SlideShare a Scribd company logo
Modeling Subsurface Heterogeneity by Coupled Markov Chains: Directional Dependency, Walther’s Law and Entropy.
Theory of Forward MC: FMC
-1 -2 -3 0
-1
Pr( | , , ,..., )
Pr( | ) : ,
i i i ik l n ar
i ik l lk
SS S S SZ Z Z Z Z
pS SZ Z
     
  
SS S
i0 1 i+1i-1 N2
l k qdSSa
N-1
SrSb
Theory of Backward MC: BMC
1Pr( | ).i il k
kl
S SZ Zp

  
lkp 
klp

SS S
i0 1 i+1i-1 N2
l k qdSSa
N-1
SrSb
Conditioning FMC (Elfeki and
Dekking 2001)
( 1)
1 0 ( )
: Pr ( ) ,
N
ab bq
Nb a qab q N
aq
p p
p | ,S S SZ Z Z
p

    
SS S
i0 1 i+1i-1 N2
l k qdSSa
N-1
SrSb
Conditioning BMC
1 0Pr ( ).N Nr q a
qr a
| , SS SZ Z Zp

   
1 0
1 0
0
Pr( , )
Pr ( ) .
Pr ( )
N Nr q a
N Nr q a
qr a
N q a
, SS SZ Z Z
| , SS SZ Z Zp , SSZ Z
 

  
    
 
1 0
1 0 1 0 0
0 0
Pr ( )
Pr ( ).Pr ( ).Pr( )
.
Pr ( ).Pr( )
N Nr q a
qr a
N N Nq r ra a a
N q a a
| , SS SZ Z Zp
| , S | S SS S SZ Z Z Z Z Z
| S SSZ Z Z


 
    
     
  
SS S
i0 1 i+1i-1 N2
l k qdSSa
N-1
SrSb
Conditioning BMC (cont.)
1 0
( 1)
1 1 0
( )
0
Pr ( )
Pr ( ).Pr ( )
,
Pr ( )
N Nr q a
qr a
N
N N Nq r r rq ara
N
N q a aq
| , SS SZ Z Zp
p p| | SS S SZ Z Z Z
| S pSZ Z



 
    
   

 
SS S
i0 1 i+1i-1 N2
l k qdSSa
N-1
SrSb
Coupling and Conditioning Two
One-dimensional Markov Chains on
a Lattice System (CMC method)
.,...1,
),,|Pr(:
)(
)(
,1,,1,,
nk
p.p.p
p.p.p
SZSZSZSZp
f
v
mf
iNh
fq
h
lf
v
mk
iNh
kq
h
lk
qjNmjiljikjiqklm
x
x
x


 


Dark Grey (Boundary Cells)
Light Grey (Previously Generated Cells)
White (Unknown Cells)
i-1,j i,j
i,j-1
1,1
Nx,Ny
Nx,1
1,Ny
Nx,j
, 1, , 1 0,,
( )
( )
: Pr( | , , )
, 1,..., .
i j k i j d i j m j adm k a
h h i v
kd ak mk
h h i v
fd of mf
f
p Z S Z S Z S Z S
. .p p p
k n
. .p p p

      


Coupled Markov Chain for Backward Conditioning on the Left Boundary.
i+1,ji,j
i,j-1
1,1
Nx,Ny
Nx,1
1,Ny
Nx,j
Coupled Markov Chain for Forward Conditioning on the Right Boundary.
i-1,j i,j
i,j-1
1,1
Nx,Ny
Nx,1
1,Ny
Nx,j1,j
1,j
------------------>
------------------<
Methods of Implementation FCMC,
BCMC and FBCMC
? >? >
?< ?<
? > ?<
Forward Markov Chain Model (two forward steps)
Backward Markov Chain Model (two backward steps)
Forward-Backward Markov Chain Model (one forward step and one backward step)
Well (1) Well (2) Well (1) Well (2)
Procedure for Extracting a Final
Geological Image




 

.0
1
)(
otherwise
SZif
ZI
kij
ijk
 



MC
R
R
k
k
R
k
ij ji
ji
ZI
MCMC
SZ
1
)(
)(
,
, 1}{#

}...,,max{ 21 n
ijijij
l
ij  
Let the realizations be numbered 1,…, MC, and let Zij
(R) be the
lithology of cell (i,j) in the Rth realization. The empirical relative
frequency of lithology Sk at cell (i,j) is:
In the final image Z* the lithology at cell (i, j) will be the lithology
which occurs most frequently in the MC realizations. So, if Sl is such
that
Zij
*= Sl.
Sensitivity Analysis
• Various sampling intervals.
• Various horizontal transition probability matrices.
• Various degrees of diagonal dominancy of the horizontal transition
matrix.
• Use of Walther’s law to account for horizontal variability.
• Effect of conditioning on the model performance.
• Sensitivity of the Monte Carlo realizations.
• Various implementation strategies: forward, backward and
forward-backward methods.
• Use of cross validation to evaluate the model performance.
Case Studies
• Case study no. 1 (Afsluitdijk-Lemmer), NL
• Case study no. 2 (Casparde Roblesdijk part
of Waddenzeedijken,), NL
• Case study no. 3 (The Delaware river and
its underlying aquifer system in the vicinity
of the Camden metroplitan area, New
Jersey)
Case study no. 1 (Afsluitdijk-
Lemmer), NL
0 200 400 600 800 1000 1200 1400 1600
-20
-10
0
0 200 400 600 800 1000 1200 1400 1600
-10
0
0 200 400 600 800 1000 1200 1400 1600
-10
0
0 200 400 600 800 1000 1200 1400 1600
-10
0
1 2 3 4 5 6
A
B
C
Extracting a Final Image
0 200 400 600 800 1000 1200 1400 1600
-15
-10
-5
0
1 2 3 4 5 6
0
0.2
0.4
0.6
0.8
1
0
0.2
0.4
0.6
0.8
1
0
0.2
0.4
0.6
0.8
1
0
0.2
0.4
0.6
0.8
1
0
0.2
0.4
0.6
0.8
1
0
0.2
0.4
0.6
0.8
1
-10
0
1
-10
0
2
-10
0
3
-10
0
4
-10
0
5
-10
0
6
Stability of Monte Carlo
0 200 400 600 800 1000 1200 1400 1600
-20
-10
0
0 200 400 600 800 1000 1200 1400 1600
-20
-10
0
0 200 400 600 800 1000 1200 1400 1600
-20
-10
0
1 2 3 4 5 6
Results of 30 Realizations
Results of 100 Realizations
0 200 400 600 800 1000 1200 1400 1600
-20
-10
0
Results of 5 Realizations
0 200 400 600 800 1000 1200 1400 1600
-20
-10
0
Results of 10 Realizations
0 200 400 600 800 1000 1200 1400 1600
-20
-10
0
Results of 1000 Realizations
0 200 400 600 800 1000 1200 1400 1600
-15
-10
-5
0
0 200 400 600 800 1000 1200 1400 1600
-15
-10
-5
0
1
2
3
4
5
6
0 200 400 600 800 1000 1200 1400 1600
-10
-5
0
dx=10m
dx=40m
0 200 400 600 800 1000 1200 1400 1600
-10
-5
0
dx=20m
0 200 400 600 800 1000 1200 1400 1600
-10
-5
0
0 200 400 600 800 1000 1200 1400 1600
-10
-5
0
dx=5m
0 200 400 600 800 1000 1200 1400 1600
-10
-5
0
0 200 400 600 800 1000 1200 1400 1600
-10
-5
0
0 200 400 600 800 1000 1200 1400 1600
-10
-5
0
0 200 400 600 800 1000 1200 1400 1600
-10
-5
0
0 200 400 600 800 1000 1200 1400 1600
-10
-5
0
0
0.25
0.5
0.75
1
dx=2.5m
Influence of Sampling Interval in
Horizontal
0 200 400 600 800 1000 1200 1400 1600
-15
-10
-5
0
0 200 400 600 800 1000 1200 1400 1600
-15
-10
-5
0
1 2 3 4 5 6
0 200 400 600 800 1000 1200 1400 1600
-10
-5
0
dx=10m
dx=40m
0 200 400 600 800 1000 1200 1400 1600
-10
-5
0
dx=20m
0 200 400 600 800 1000 1200 1400 1600
-10
-5
0
0 200 400 600 800 1000 1200 1400 1600
-10
-5
0
dx=5m
0 200 400 600 800 1000 1200 1400 1600
-10
-5
0
0 200 400 600 800 1000 1200 1400 1600
-10
-5
0
0 200 400 600 800 1000 1200 1400 1600
-10
-5
0
0 200 400 600 800 1000 1200 1400 1600
-10
-5
0
0 200 400 600 800 1000 1200 1400 1600
-10
-5
0
0 0.25 0.5 0.75 1
dx=2.5m
Empirical Entropy States Coding
0 200 400 600 800 1000 1200 1400 1600
-10
-5
0
0 200 400 600 800 1000 1200 1400 1600
-10
-5
0
dx=2.5m
0 200 400 600 800 1000 1200 1400 1600
-10
-5
0
dx=5m
0 200 400 600 800 1000 1200 1400 1600
-10
-5
0
Application of the Concept of
Walter’s Law
Case study no. 2 (Casparde
Roblesdijk part of
Waddenzeedijken,), NL
0 500 1000 1500 2000 2500
-15
-10
-5
0
0 500 1000 1500 2000 2500
-15
-10
-5
0
0 500 1000 1500 2000 2500
-15
-10
-5
0
0 0.25 0.5 0.75 1 1.25 1.5 1 2 3 4 5 6 7 8 9 10 11 12 13
Lithology CodingEntropy Measure
0 500 1000 1500 2000 2500
-15
-10
-5
0
0 500 1000 1500 2000 2500
-15
-10
-5
0
0 500 1000 1500 2000 2500
-15
-10
-5
0
0 500 1000 1500 2000 2500
-15
-10
-5
0
1
2
3
4
5
6
7
8
9
10
11
dx =10 m
dx =20 m
dx =100 m
0 500 1000 1500 2000 2500
-15
-10
-5
0
0 500 1000 1500 2000 2500
-15
-10
-5
0
0 500 1000 1500 2000 2500
-15
-10
-5
0
0
0.25
0.5
0.75
1
1.25
0 500 1000 1500 2000
-15
-10
-5
0
0 500 1000 1500 2000
-15
-10
-5
0
dx =40 m
0 500 1000 1500 2000 2500
-15
-10
-5
0
dx = 5 m
0 500 1000 1500 2000 2500
-15
-10
-5
0
Influence of Sampling Interval in
Horizontal
0 500 1000 1500 2000 2500
-15
-10
-5
0
0 500 1000 1500 2000 2500
-15
-10
-5
0
0 500 1000 1500 2000 2500
-15
-10
-5
0
0 500 1000 1500 2000 2500
-15
-10
-5
0
0 500 1000 1500 2000 2500
-15
-10
-5
0
0 500 1000 1500 2000 2500
-15
-10
-5
0
0 500 1000 1500 2000 2500
-15
-10
-5
0
0 500 1000 1500 2000 2500
-15
-10
-5
0
a
b
c
d
e
f
No. of Boreholes
0 500 1000 1500 2000 2500
-15
-10
-5
0
0 500 1000 1500 2000 2500
-15
-10
-5
0
0 500 1000 1500 2000 2500
-15
-10
-5
0
0 500 1000 1500 2000 2500
-15
-10
-5
0
0 500 1000 1500 2000 2500
-15
-10
-5
0
0 500 1000 1500 2000 2500
-15
-10
-5
0
1 2 3 4 5 6 7 8 9 10 11
0 500 1000 1500 2000 2500
-15
-10
-5
0
0 500 1000 1500 2000 2500
-15
-10
-5
0
0 500 1000 1500 2000 2500
-15
-10
-5
0
1
2
3
4
5
6
7
8
9
10
11
dx =10 m
dx =20 m
dx =100 m
0 500 1000 1500 2000
-15
-10
-5
0
dx =40 m
0 500 1000 1500 2000 2500
-15
-10
-5
0
0 500 1000 1500 2000 2500
-15
-10
-5
0
0 500 1000 1500 2000 2500
-15
-10
-5
0
0
0.25
0.5
0.75
1
1.25
0 500 1000 1500 2000
-15
-10
-5
0
0 500 1000 1500 2000 2500
-15
-10
-5
0
0 500 1000 1500 2000 2500
-15
-10
-5
0
0 500 1000 1500 2000 2500
-15
-10
-5
0
0 500 1000 1500 2000 2500
-15
-10
-5
0
1
2
3
4
5
6
7
8
9
10
11
dx =10 m
dx =20 m
dx =100 m
0 500 1000 1500 2000
-15
-10
-5
0
dx =40 m
0 500 1000 1500 2000 2500
-15
-10
-5
0
0 500 1000 1500 2000 2500
-15
-10
-5
0
0 500 1000 1500 2000 2500
-15
-10
-5
0
0
0.25
0.5
0.75
1
1.25
0 500 1000 1500 2000
-15
-10
-5
0
0 500 1000 1500 2000 2500
-15
-10
-5
0
0 500 1000 1500 2000 2500
-15
-10
-5
0
0 500 1000 1500 2000 2500
-15
-10
-5
0
0 500 1000 1500 2000 2500
-15
-10
-5
0
1
2
3
4
5
6
7
8
9
10
11
dx =10 m
dx =20 m
dx =100 m
0 500 1000 1500 2000
-15
-10
-5
0
dx =40 m
0 500 1000 1500 2000 2500
-15
-10
-5
0
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
e
1 2 3 4 5 6 7
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
Conditioning Boreholes
Generated Final Images
Boreholes for Cross-Validation
Simulated Boreholes from Final Images
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
0 0.25 0.5 0.75 1 1.25 1.5 1.75
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
e
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
Conditioning Boreholes
Generated Final Images
Boreholes for Cross-Validation
Simulated Boreholes from Final Images
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
0 0.25 0.5 0.75 1 1.25 1.5 1.75
1 2 3 4 5 6 7
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
e
1 2 3 4 5 6 7
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
Conditioning Boreholes
Generated Final Images
Boreholes for Cross-Validation
Simulated Boreholes from Final Images
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
-300
-200
-100
0
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
-300
-200
-100
0
1
2
3
4
5
6
7
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
-300
-200
-100
0
e
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
-300
-200
-100
0
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
-300
-200
-100
0
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
-300
-200
-100
0
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
-300
-200
-100
0
dx = 400 feet
0
0.25
0.5
0.75
1
1.25
1.5
Forward-Backward Model
Fully Backward Model
Fully Forward Model
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
-300
-200
-100
0
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
-300
-200
-100
0
1
2
3
4
5
6
7
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
-300
-200
-100
0
e
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
-300
-200
-100
0
dx = 400 feet
Forward-Backward Model
Fully Backward Model
Fully Forward Model
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
e
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
dx = 80 feet
0
0.25
0.5
0.75
1
1.25
1.5
1
2
3
4
5
6
7
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
1
2
3
4
5
6
7
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
e
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
dx = 280 feet
0
0.25
0.5
0.75
1
1.25
1.5
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
1
2
3
4
5
6
7
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
e
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
dx = 280 feet
0
0.25
0.5
0.75
1
1.25
1.5
Fully Forward Model
Fully Backward Model
Forward-Backward Model
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
1
2
3
4
5
6
7
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
e
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
dx = 280 feet
Fully Forward Model
Fully Backward Model
Forward-Backward Model
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
1
2
3
4
5
6
7
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
e
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
dx = 80 feet
0
0.25
0.5
0.75
1
1.25
1.5
Fully Forward Model
Fully Backward Model
Forward-Backward Model
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
1
2
3
4
5
6
7
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
e
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
dx = 280 feet
0
0.25
0.5
0.75
1
1.25
1.5
Forward Model
Backward Model
Forward-Backward Model
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
-300
-200
-100
0
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
-300
-200
-100
0
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
-300
-200
-100
0
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
-300
-200
-100
0
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
-300
-200
-100
0
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
-300
-200
-100
0
a
b
c
d
e
f
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
-300
-200
-100
0
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
-300
-200
-100
0
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
-300
-200
-100
0
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
-300
-200
-100
0
pii = 0.603
pii= 0.699
pii = 0.801
pii = 0.908
0
0.25
0.5
0.75
1
1.25
1.5
1.75
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
-300
-200
-100
0
pii = 0.986
1
2
3
4
5
6
7
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
a
b
c
d
e
f
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
pii = 0.603
pii= 0.699
pii = 0.801
pii = 0.908
0
0.25
0.5
0.75
1
1.25
1.5
1.75
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
pii = 0.986
1
2
3
4
5
6
7
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
1
2
3
4
5
6
7
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
a
b
c
e
d
e
f
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
0
0.25
0.5
0.75
1
1.25
1.5
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
dx = 40 feet
dx = 80 feet
dx = 280 feet
dx = 400 feet
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
1
2
3
4
5
6
70 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
-300
-200
-100
0
a
b
c
e
d
e
f
dx = 40 feet
dx = 80 feet
dx = 280 feet
dx = 400 feet
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
-300
-200
-100
0
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
-300
-200
-100
0
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
-300
-200
-100
0
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
-300
-200
-100
0
a
b
e
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
-300
-200
-100
0
c
d
e
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
-300
-200
-100
0
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
-300
-200
-100
0
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
-300
-200
-100
0
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
-300
-200
-100
0
dx = 100 feet
dx = 200 feet
dx = 400 feet
dx = 800 feet
0
0.25
0.5
0.75
1
1.25
1.5
1.75
1
2
3
4
5
6
7
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
-300
-200
-100
0
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
-300
-200
-100
0
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
-300
-200
-100
0
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
-300
-200
-100
0
a
b
e
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
-300
-200
-100
0
c
d
e
dx = 100 feet
dx = 200 feet
dx = 400 feet
dx = 800 feet
1
2
3
4
5
6
7
0 4000 8000 12000 16000
Overall Horizontal Field Scale (meters)
0
0.01
0.02
0.03
0.04
dy/dx
Afsluitdijk- Lemmer (Netherlands)
Afsluitdijk Caspar de Roblesdijk (Netherlands)
Delaware River Aquifer (Longitudinal-Section), USA
Delaware River Aquifer (Cross-Section),USA
MADE site at Columbus, Mississippi [Elfeki and Rajabiani, 2002]

More Related Content

PDF
seminar_final
PDF
9789774541100
PPSX
Reducing Concentration Uncertainty Using the Coupled Markov Chain Approach
PDF
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...
PDF
PDF
Ch02sol
PDF
capitulo 16 de dinamica
PDF
solucionario del capitulo 12
seminar_final
9789774541100
Reducing Concentration Uncertainty Using the Coupled Markov Chain Approach
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...
Ch02sol
capitulo 16 de dinamica
solucionario del capitulo 12

What's hot (15)

PDF
dinamik
PDF
Solutions manual for engineering mechanics dynamics 13th edition by hibbeler
PDF
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...
PDF
Mecánica para ingeniería dinámica bedford - 5ed (sol)
PDF
Chapter 20
PDF
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...
PDF
Hibbeler engineering mechanics_dynamics_12th_solucionario
PPSX
Reducing Concentration Uncertainty in Geological Structures by Conditioning o...
PDF
Capítulo 04 carga e análise de tensão
PDF
'Documents.mx dynamics solucionario-riley.pdf'
PDF
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...
PDF
Chapter 15
DOCX
Trabajo de dinamica
PDF
PDF
Ac/AC conveter
dinamik
Solutions manual for engineering mechanics dynamics 13th edition by hibbeler
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...
Mecánica para ingeniería dinámica bedford - 5ed (sol)
Chapter 20
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...
Hibbeler engineering mechanics_dynamics_12th_solucionario
Reducing Concentration Uncertainty in Geological Structures by Conditioning o...
Capítulo 04 carga e análise de tensão
'Documents.mx dynamics solucionario-riley.pdf'
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...
Chapter 15
Trabajo de dinamica
Ac/AC conveter
Ad

Viewers also liked (14)

PDF
Boston Real Estate Report
PPTX
Module 5
PPT
Remsysteem presentatie
PDF
Autoink User Guide
DOCX
PROFILE
PPTX
Wessex AHSN - Alcohol Related Liver Disease, Audit and Pathway
PPTX
My journey through sign language
PPTX
Otrosutilitarios 140123122505-phpapp02
PDF
MSU申请材料-Yingyue Liu-RESUME
PPTX
Hardware
DOCX
Mf0015 international financial management
DOCX
ISSC471_Final_Project_Paper_John_Intindolo
PDF
NCIC Spring Report_062416_LinkedInR
PPTX
Безкассовые банковские отделения
Boston Real Estate Report
Module 5
Remsysteem presentatie
Autoink User Guide
PROFILE
Wessex AHSN - Alcohol Related Liver Disease, Audit and Pathway
My journey through sign language
Otrosutilitarios 140123122505-phpapp02
MSU申请材料-Yingyue Liu-RESUME
Hardware
Mf0015 international financial management
ISSC471_Final_Project_Paper_John_Intindolo
NCIC Spring Report_062416_LinkedInR
Безкассовые банковские отделения
Ad

Similar to Modeling Subsurface Heterogeneity by Coupled Markov Chains: Directional Dependency, Walther’s Law and Entropy. (20)

PDF
LVDT cell stress measurements for insitu rock stress measurement
PDF
2012-TFM1 Economic Gas-like Models
PPSX
Prediction of Contaminant Plumes (Shapes, Spatial Moments and Macro-dispersio...
PPS
Reducing Uncertainty of Groundwater Contaminant Transport Using Markov Chains
PPT
Geohydrology ii (3)
PDF
2018 IMSM: Computational Techniques to Enhance Laser-based Characterization o...
PDF
M03L03 SLA.pdf
PPTX
Radio active particle tracking implemnetation
PPTX
eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee ppt.pptx
PDF
Photoelectric Effect.pdf
PDF
Commissioning of Truebeam LINAC
PDF
17.pmsm speed sensor less direct torque control based on ekf
PDF
tube voltage accuracy and linearity output using exposure indicator and mean ...
DOCX
Ass 1 12-46 report engineering dynamics problem
PDF
PosterFormatRNYF(1)
DOCX
Ass 1 f12-11 report engineering dynamics problems
PDF
Tomasi and Kanade - Structure from Motion
PDF
Seismic QC & Filtering with Geostatistics
PPT
4WCSCM_PRESENTATION.ppt
PDF
LVDT cell stress measurements for insitu rock stress measurement
2012-TFM1 Economic Gas-like Models
Prediction of Contaminant Plumes (Shapes, Spatial Moments and Macro-dispersio...
Reducing Uncertainty of Groundwater Contaminant Transport Using Markov Chains
Geohydrology ii (3)
2018 IMSM: Computational Techniques to Enhance Laser-based Characterization o...
M03L03 SLA.pdf
Radio active particle tracking implemnetation
eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee ppt.pptx
Photoelectric Effect.pdf
Commissioning of Truebeam LINAC
17.pmsm speed sensor less direct torque control based on ekf
tube voltage accuracy and linearity output using exposure indicator and mean ...
Ass 1 12-46 report engineering dynamics problem
PosterFormatRNYF(1)
Ass 1 f12-11 report engineering dynamics problems
Tomasi and Kanade - Structure from Motion
Seismic QC & Filtering with Geostatistics
4WCSCM_PRESENTATION.ppt

More from Amro Elfeki (20)

PPSX
Simulation of Tracer Injection from a Well in a Nearly Radial Flow
PPTX
Aquifer recharge from flash floods in the arid environment: A mass balance ap...
PPT
Basics of Contaminant Transport in Aquifers (Lecture)
PPT
Well Hydraulics (Lecture 1)
PPT
Gradually Varied Flow in Open Channel
PPTX
Two Dimensional Flood Inundation Modelling In Urban Area Using WMS, HEC-RAS a...
PDF
Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...
PDF
Lecture 5: Stochastic Hydrology
PDF
Lecture 4: Stochastic Hydrology (Site Characterization)
PDF
Lecture 3: Stochastic Hydrology
PDF
Lecture 2: Stochastic Hydrology
PDF
Stochastic Hydrology Lecture 1: Introduction
PPS
Development of Flash Flood Risk Assessment Matrix in Arid Environment: Case S...
PPSX
Soft Computing and Simulation in Water Resources: Chapter 1 introduction
PPSX
Derivation of unit hydrograph of Al-Lith basin in the south west of saudi ar...
PPSX
Empirical equations for flood analysis in arid zones
PPSX
Simulation of the central limit theorem
PPSX
Empirical equations for estimation of transmission losses
PPTX
Representative elementary volume (rev) in porous
PPSX
Civil Engineering Drawings (Collection of Sheets)
Simulation of Tracer Injection from a Well in a Nearly Radial Flow
Aquifer recharge from flash floods in the arid environment: A mass balance ap...
Basics of Contaminant Transport in Aquifers (Lecture)
Well Hydraulics (Lecture 1)
Gradually Varied Flow in Open Channel
Two Dimensional Flood Inundation Modelling In Urban Area Using WMS, HEC-RAS a...
Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...
Lecture 5: Stochastic Hydrology
Lecture 4: Stochastic Hydrology (Site Characterization)
Lecture 3: Stochastic Hydrology
Lecture 2: Stochastic Hydrology
Stochastic Hydrology Lecture 1: Introduction
Development of Flash Flood Risk Assessment Matrix in Arid Environment: Case S...
Soft Computing and Simulation in Water Resources: Chapter 1 introduction
Derivation of unit hydrograph of Al-Lith basin in the south west of saudi ar...
Empirical equations for flood analysis in arid zones
Simulation of the central limit theorem
Empirical equations for estimation of transmission losses
Representative elementary volume (rev) in porous
Civil Engineering Drawings (Collection of Sheets)

Recently uploaded (20)

PDF
composite construction of structures.pdf
PDF
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
PDF
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
PDF
TFEC-4-2020-Design-Guide-for-Timber-Roof-Trusses.pdf
PDF
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
PPTX
Safety Seminar civil to be ensured for safe working.
PDF
PPT on Performance Review to get promotions
PDF
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
PDF
Well-logging-methods_new................
PDF
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
PPTX
OOP with Java - Java Introduction (Basics)
PPT
introduction to datamining and warehousing
PDF
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
PPTX
CYBER-CRIMES AND SECURITY A guide to understanding
PPTX
Current and future trends in Computer Vision.pptx
PPTX
web development for engineering and engineering
PDF
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
PDF
Embodied AI: Ushering in the Next Era of Intelligent Systems
PDF
Digital Logic Computer Design lecture notes
PPTX
Lecture Notes Electrical Wiring System Components
composite construction of structures.pdf
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
TFEC-4-2020-Design-Guide-for-Timber-Roof-Trusses.pdf
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
Safety Seminar civil to be ensured for safe working.
PPT on Performance Review to get promotions
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
Well-logging-methods_new................
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
OOP with Java - Java Introduction (Basics)
introduction to datamining and warehousing
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
CYBER-CRIMES AND SECURITY A guide to understanding
Current and future trends in Computer Vision.pptx
web development for engineering and engineering
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
Embodied AI: Ushering in the Next Era of Intelligent Systems
Digital Logic Computer Design lecture notes
Lecture Notes Electrical Wiring System Components

Modeling Subsurface Heterogeneity by Coupled Markov Chains: Directional Dependency, Walther’s Law and Entropy.

  • 2. Theory of Forward MC: FMC -1 -2 -3 0 -1 Pr( | , , ,..., ) Pr( | ) : , i i i ik l n ar i ik l lk SS S S SZ Z Z Z Z pS SZ Z          SS S i0 1 i+1i-1 N2 l k qdSSa N-1 SrSb
  • 3. Theory of Backward MC: BMC 1Pr( | ).i il k kl S SZ Zp     lkp  klp  SS S i0 1 i+1i-1 N2 l k qdSSa N-1 SrSb
  • 4. Conditioning FMC (Elfeki and Dekking 2001) ( 1) 1 0 ( ) : Pr ( ) , N ab bq Nb a qab q N aq p p p | ,S S SZ Z Z p       SS S i0 1 i+1i-1 N2 l k qdSSa N-1 SrSb
  • 5. Conditioning BMC 1 0Pr ( ).N Nr q a qr a | , SS SZ Z Zp      1 0 1 0 0 Pr( , ) Pr ( ) . Pr ( ) N Nr q a N Nr q a qr a N q a , SS SZ Z Z | , SS SZ Z Zp , SSZ Z              1 0 1 0 1 0 0 0 0 Pr ( ) Pr ( ).Pr ( ).Pr( ) . Pr ( ).Pr( ) N Nr q a qr a N N Nq r ra a a N q a a | , SS SZ Z Zp | , S | S SS S SZ Z Z Z Z Z | S SSZ Z Z                   SS S i0 1 i+1i-1 N2 l k qdSSa N-1 SrSb
  • 6. Conditioning BMC (cont.) 1 0 ( 1) 1 1 0 ( ) 0 Pr ( ) Pr ( ).Pr ( ) , Pr ( ) N Nr q a qr a N N N Nq r r rq ara N N q a aq | , SS SZ Z Zp p p| | SS S SZ Z Z Z | S pSZ Z                  SS S i0 1 i+1i-1 N2 l k qdSSa N-1 SrSb
  • 7. Coupling and Conditioning Two One-dimensional Markov Chains on a Lattice System (CMC method)
  • 8. .,...1, ),,|Pr(: )( )( ,1,,1,, nk p.p.p p.p.p SZSZSZSZp f v mf iNh fq h lf v mk iNh kq h lk qjNmjiljikjiqklm x x x       Dark Grey (Boundary Cells) Light Grey (Previously Generated Cells) White (Unknown Cells) i-1,j i,j i,j-1 1,1 Nx,Ny Nx,1 1,Ny Nx,j
  • 9. , 1, , 1 0,, ( ) ( ) : Pr( | , , ) , 1,..., . i j k i j d i j m j adm k a h h i v kd ak mk h h i v fd of mf f p Z S Z S Z S Z S . .p p p k n . .p p p           Coupled Markov Chain for Backward Conditioning on the Left Boundary. i+1,ji,j i,j-1 1,1 Nx,Ny Nx,1 1,Ny Nx,j Coupled Markov Chain for Forward Conditioning on the Right Boundary. i-1,j i,j i,j-1 1,1 Nx,Ny Nx,1 1,Ny Nx,j1,j 1,j ------------------> ------------------<
  • 10. Methods of Implementation FCMC, BCMC and FBCMC ? >? > ?< ?< ? > ?< Forward Markov Chain Model (two forward steps) Backward Markov Chain Model (two backward steps) Forward-Backward Markov Chain Model (one forward step and one backward step) Well (1) Well (2) Well (1) Well (2)
  • 11. Procedure for Extracting a Final Geological Image        .0 1 )( otherwise SZif ZI kij ijk      MC R R k k R k ij ji ji ZI MCMC SZ 1 )( )( , , 1}{#  }...,,max{ 21 n ijijij l ij   Let the realizations be numbered 1,…, MC, and let Zij (R) be the lithology of cell (i,j) in the Rth realization. The empirical relative frequency of lithology Sk at cell (i,j) is: In the final image Z* the lithology at cell (i, j) will be the lithology which occurs most frequently in the MC realizations. So, if Sl is such that Zij *= Sl.
  • 12. Sensitivity Analysis • Various sampling intervals. • Various horizontal transition probability matrices. • Various degrees of diagonal dominancy of the horizontal transition matrix. • Use of Walther’s law to account for horizontal variability. • Effect of conditioning on the model performance. • Sensitivity of the Monte Carlo realizations. • Various implementation strategies: forward, backward and forward-backward methods. • Use of cross validation to evaluate the model performance.
  • 13. Case Studies • Case study no. 1 (Afsluitdijk-Lemmer), NL • Case study no. 2 (Casparde Roblesdijk part of Waddenzeedijken,), NL • Case study no. 3 (The Delaware river and its underlying aquifer system in the vicinity of the Camden metroplitan area, New Jersey)
  • 14. Case study no. 1 (Afsluitdijk- Lemmer), NL 0 200 400 600 800 1000 1200 1400 1600 -20 -10 0 0 200 400 600 800 1000 1200 1400 1600 -10 0 0 200 400 600 800 1000 1200 1400 1600 -10 0 0 200 400 600 800 1000 1200 1400 1600 -10 0 1 2 3 4 5 6 A B C
  • 15. Extracting a Final Image 0 200 400 600 800 1000 1200 1400 1600 -15 -10 -5 0 1 2 3 4 5 6 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 -10 0 1 -10 0 2 -10 0 3 -10 0 4 -10 0 5 -10 0 6
  • 16. Stability of Monte Carlo 0 200 400 600 800 1000 1200 1400 1600 -20 -10 0 0 200 400 600 800 1000 1200 1400 1600 -20 -10 0 0 200 400 600 800 1000 1200 1400 1600 -20 -10 0 1 2 3 4 5 6 Results of 30 Realizations Results of 100 Realizations 0 200 400 600 800 1000 1200 1400 1600 -20 -10 0 Results of 5 Realizations 0 200 400 600 800 1000 1200 1400 1600 -20 -10 0 Results of 10 Realizations 0 200 400 600 800 1000 1200 1400 1600 -20 -10 0 Results of 1000 Realizations
  • 17. 0 200 400 600 800 1000 1200 1400 1600 -15 -10 -5 0 0 200 400 600 800 1000 1200 1400 1600 -15 -10 -5 0 1 2 3 4 5 6 0 200 400 600 800 1000 1200 1400 1600 -10 -5 0 dx=10m dx=40m 0 200 400 600 800 1000 1200 1400 1600 -10 -5 0 dx=20m 0 200 400 600 800 1000 1200 1400 1600 -10 -5 0 0 200 400 600 800 1000 1200 1400 1600 -10 -5 0 dx=5m 0 200 400 600 800 1000 1200 1400 1600 -10 -5 0 0 200 400 600 800 1000 1200 1400 1600 -10 -5 0 0 200 400 600 800 1000 1200 1400 1600 -10 -5 0 0 200 400 600 800 1000 1200 1400 1600 -10 -5 0 0 200 400 600 800 1000 1200 1400 1600 -10 -5 0 0 0.25 0.5 0.75 1 dx=2.5m Influence of Sampling Interval in Horizontal
  • 18. 0 200 400 600 800 1000 1200 1400 1600 -15 -10 -5 0 0 200 400 600 800 1000 1200 1400 1600 -15 -10 -5 0 1 2 3 4 5 6 0 200 400 600 800 1000 1200 1400 1600 -10 -5 0 dx=10m dx=40m 0 200 400 600 800 1000 1200 1400 1600 -10 -5 0 dx=20m 0 200 400 600 800 1000 1200 1400 1600 -10 -5 0 0 200 400 600 800 1000 1200 1400 1600 -10 -5 0 dx=5m 0 200 400 600 800 1000 1200 1400 1600 -10 -5 0 0 200 400 600 800 1000 1200 1400 1600 -10 -5 0 0 200 400 600 800 1000 1200 1400 1600 -10 -5 0 0 200 400 600 800 1000 1200 1400 1600 -10 -5 0 0 200 400 600 800 1000 1200 1400 1600 -10 -5 0 0 0.25 0.5 0.75 1 dx=2.5m Empirical Entropy States Coding 0 200 400 600 800 1000 1200 1400 1600 -10 -5 0 0 200 400 600 800 1000 1200 1400 1600 -10 -5 0 dx=2.5m 0 200 400 600 800 1000 1200 1400 1600 -10 -5 0 dx=5m 0 200 400 600 800 1000 1200 1400 1600 -10 -5 0 Application of the Concept of Walter’s Law
  • 19. Case study no. 2 (Casparde Roblesdijk part of Waddenzeedijken,), NL
  • 20. 0 500 1000 1500 2000 2500 -15 -10 -5 0 0 500 1000 1500 2000 2500 -15 -10 -5 0 0 500 1000 1500 2000 2500 -15 -10 -5 0 0 0.25 0.5 0.75 1 1.25 1.5 1 2 3 4 5 6 7 8 9 10 11 12 13 Lithology CodingEntropy Measure
  • 21. 0 500 1000 1500 2000 2500 -15 -10 -5 0 0 500 1000 1500 2000 2500 -15 -10 -5 0 0 500 1000 1500 2000 2500 -15 -10 -5 0 0 500 1000 1500 2000 2500 -15 -10 -5 0 1 2 3 4 5 6 7 8 9 10 11 dx =10 m dx =20 m dx =100 m 0 500 1000 1500 2000 2500 -15 -10 -5 0 0 500 1000 1500 2000 2500 -15 -10 -5 0 0 500 1000 1500 2000 2500 -15 -10 -5 0 0 0.25 0.5 0.75 1 1.25 0 500 1000 1500 2000 -15 -10 -5 0 0 500 1000 1500 2000 -15 -10 -5 0 dx =40 m 0 500 1000 1500 2000 2500 -15 -10 -5 0 dx = 5 m 0 500 1000 1500 2000 2500 -15 -10 -5 0 Influence of Sampling Interval in Horizontal
  • 22. 0 500 1000 1500 2000 2500 -15 -10 -5 0 0 500 1000 1500 2000 2500 -15 -10 -5 0 0 500 1000 1500 2000 2500 -15 -10 -5 0 0 500 1000 1500 2000 2500 -15 -10 -5 0 0 500 1000 1500 2000 2500 -15 -10 -5 0 0 500 1000 1500 2000 2500 -15 -10 -5 0 0 500 1000 1500 2000 2500 -15 -10 -5 0 0 500 1000 1500 2000 2500 -15 -10 -5 0 a b c d e f No. of Boreholes
  • 23. 0 500 1000 1500 2000 2500 -15 -10 -5 0 0 500 1000 1500 2000 2500 -15 -10 -5 0 0 500 1000 1500 2000 2500 -15 -10 -5 0 0 500 1000 1500 2000 2500 -15 -10 -5 0 0 500 1000 1500 2000 2500 -15 -10 -5 0 0 500 1000 1500 2000 2500 -15 -10 -5 0 1 2 3 4 5 6 7 8 9 10 11
  • 24. 0 500 1000 1500 2000 2500 -15 -10 -5 0 0 500 1000 1500 2000 2500 -15 -10 -5 0 0 500 1000 1500 2000 2500 -15 -10 -5 0 1 2 3 4 5 6 7 8 9 10 11 dx =10 m dx =20 m dx =100 m 0 500 1000 1500 2000 -15 -10 -5 0 dx =40 m 0 500 1000 1500 2000 2500 -15 -10 -5 0 0 500 1000 1500 2000 2500 -15 -10 -5 0 0 500 1000 1500 2000 2500 -15 -10 -5 0 0 0.25 0.5 0.75 1 1.25 0 500 1000 1500 2000 -15 -10 -5 0 0 500 1000 1500 2000 2500 -15 -10 -5 0
  • 25. 0 500 1000 1500 2000 2500 -15 -10 -5 0 0 500 1000 1500 2000 2500 -15 -10 -5 0 0 500 1000 1500 2000 2500 -15 -10 -5 0 1 2 3 4 5 6 7 8 9 10 11 dx =10 m dx =20 m dx =100 m 0 500 1000 1500 2000 -15 -10 -5 0 dx =40 m 0 500 1000 1500 2000 2500 -15 -10 -5 0 0 500 1000 1500 2000 2500 -15 -10 -5 0 0 500 1000 1500 2000 2500 -15 -10 -5 0 0 0.25 0.5 0.75 1 1.25 0 500 1000 1500 2000 -15 -10 -5 0 0 500 1000 1500 2000 2500 -15 -10 -5 0
  • 26. 0 500 1000 1500 2000 2500 -15 -10 -5 0 0 500 1000 1500 2000 2500 -15 -10 -5 0 0 500 1000 1500 2000 2500 -15 -10 -5 0 1 2 3 4 5 6 7 8 9 10 11 dx =10 m dx =20 m dx =100 m 0 500 1000 1500 2000 -15 -10 -5 0 dx =40 m 0 500 1000 1500 2000 2500 -15 -10 -5 0
  • 27. 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 e 1 2 3 4 5 6 7 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 Conditioning Boreholes Generated Final Images Boreholes for Cross-Validation Simulated Boreholes from Final Images 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 0 0.25 0.5 0.75 1 1.25 1.5 1.75
  • 28. 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 e 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 Conditioning Boreholes Generated Final Images Boreholes for Cross-Validation Simulated Boreholes from Final Images 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 0 0.25 0.5 0.75 1 1.25 1.5 1.75 1 2 3 4 5 6 7
  • 29. 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 e 1 2 3 4 5 6 7 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 Conditioning Boreholes Generated Final Images Boreholes for Cross-Validation Simulated Boreholes from Final Images 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0
  • 30. 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 -300 -200 -100 0 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 -300 -200 -100 0 1 2 3 4 5 6 7 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 -300 -200 -100 0 e 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 -300 -200 -100 0 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 -300 -200 -100 0 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 -300 -200 -100 0 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 -300 -200 -100 0 dx = 400 feet 0 0.25 0.5 0.75 1 1.25 1.5 Forward-Backward Model Fully Backward Model Fully Forward Model
  • 31. 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 -300 -200 -100 0 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 -300 -200 -100 0 1 2 3 4 5 6 7 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 -300 -200 -100 0 e 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 -300 -200 -100 0 dx = 400 feet Forward-Backward Model Fully Backward Model Fully Forward Model
  • 32. 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 e 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 dx = 80 feet 0 0.25 0.5 0.75 1 1.25 1.5 1 2 3 4 5 6 7 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0
  • 33. 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 1 2 3 4 5 6 7 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 e 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 dx = 280 feet 0 0.25 0.5 0.75 1 1.25 1.5
  • 34. 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 1 2 3 4 5 6 7 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 e 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 dx = 280 feet 0 0.25 0.5 0.75 1 1.25 1.5 Fully Forward Model Fully Backward Model Forward-Backward Model
  • 35. 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 1 2 3 4 5 6 7 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 e 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 dx = 280 feet Fully Forward Model Fully Backward Model Forward-Backward Model
  • 36. 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 1 2 3 4 5 6 7 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 e 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 dx = 80 feet 0 0.25 0.5 0.75 1 1.25 1.5 Fully Forward Model Fully Backward Model Forward-Backward Model
  • 37. 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 1 2 3 4 5 6 7 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 e 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 dx = 280 feet 0 0.25 0.5 0.75 1 1.25 1.5 Forward Model Backward Model Forward-Backward Model
  • 38. 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 -300 -200 -100 0 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 -300 -200 -100 0 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 -300 -200 -100 0 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 -300 -200 -100 0 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 -300 -200 -100 0 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 -300 -200 -100 0 a b c d e f 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 -300 -200 -100 0 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 -300 -200 -100 0 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 -300 -200 -100 0 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 -300 -200 -100 0 pii = 0.603 pii= 0.699 pii = 0.801 pii = 0.908 0 0.25 0.5 0.75 1 1.25 1.5 1.75 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 -300 -200 -100 0 pii = 0.986 1 2 3 4 5 6 7
  • 39. 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 a b c d e f 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 pii = 0.603 pii= 0.699 pii = 0.801 pii = 0.908 0 0.25 0.5 0.75 1 1.25 1.5 1.75 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 pii = 0.986 1 2 3 4 5 6 7
  • 40. 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 1 2 3 4 5 6 7 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 a b c e d e f 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 0 0.25 0.5 0.75 1 1.25 1.5 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 dx = 40 feet dx = 80 feet dx = 280 feet dx = 400 feet
  • 41. 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 1 2 3 4 5 6 70 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 -300 -200 -100 0 a b c e d e f dx = 40 feet dx = 80 feet dx = 280 feet dx = 400 feet
  • 42. 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 -300 -200 -100 0 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 -300 -200 -100 0 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 -300 -200 -100 0 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 -300 -200 -100 0 a b e 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 -300 -200 -100 0 c d e 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 -300 -200 -100 0 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 -300 -200 -100 0 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 -300 -200 -100 0 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 -300 -200 -100 0 dx = 100 feet dx = 200 feet dx = 400 feet dx = 800 feet 0 0.25 0.5 0.75 1 1.25 1.5 1.75 1 2 3 4 5 6 7
  • 43. 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 -300 -200 -100 0 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 -300 -200 -100 0 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 -300 -200 -100 0 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 -300 -200 -100 0 a b e 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 -300 -200 -100 0 c d e dx = 100 feet dx = 200 feet dx = 400 feet dx = 800 feet 1 2 3 4 5 6 7
  • 44. 0 4000 8000 12000 16000 Overall Horizontal Field Scale (meters) 0 0.01 0.02 0.03 0.04 dy/dx Afsluitdijk- Lemmer (Netherlands) Afsluitdijk Caspar de Roblesdijk (Netherlands) Delaware River Aquifer (Longitudinal-Section), USA Delaware River Aquifer (Cross-Section),USA MADE site at Columbus, Mississippi [Elfeki and Rajabiani, 2002]