boreholes
Convergence at
9 boreholes













Contaminant Source
Plume at Time, t
Impermeable boundary
Impermeable boundary
Second Moment (Single Realization)
0 10000 20000 30000 40000
Time (days)
0
0.5
1
1.5
2
2.5
VarianceinY_direction(m2)
Original Section
Conditioning on 2 boreholes
Conditioning on 3 boreholes
Conditioning on 5 boreholes
Conditioning on 9 boreholes
Conditioning on 25 boreholes
0 10000 20000 30000 40000
Time (days)
0
1000
2000
3000
4000
VarianceinX_direction(m2)
Original Section
Conditioning on 2 boreholes
Conditioning on 3 boreholes
Conditioning on 5 boreholes
Conditioning on 9 boreholes
Conditioning on 25 boreholes
Trend is reached at
3 boreholes
Convergence at
5 and 25 boreholes
Convergence at
9 boreholes













Contaminant Source
Plume at Time, t
Impermeable boundary
Impermeable boundary
Breakthrough Curve (Single Realization)
0 10000 20000 30000 40000 50000
Time (days)
0
0.2
0.4
0.6
0.8
1
NormalizedMassDistribution
Original Section
Conditioning on 2 boreholes
Conditioning on 3 boreholes
Conditioning on 5 boreholes
Conditioning on 9 boreholes
Conditioning on 25 boreholes
0 50 100 150 200
-10
-5
0
Convergence at
25 boreholes
Conditioning on 2 boreholes (Ensemble )
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 0.1 1 10
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
CactualC C
mg/lit
T = 4.1 years
T = 82.2 years
T = 136.9 years
Conditioning on 5 boreholes (Ensemble)
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 0.1 1 10
mg/lit
actualC C C
Conditioning on 9 boreholes (Ensemble)
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
actualC C C
Conditioning on 21 boreholes(Ensemble)
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
actualC C C
Conditioning on 31 boreholes(Ensemble)
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
actualC C C
Effect of Conditioning on Ensemble Cmax
0 4 8 12 16 20 24 28 32
No. of Conditioning Boreholes
0
10
20
30
40
50
60
70
80
90
100
110
EnsemblePeakConcentration(mg/lit)
Ensemble Cmax (t = 34.2 Years)
Ensemble Cmax (t = 68.4 Years)
Ensemble Cmax (t = 95.8 Years)
Ensemble Cmax (t = 136.9 Years)
Original Section (t = 34.2 Years)
Original Section (t = 68.4 Years)
Original Section (t = 95.8 Years)
Original Section (t = 136.9 Years)
0 4 8 12 16 20 24 28 32
No. of Conditioning Boreholes
0
1
2
3
4
5
6
CVofCmax
t = 34.2 Years
t = 68.4 Years
t = 95.8 Years
t = 136.9 Years
max actualC Cp
max
1 for #boreholes 5

 c
C
max
1 for #boreholes 5

c
C
p
max
time

 c
C
Conclusions
1. CMC model proved to be a valuable tool in predicting heterogeneous
geological structures which lead to reducing uncertainty in
concentration distributions of contaminant plumes.
2. Comparison between SIS and CMC have shown more or less similar
results in terms of the geological configuration of the confining
layers. However, CMC has more merits over the SIS:
-some parts of the confining layers are treated determistically in SIS
method which is not the case in CMC method.
-non-stationarity in the confining layers is treated straightforwardly
by CMC, it is inherited in the method, while in SIS model subdivision
into three sub-layers has to be performed.
-three variogram models with different parameters have been used
in SIS, while direct transition probabilities were used in CMC.
3. Convergence to actual concentration is of oscillatory type, due to the
fact that some layers are connected in one scenario and
disconnected in another scenario.
Conclusions
4. In non-Gaussian fields, single realization concentration fields and the
ensemble concentration fields are non-Gaussian in space with peak
skewed to the left.
5. Reproduction of peak concentration, plume spatial moments and
breakthrough curves in a single realization requires many conditioning
boreholes (20-31 boreholes). However, reproduction of plume shapes
require less boreholes (5 boreholes).
6. Ensemble concentration and ensemble variance have the same
pattern. Ensemble variance is peaked at the location of the peak
ensemble concentration and decreases when one goes far from the
peak concentration. This supports early work by Rubin (1991).
However, in Rubin’s case the maximum concentration was in the
center of the plume which is attributed to Gaussian fields. The non-
centered peak concentration, in this study, is attributed to the non-
Gaussian fields.
Conclusions
7. Coefficient of variation of max concentration [CV(Cmax)] decreases
significantly when conditioning on more than 5 boreholes.
5. Reproduction of peak concentration, plume spatial moments and
breakthrough curves in a single realization requires many conditioning
boreholes (20-31 boreholes). However, reproduction of plume shapes
require less boreholes (5 boreholes).
6. Ensemble concentration and ensemble variance have the same
pattern. Ensemble variance is peaked at the location of the peak
ensemble concentration and decreases when one goes far from the
peak concentration. This supports early work by Rubin (1991).
However, in Rubin’s case the maximum concentration was in the
center of the plume which is attributed to Gaussian fields. The non-
centered peak concentration, in this study, is attributed to the non-
Gaussian fields.

More Related Content

PPSX
Reducing Concentration Uncertainty Using the Coupled Markov Chain Approach
PPSX
Prediction of Contaminant Plumes (Shapes, Spatial Moments and Macro-dispersio...
PPSX
Modeling Subsurface Heterogeneity by Coupled Markov Chains: Directional Depen...
PDF
Inversão com sigmoides
PPT
A Practical Reliability-Based Method for Assessing Soil Liquefaction Potential
PDF
Use of DMT in Geotechnical Design with Emphasis on Liquefaction Assessment
PDF
Design And Control Of Formations Near The Libration Points Of The Sun-Earth...
PDF
Robust SINS/GNSS Integration Method for High Dynamic Applications
Reducing Concentration Uncertainty Using the Coupled Markov Chain Approach
Prediction of Contaminant Plumes (Shapes, Spatial Moments and Macro-dispersio...
Modeling Subsurface Heterogeneity by Coupled Markov Chains: Directional Depen...
Inversão com sigmoides
A Practical Reliability-Based Method for Assessing Soil Liquefaction Potential
Use of DMT in Geotechnical Design with Emphasis on Liquefaction Assessment
Design And Control Of Formations Near The Libration Points Of The Sun-Earth...
Robust SINS/GNSS Integration Method for High Dynamic Applications

What's hot (15)

PPTX
Fellenius prediction presentation
PDF
APS_presentation_Mayur
PDF
Temporary Satellite Capture Of Short-Period Jupiter Family Comets From The Pe...
PDF
Solution to first semester soil 2015 16
PDF
Solution to 2nd semeter eng. statistics 2015 2016
PDF
Pedro Gil Ferreira
PDF
Platoon Control of Nonholonomic Robots using Quintic Bezier Splines
PDF
Formation Flight Near L1 And L2 In The Sun-Earth/Moon Ephemeris System Includ...
PPTX
Barber_TU2.T03_hk_mb_casa_fg_hk_FINAL.pptx
PDF
F05823843
PDF
Sea surface map
PDF
Ch02sol
PPT
Mace2010
PDF
RegressionProjectReport
PDF
Spt spt t procedures and practical applications -luciano decourt
Fellenius prediction presentation
APS_presentation_Mayur
Temporary Satellite Capture Of Short-Period Jupiter Family Comets From The Pe...
Solution to first semester soil 2015 16
Solution to 2nd semeter eng. statistics 2015 2016
Pedro Gil Ferreira
Platoon Control of Nonholonomic Robots using Quintic Bezier Splines
Formation Flight Near L1 And L2 In The Sun-Earth/Moon Ephemeris System Includ...
Barber_TU2.T03_hk_mb_casa_fg_hk_FINAL.pptx
F05823843
Sea surface map
Ch02sol
Mace2010
RegressionProjectReport
Spt spt t procedures and practical applications -luciano decourt
Ad

Viewers also liked (14)

PPTX
My household duties
DOCX
ISSC362_Research_Paper_Intindolo
PDF
Toward Transparent Coexistence for Multihop Secondary Cognitive Radio Networks
PDF
מצגת קמ"ח עברית ספטמבר 2015
DOCX
ACC 491 Week 4 Learning Team Assignment Apollo Shoes Case Assignment (1) 2015...
PPTX
Muscles of Lower Limb
PPTX
AS Media Main Task Front Cover Research
PPT
Access control basics-7
PDF
Materi manusia-sbg-khalifah
PDF
Integrated Treatment for ARLD: Making it happen, 2 February 2017, Presentatio...
PPTX
All About Me Final Project
PPTX
Threats
PPTX
Xe đạp thể thao có khóa chống trộm
DOC
My household duties
ISSC362_Research_Paper_Intindolo
Toward Transparent Coexistence for Multihop Secondary Cognitive Radio Networks
מצגת קמ"ח עברית ספטמבר 2015
ACC 491 Week 4 Learning Team Assignment Apollo Shoes Case Assignment (1) 2015...
Muscles of Lower Limb
AS Media Main Task Front Cover Research
Access control basics-7
Materi manusia-sbg-khalifah
Integrated Treatment for ARLD: Making it happen, 2 February 2017, Presentatio...
All About Me Final Project
Threats
Xe đạp thể thao có khóa chống trộm
Ad

Similar to Reducing Concentration Uncertainty in Geological Structures by Conditioning on Boreholes Using the Coupled Markov Chain Approach. (12)

PPS
Reducing Uncertainty of Groundwater Contaminant Transport Using Markov Chains
PPSX
Characterization of Subsurface Heterogeneity: Integration of Soft and Hard In...
PPSX
Presentation at Kuwait Institute for Scientific Research
PPT
Geohydrology ii (1)
PDF
Stochastic Hydrology Lecture 1: Introduction
PDF
300 solved problems_in_geotechnical_engineering
PDF
300 solved problems in geotechnical engineering
PDF
300 solved-problems
PDF
300-Solved-Problems for civil engineers.pdf
PDF
Prediction of Compression Index of Marine clay Using Artificial Neural Networ...
PPTX
Presentation Group 1 untuk perancangan keairan.pptx
PDF
Ground water Survey and Water Quality
Reducing Uncertainty of Groundwater Contaminant Transport Using Markov Chains
Characterization of Subsurface Heterogeneity: Integration of Soft and Hard In...
Presentation at Kuwait Institute for Scientific Research
Geohydrology ii (1)
Stochastic Hydrology Lecture 1: Introduction
300 solved problems_in_geotechnical_engineering
300 solved problems in geotechnical engineering
300 solved-problems
300-Solved-Problems for civil engineers.pdf
Prediction of Compression Index of Marine clay Using Artificial Neural Networ...
Presentation Group 1 untuk perancangan keairan.pptx
Ground water Survey and Water Quality

More from Amro Elfeki (20)

PPSX
Simulation of Tracer Injection from a Well in a Nearly Radial Flow
PPTX
Aquifer recharge from flash floods in the arid environment: A mass balance ap...
PPT
Basics of Contaminant Transport in Aquifers (Lecture)
PPT
Well Hydraulics (Lecture 1)
PPT
Gradually Varied Flow in Open Channel
PPTX
Two Dimensional Flood Inundation Modelling In Urban Area Using WMS, HEC-RAS a...
PDF
Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...
PDF
Lecture 5: Stochastic Hydrology
PDF
Lecture 4: Stochastic Hydrology (Site Characterization)
PDF
Lecture 3: Stochastic Hydrology
PDF
Lecture 2: Stochastic Hydrology
PPS
Development of Flash Flood Risk Assessment Matrix in Arid Environment: Case S...
PPSX
Soft Computing and Simulation in Water Resources: Chapter 1 introduction
PPSX
Derivation of unit hydrograph of Al-Lith basin in the south west of saudi ar...
PPSX
Empirical equations for flood analysis in arid zones
PPSX
Simulation of the central limit theorem
PPSX
Empirical equations for estimation of transmission losses
PPTX
Representative elementary volume (rev) in porous
PPSX
Civil Engineering Drawings (Collection of Sheets)
PPT
Geohydrology ii (3)
Simulation of Tracer Injection from a Well in a Nearly Radial Flow
Aquifer recharge from flash floods in the arid environment: A mass balance ap...
Basics of Contaminant Transport in Aquifers (Lecture)
Well Hydraulics (Lecture 1)
Gradually Varied Flow in Open Channel
Two Dimensional Flood Inundation Modelling In Urban Area Using WMS, HEC-RAS a...
Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...
Lecture 5: Stochastic Hydrology
Lecture 4: Stochastic Hydrology (Site Characterization)
Lecture 3: Stochastic Hydrology
Lecture 2: Stochastic Hydrology
Development of Flash Flood Risk Assessment Matrix in Arid Environment: Case S...
Soft Computing and Simulation in Water Resources: Chapter 1 introduction
Derivation of unit hydrograph of Al-Lith basin in the south west of saudi ar...
Empirical equations for flood analysis in arid zones
Simulation of the central limit theorem
Empirical equations for estimation of transmission losses
Representative elementary volume (rev) in porous
Civil Engineering Drawings (Collection of Sheets)
Geohydrology ii (3)

Recently uploaded (20)

PDF
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
PDF
PREDICTION OF DIABETES FROM ELECTRONIC HEALTH RECORDS
PDF
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
PPTX
web development for engineering and engineering
PPTX
Construction Project Organization Group 2.pptx
PDF
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
PPTX
bas. eng. economics group 4 presentation 1.pptx
PDF
composite construction of structures.pdf
PPTX
CH1 Production IntroductoryConcepts.pptx
PPTX
Sustainable Sites - Green Building Construction
PDF
Automation-in-Manufacturing-Chapter-Introduction.pdf
PDF
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
PPTX
Internet of Things (IOT) - A guide to understanding
PPTX
UNIT 4 Total Quality Management .pptx
PDF
III.4.1.2_The_Space_Environment.p pdffdf
PPTX
Current and future trends in Computer Vision.pptx
PDF
Unit I ESSENTIAL OF DIGITAL MARKETING.pdf
PDF
PPT on Performance Review to get promotions
PPTX
additive manufacturing of ss316l using mig welding
PDF
Embodied AI: Ushering in the Next Era of Intelligent Systems
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
PREDICTION OF DIABETES FROM ELECTRONIC HEALTH RECORDS
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
web development for engineering and engineering
Construction Project Organization Group 2.pptx
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
bas. eng. economics group 4 presentation 1.pptx
composite construction of structures.pdf
CH1 Production IntroductoryConcepts.pptx
Sustainable Sites - Green Building Construction
Automation-in-Manufacturing-Chapter-Introduction.pdf
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
Internet of Things (IOT) - A guide to understanding
UNIT 4 Total Quality Management .pptx
III.4.1.2_The_Space_Environment.p pdffdf
Current and future trends in Computer Vision.pptx
Unit I ESSENTIAL OF DIGITAL MARKETING.pdf
PPT on Performance Review to get promotions
additive manufacturing of ss316l using mig welding
Embodied AI: Ushering in the Next Era of Intelligent Systems

Reducing Concentration Uncertainty in Geological Structures by Conditioning on Boreholes Using the Coupled Markov Chain Approach.

  • 1. Reducing Concentration Uncertainty in Geological Structures by Conditioning on Boreholes Using The Coupled Markov Chain Approach Amro Elfeki Section Hydrology, Dept. of Water Management, TU Delft, The Netherlands.
  • 2. Outlines • Motivation of this research. • Methodology: • Markov Chain in One-dimension. • Markov Chain in Multi-dimensions: Coupled Markov Chain (CMC). • Application of CMC at the Schelluinen study area (Bierkens, 94). • Comparison between: CMC (Elfeki and Dekking, 2001) and SIS (Sequential Indicator Simulation, Gomez-Hernandez and Srivastava, 1990) . • Flow and Transport Models in a Monte-Carlo Framework. • Geostatistical Results. • Transport Results. • Conclusions.
  • 3. Motivation and Issues Motivation of this research: • Test the applicability of CMC model on field data at many sites. • Compare CMC with SIS (well-known model in geostatistics). • Incorporating CMC model in flow and transport models to study uncertainty in concentration fields. • Deviate from the literature: - Non-Gaussian stochastic fields: (Markovian fields), - Statistically heterogeneous fields, and - Non-uniformity of the flow field (in the mean) due to boundary conditions.
  • 4. Geological and Parameter Uncertainties Unconditional CMC 1 2 3 4 0 50 100 150 200 250 300 -50 0 0 50 100 150 200 250 300 -50 0 time = 1600 days 0 50 100 150 200 250 300 -50 0 0 50 100 150 200 250 300 -50 0 0 50 100 150 200 250 300 -50 0 0 50 100 150 200 250 300 -40 -20 0 0 50 100 150 200 250 300 -40 -20 0 Geology is Certain and Parameters are Uncertain Geology is Uncertain and Parameters are Certain 0 0.01 0.1 1 C C actualC C C Elfeki, Uffink and Barends, 1998 Geological Uncertainty: Geological configuration. Parameter Uncertainty: Conductivity value of each unit.
  • 5. Application of CMC at MADE Site 0 50 100 150 200 250 -10 -5 0 0 50 100 150 200 250 -10 -5 0 0 50 100 150 200 250 -10 -5 0 0 0.1 1 10 100 0 50 100 150 200 250 -10 -5 0 1 2 3 4 5 0 50 100 150 200 250 -10 -5 0 Elfeki, 2003 (in review) Real field situation: Data is in the form of boreholes. Geological prediction is needed at unsampled locations.
  • 6. ( ) Markov property (One-Step transition probability) Pr( ) Pr( ) : , Marginal Distribution lim Conditioning on the Fut N i i-1 i-2 i-3 0k l n pr i i-1k l lk N klk | , , S ,...,S S S SZ Z Z Z Z | pS SZ Z p w           ( ) 1 ( 1) ure Pr ( ) N i kq lk i i Nk l q N i lq p p | ,S S SZ Z Z p         S S o d One-dimensional Markov Chain
  • 7. Dark Grey (Boundary Cells) Light Grey (Previously Generated Cells) White (Unknown Cells) i-1,j i,j i,j-1 1,1 Nx,Ny Nx,1 1,Ny Nx,j , , 1, , 1 , 1, , 1 ,, Unconditioinal Coupled Markov Chains : Pr( | , ) . 1,... Conditioinal Coupled Markov Chains : Pr( | , , )x h v lk mk lm k i j k i j l i j m h v lf mf f i j k i j l i j m N j qlm k q h lk .p p p Z S Z S Z S k n .p p p Z S Z S Z S Z S .p                  ( ) ( ) , 1,... . x x h N i v kq mk h h N i v lf fq mf f .p p k n . .p p p     Coupled Markov Chain “CMC” in 2D (Elfeki and Dekking, 2001)
  • 8. CMC vs. Conventional Methods CMC Conventional Methods Based on conditional probability (transition matrix). Based on variogram or autocovariance. Marginal Probability. Sill. Asymmetry can be described. Asymmetry is impossible to describe. A model of spatial dependence is not necessary. A model of spatial dependence is needed for implementation. Compute only the one- step transition and the model takes care of the n-step transition probability. Need to compute many lags for the variogram or auto-correlations. (unreliable at large lags)
  • 9. Schelluinen study area, The Netherlands Soil Coding Soil description 1 Channel deposits (sand) 2 Natural levee deposits (fine sand, sandy clay, silty clay) 3 Crevasse splay deposits (fine sand, sandy clay, silty clay) 4 Flood basin deposits (clay, humic clay) 5 Organic deposits (peaty clay, peat) 6 Subsoil (sand) 0 80 160 240 -10 -5 0 0 200 400 600 800 1000 1200 1400 1600 -10 -5 0 1 2 3 4 5 6 Data from Bierkens, 1994
  • 10. Parameter Estimation and Procedure 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 Geological Image Domain Discretization Generated Realization 0 50 100 150 200 -10 -5 0 Superposition of the Grid over the Geological Image and Estimation of Transition Probability Boreholes Locations 0 50 100 150 200 -10 -5 0 Parameters Estimation Conditional Simulation 1 v v lk lk n v lq q T p T   
  • 11. Horizontal transition probability matrix of 1650 m section calculated over sampling intervals of 25 m. Soil 1 2 3 4 5 6 1 0.979 0.004 0.001 0.006 0.009 0.001 2 0.020 0.965 0.001 0.008 0.006 0.000 3 0.003 0.002 0.966 0.013 0.016 0.000 4 0.000 0.001 0.009 0.983 0.007 0.000 5 0.001 0.001 0.006 0.007 0.984 0.001 6 0.000 0.000 0.001 0.000 0.002 0.997 Vertical transition probability matrix 1650 m section calculated over sampling intervals of 0.25 m. Soil 1 2 3 4 5 6 1 0.945 0.000 0.009 0.000 0.009 0.037 2 0.071 0.796 0.021 0.041 0.071 0.000 3 0.000 0.000 0.797 0.086 0.089 0.028 4 0.003 0.013 0.041 0.714 0.222 0.007 5 0.004 0.012 0.047 0.119 0.768 0.050 6 0.000 0.000 0.000 0.000 0.000 1.000 Transition Probabilities (1650 x10 m)
  • 12. Transition Probabilities (240 x10 m) Horizontal transition probability matrix Vertical transition probability matrix State 3 4 5 6 State 3 4 5 6 3 0.979 0.010 0.011 0.000 3 0.969 0.027 0.004 0.000 4 0.011 0.974 0.015 0.000 4 0.008 0.724 0.268 0.000 5 0.008 0.120 0.977 0.003 5 0.025 0.139 0.791 0.045 6 0.010 0.000 0.007 0.983 6 0.000 0.000 0.000 1.000 0 80 160 240 -10 -5 0 3 4 5 6 Sampling intervals Dx = 2 m Dy= 0.25 m 0.966 0.013 0.016 0.000 0.009 0.983 0.007 0.000 0.006 0.007 0.984 0.001 0.001 0.000 0.002 0.997 0.797 0.086 0.089 0.028 0.041 0.714 0.222 0.007 0.047 0.119 0.768 0.050 0.000 0.000 0.000 1.000 Horizontal Transition Probability from 1650x10 Vertical Transition Probability from 1650x10
  • 13. Parameter Numerical Value Time step 5 [day] Longitudinal dispersivity 0.1 [m] Transverse dispersivity 0.01 [m] Effective porosity 0.30 [-] Injected tracer mass 1000 [grams] Head difference at the site 1.0 [m] Monte-Carlo Runs 50 MC Number of particles 10,000 [particles] Physical and Simulation Parameters Soil Properties at the core scale from Bierkens, 1996 (Table 1). Soil Coding Soil type Wi 6 Fine & loamy sand 0.12 0.60 1.76 4.40 0.09 5 Peat 0.39 -2.00 1.7 0.30 2.99 3 Sand & silty clay 0.19 -4.97 3.49 0.1 5.86 4 Clay & humic clay 0.30 -7.00 2.49 0.01 10.1 2 ( )iLog K( )iLog K ( / )iK m day 2 iK Convergence: ~14000 Iterations Accuracy 0.00001
  • 14. ( , ) ( , ) 0 ( , ) ( , ) x y K x y K x y x x y y K x yV x K x yV y                             Flow Model              Contaminant Source Plume at Time, t Impermeable boundary Impermeable boundary is the hydraulic head, Vx and Vy are pore velocities, is the hydraulic conductivity, and is the effective porosity.  ( , )K x y  Hydrodynamic Condition: Non-uniform Flow in the Mean due to Boundary Conditions.
  • 15. Transport Model Governing equation of solute transport : C is concentration Vx and Vy are pore velocities, and Dxx , Dyy , Dxy , Dyx are pore-scale dispersion coefficients x y xx xy yx yy C C C C C C CV V D D D D t x y x x y y x y                                            * - i j mij ijL L T VV D V D V                   *mD ij L  T  is effective molecular diffusion, is delta function, is longitudinal dispersivity, and is lateral dispersivity.
  • 16. 1 1 1 1 cos sin sin cos . / . / . / . / n n n n p p x p p yL T L T n n n n p p x x y p p y y xL T L T X X V t Z Z Y Y V t Z Z X X V t Z V V Z V V Y Y V t Z V V Z V V                            6 4 4 4 44 7 4 4 4 4 486 7 8 dispersive termadvective term     1 22 2xy yxx x p p x L T D VD V X t t X t V t Z V t Z V t x y V V                             1 22 2yx yy y x p p y L T D D V V Y t t Y t V t Z V t Z V t x y V V                          The displacement is a normally distributed random variable, whose mean is the advective movement and whose deviation from the mean is the dispersive movement. instantaneous injection + uniform flow Random Walk Method
  • 17. Application of SIS at the Site Geological Section Deterministic and Stochastic Zones In SIS Model Bierkens, 1996
  • 18. Comparison between CMC and SIS (1) 0 200 400 600 800 1000 1200 1400 1600 -10 -5 0 Conditioning on half of the drillings SIS Model Simulation CMC Model Simulation Geological Section Bierkens, 1996
  • 19. Comparison between CMC and SIS (2) 0 200 400 600 800 1000 1200 1400 1600 -10 -5 0 Conditioning on all drillings SIS Model Simulation CMC Model Simulation Geological Section Bierkens, 1996
  • 20. Monte-Carlo on CMC 0.00 500.00 1000.00 1500.00 -10.00 -5.00 0.00 1 2 3 4 5 6 0.00 500.00 1000.00 1500.00 -10.00 -5.00 0.00 0.00 500.00 1000.00 1500.00 -10.00 -5.00 0.00 0.00 500.00 1000.00 1500.00 -10.00 -5.00 0.00 0.00 500.00 1000.00 1500.00 -10.00 -5.00 0.00 0.00 500.00 1000.00 1500.00 -10.00 -5.00 0.00 0.00 500.00 1000.00 1500.00 -10.00 -5.00 0.00 0.00 500.00 1000.00 1500.00 -10.00 -5.00 0.00 0 0.25 0.5 0.75 1 0.00 500.00 1000.00 1500.00 -10.00 -5.00 0.00 State # 6 State # 1 State # 2 State # 3 State # 4 State # 5 Coding of the States Schematic Image of the Geological Cross Section 39 Boreholes for Conditioning Conditioned Single Realization
  • 21. Effect of Conditioning on 240 x10m Sec. 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 1 2 3 4 Lithology Coding 0 80 160 240 -10 -5 0 1 2 3 4 31 boreholes 25 boreholes 9 boreholes 2 boreholes
  • 22. Ensemble Indicator Function 0.00 50.00 100.00 150.00 200.00 -10.00 -5.00 0.00 0.00 50.00 100.00 150.00 200.00 -10.00 -5.00 0.00 0.00 50.00 100.00 150.00 200.00 -10.00 -5.00 0.00 0.00 50.00 100.00 150.00 200.00 -10.00 -5.00 0.00 0.00 50.00 100.00 150.00 200.00 -10.00 -5.00 0.00 0.00 50.00 100.00 150.00 200.00 -10.00 -5.00 0.00 0.00 50.00 100.00 150.00 200.00 -10.00 -5.00 0.00 0.00 50.00 100.00 150.00 200.00 -10.00 -5.00 0.00 0.00 50.00 100.00 150.00 200.00 -10.00 -5.00 0.00 0.00 50.00 100.00 150.00 200.00 -10.00 -5.00 0.00 0.00 50.00 100.00 150.00 200.00 -10.00 -5.00 0.00 0.00 50.00 100.00 150.00 200.00 -10.00 -5.00 0.00 2 Boreholes 0.00 50.00 100.00 150.00 200.00 -10.00 -5.00 0.00 0.00 50.00 100.00 150.00 200.00 -10.00 -5.00 0.00 0.00 50.00 100.00 150.00 200.00 -10.00 -5.00 0.00 0.00 50.00 100.00 150.00 200.00 -10.00 -5.00 0.00 0.00 50.00 100.00 150.00 200.00 -10.00 -5.00 0.00 0.00 50.00 100.00 150.00 200.00 -10.00 -5.00 0.00 0.00 50.00 100.00 150.00 200.00 -10.00 -5.00 0.00 0.00 50.00 100.00 150.00 200.00 -10.00 -5.00 0.00 0.00 50.00 100.00 150.00 200.00 -10.00 -5.00 0.00 0.00 50.00 100.00 150.00 200.00 -10.00 -5.00 0.00 0.00 50.00 100.00 150.00 200.00 -10.00 -5.00 0.00 0.00 50.00 100.00 150.00 200.00 -10.00 -5.00 0.00 0.00 50.00 100.00 150.00 200.00 -10.00 -5.00 0.00 0.00 50.00 100.00 150.00 200.00 -10.00 -5.00 0.00 0.00 50.00 100.00 150.00 200.00 -10.00 -5.00 0.00 0.00 50.00 100.00 150.00 200.00 -10.00 -5.00 0.00 0 0.25 0.5 0.75 1 3 Boreholes 5 Boreholes 9 Boreholes 21 Boreholes 25 Boreholes 31 Boreholes 0 50 100 150 200 -10 -5 0 1 2 3 4
  • 23. 0 50 100 150 200 250 Lag (m) 0 0.5 1 1.5 2 2.5 Gamma(LnK) Original Section Conditioning on 2 boreholes Conditioning on 3 boreholes Conditioning on 5 boreholes Conditioning on 9 boreholes Conditioning on 25 boreholes 0 2 4 6 8 10 Lag (m) 0 4 8 12 16 Gamma(LnK) Original Section Conditioning on 2 boreholes Conditioning on 3 boreholes Conditioning on 5 boreholes Conditioning on 9 boreholes Conditioning on 25 boreholes Effect of Conditioning on Variogram   ( ) 2 1 1 ( ) ( ) ( ) 2 ( ) n i i i = Y Y n    s s x x s s Measure of Variability
  • 24. Effect of Conditioning on S. R. Plume mg/lit 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 0.1 1 10 3 4 Lithology Coding 6 5 T= 82 years # drillings 2 3 5 9 25 31
  • 25. Effect of Conditioning Single Realiz. Cmax 0 4 8 12 16 20 24 28 32 No. of Conditioning Boreholes 0 40 80 120 160 200 240 PeakConcentration(mg/lit) Single Realization Cmax (t = 34.2 Years) Single Realization Cmax (t = 68.4 Years) Single Realization Cmax (t = 95.8 Years) Single Realization Cmax (t = 136.9 Years) Original Section (t = 34.2 Years) Original Section (t = 68.4 Years) Original Section (t = 95.8 Years) Original Section (t = 136.9 Years) Practical convergence is reached after about 21 boreholes 0 50 100 150 200 -10 -5 0
  • 26. First Moment (Single Realization) 0 10000 20000 30000 40000 Time (days) 0 20 40 60 80 100 120 X_CoordinateoftheCentroid(m) Original Section Conditioning on 2 boreholes Conditioning on 3 boreholes Conditioning on 5 boreholes Conditioning on 9 boreholes Conditioning on 25 boreholes 0 10000 20000 30000 40000 Time (days) -10 -8 -6 -4 -2 0 Y_CoordinateoftheCentroid(m) Original Section Conditioning on 2 boreholes Conditioning on 3 boreholes Conditioning on 5 boreholes Conditioning on 9 boreholes Conditioning on 25 boreholes Trend is reached at 3 boreholes Convergence at 9 boreholes              Contaminant Source Plume at Time, t Impermeable boundary Impermeable boundary
  • 27. Second Moment (Single Realization) 0 10000 20000 30000 40000 Time (days) 0 0.5 1 1.5 2 2.5 VarianceinY_direction(m2) Original Section Conditioning on 2 boreholes Conditioning on 3 boreholes Conditioning on 5 boreholes Conditioning on 9 boreholes Conditioning on 25 boreholes 0 10000 20000 30000 40000 Time (days) 0 1000 2000 3000 4000 VarianceinX_direction(m2) Original Section Conditioning on 2 boreholes Conditioning on 3 boreholes Conditioning on 5 boreholes Conditioning on 9 boreholes Conditioning on 25 boreholes Trend is reached at 3 boreholes Convergence at 5 and 25 boreholes Convergence at 9 boreholes              Contaminant Source Plume at Time, t Impermeable boundary Impermeable boundary
  • 28. Breakthrough Curve (Single Realization) 0 10000 20000 30000 40000 50000 Time (days) 0 0.2 0.4 0.6 0.8 1 NormalizedMassDistribution Original Section Conditioning on 2 boreholes Conditioning on 3 boreholes Conditioning on 5 boreholes Conditioning on 9 boreholes Conditioning on 25 boreholes 0 50 100 150 200 -10 -5 0 Convergence at 25 boreholes
  • 29. Conditioning on 2 boreholes (Ensemble ) 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 0.1 1 10 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 CactualC C mg/lit T = 4.1 years T = 82.2 years T = 136.9 years
  • 30. Conditioning on 5 boreholes (Ensemble) 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 0.1 1 10 mg/lit actualC C C
  • 31. Conditioning on 9 boreholes (Ensemble) 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 actualC C C
  • 32. Conditioning on 21 boreholes(Ensemble) 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 actualC C C
  • 33. Conditioning on 31 boreholes(Ensemble) 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 actualC C C
  • 34. Effect of Conditioning on Ensemble Cmax 0 4 8 12 16 20 24 28 32 No. of Conditioning Boreholes 0 10 20 30 40 50 60 70 80 90 100 110 EnsemblePeakConcentration(mg/lit) Ensemble Cmax (t = 34.2 Years) Ensemble Cmax (t = 68.4 Years) Ensemble Cmax (t = 95.8 Years) Ensemble Cmax (t = 136.9 Years) Original Section (t = 34.2 Years) Original Section (t = 68.4 Years) Original Section (t = 95.8 Years) Original Section (t = 136.9 Years) 0 4 8 12 16 20 24 28 32 No. of Conditioning Boreholes 0 1 2 3 4 5 6 CVofCmax t = 34.2 Years t = 68.4 Years t = 95.8 Years t = 136.9 Years max actualC Cp max 1 for #boreholes 5   c C max 1 for #boreholes 5  c C p max time   c C
  • 35. Conclusions 1. CMC model proved to be a valuable tool in predicting heterogeneous geological structures which lead to reducing uncertainty in concentration distributions of contaminant plumes. 2. Comparison between SIS and CMC have shown more or less similar results in terms of the geological configuration of the confining layers. However, CMC has more merits over the SIS: -some parts of the confining layers are treated determistically in SIS method which is not the case in CMC method. -non-stationarity in the confining layers is treated straightforwardly by CMC, it is inherited in the method, while in SIS model subdivision into three sub-layers has to be performed. -three variogram models with different parameters have been used in SIS, while direct transition probabilities were used in CMC. 3. Convergence to actual concentration is of oscillatory type, due to the fact that some layers are connected in one scenario and disconnected in another scenario.
  • 36. Conclusions 4. In non-Gaussian fields, single realization concentration fields and the ensemble concentration fields are non-Gaussian in space with peak skewed to the left. 5. Reproduction of peak concentration, plume spatial moments and breakthrough curves in a single realization requires many conditioning boreholes (20-31 boreholes). However, reproduction of plume shapes require less boreholes (5 boreholes). 6. Ensemble concentration and ensemble variance have the same pattern. Ensemble variance is peaked at the location of the peak ensemble concentration and decreases when one goes far from the peak concentration. This supports early work by Rubin (1991). However, in Rubin’s case the maximum concentration was in the center of the plume which is attributed to Gaussian fields. The non- centered peak concentration, in this study, is attributed to the non- Gaussian fields.
  • 37. Conclusions 7. Coefficient of variation of max concentration [CV(Cmax)] decreases significantly when conditioning on more than 5 boreholes. 5. Reproduction of peak concentration, plume spatial moments and breakthrough curves in a single realization requires many conditioning boreholes (20-31 boreholes). However, reproduction of plume shapes require less boreholes (5 boreholes). 6. Ensemble concentration and ensemble variance have the same pattern. Ensemble variance is peaked at the location of the peak ensemble concentration and decreases when one goes far from the peak concentration. This supports early work by Rubin (1991). However, in Rubin’s case the maximum concentration was in the center of the plume which is attributed to Gaussian fields. The non- centered peak concentration, in this study, is attributed to the non- Gaussian fields.