SlideShare a Scribd company logo
Methods for Identifying and Analysing
      Learning Communities

                       Richard	
  A.	
  Schwier
          Virtual	
  Community	
  Research	
  Laboratory
             Educa;onal	
  Technology	
  and	
  Design
                University	
  of	
  Saskatchewan




                                          Higher	
  Educa;on	
  Development	
  Centre
                                                      University	
  of	
  Otago
                                                     Dunedin,	
  New	
  Zealand
                                                       February	
  7,	
  2011
Central	
  Concerns
•   ShiNing	
  focus	
  of	
  research
•   Atomized	
  view	
  of	
  communi;es
•   Tools	
  for	
  analysis
•   Genera;on	
  of	
  models
•   Using	
  research	
  to	
  inform	
  development	
  
    of	
  online	
  learning	
  environments
Community


Modeling                Cons;tuents




           Comparison
Research Methods for Identifying and Analysing Virtual Learning Communities
Research Methods for Identifying and Analysing Virtual Learning Communities
Sense	
  of	
  Community
• Chavis’	
  “Sense	
  of	
  Community	
  Index”
• Rovai	
  &	
  Jordan’s	
  “Classroom	
  Community	
  
  Scale”	
  (Chronbach’s	
  alpha	
  =	
  .93)
   – Connectedness	
  (.92)
   – Learning	
  (.87)

• Pre-­‐post	
  design	
  (t-­‐Test,	
  p<.005)
Interac;on	
  Analysis
• Fahy,	
  Crawford	
  &	
  Ally	
  (TAT)
• Intensity
   – “levels of participation," or the degree to which the
     number of postings observed in a group exceed the
     number of required postings

   – 858 actual/490 required = 1.75
Interac;on	
  analysis
• Density	
  
   – Included	
  only	
  peripheral	
  interac;ons
   – the	
  ra;o	
  of	
  the	
  actual	
  number	
  of	
  connec;ons	
  
     observed,	
  to	
  the	
  total	
  poten;al	
  number	
  of	
  
     possible	
  connec;ons

   2a/N(N-­‐1)	
  =	
  2(122)/13(12)	
  =	
  .78
Reciprocity	
  ra;o
the parity of communication among participants
Plodng
	
  Reciprocity
Characteris;cs	
  of	
  Community
    • Transcript	
  analysis
    • Interviews
    • Focus	
  groups
Characteris;cs
• Awareness             •   Par;cipa;on
• Social	
  protocols   •   Trust
• Historicity           •   Trajectory
• Iden;ty               •   Technology
• Mutuality             •   Learning
• Plurality             •   Reflec;on
• Autonomy              •   Intensity
Comparison	
  of	
  characteris;cs
• Thurstone	
  analysis
Thurstone	
  Scale
Modeling
Bayesian	
  Belief	
  Network	
  Model	
  of	
  a	
  Virtual	
  
             Learning	
  Community
BBN	
  -­‐	
  Query	
  the	
  network
BBN	
  -­‐	
  Query	
  the	
  network
Sense	
  of	
  Community
       Rovai	
  &	
  Jordan’s	
  “Classroom	
  Community	
  Scale”	
  (Chronbach’s	
  alpha	
  =	
  .93)




90.0

67.5

45.0
                     Formal
22.5                                                   Non-Formal
   0
Intensity
        Fahy,	
  Crawford	
  &	
  Ally	
  (TAT)



2.0

1.5

1.0
      Formal
0.5

  0                      Non-Formal
Density
        Fahy,	
  Crawford	
  &	
  Ally	
  (TAT)



0.8

0.6

0.4
      Formal
0.2                      Non-Formal
  0
Reciprocity	
  ra;o	
  
                Instructors



15.0

11.3

 7.5

 3.8               Non-Formal

   0   Formal
Reciprocity
                    par;cipants



1.0

0.8

0.5
      Mean                        Mean     sd
0.3
             sd
  0
        Formal
                                   Non-Formal


                                                0.376276399
Order	
  of	
  importance	
  -­‐	
  elements
           Element   Formal    Non-­‐formal
   Trust                1             7
   Learning            2            3
   Par;cipa;on         3            6
   Mutuality           4           10
   Intensity           5            7
   Protocols           6           10
   Reflec;on            7            2
   Autonomy             8          10
   Awareness            9           1
   Iden;ty             10           4
   Trajectory          11          13
   Technology          12           4
   Historicity         13          13
   Plurality           14           7
And	
  lately...
Par;cipa;on	
  Pakerns
Interac;on	
  analysis
     • Thread	
  density	
  and	
  depth	
  (Wiley,	
  2010)

            – Calcula;on	
  of	
  levels	
  of	
  replies	
  in	
  conversa;on	
  
              threads
            – Data	
  flawed,	
  but	
  useful

Mean	
  Reply	
  Depth	
  (MRD	
  crude)	
  =	
  sum	
  of	
  reply	
  depth	
  for	
  all	
  messages/messages	
  in	
  the	
  thread

Mean	
  Reply	
  Depth	
  (corrected)=	
  MRD	
  (crude)	
  x	
  ((n-­‐b(childless	
  messages)/n)
Do	
  not	
  akempt	
  to	
  read	
  this!
Do	
  not	
  akempt	
  to	
  read	
  this!

                      Mulitlogue/discussion




                      Simple	
  Q&A/chit-­‐chat




                     Monologue/no	
  discussion
SNAPP




hkp://research.uow.edu.au/learningnetworks/seeing/snapp/
Keep	
  an	
  eye	
  on...
Technology	
  Enhanced	
  Knowledge	
  Research	
  
  Ins;tute	
  (TEKRI)-­‐	
  hkps://tekri.athabascau.ca/
     George	
  Siemens	
  &	
  data	
  analy;cs
Conclusions
• Cycle	
  of	
  analysis	
  is	
  more	
  important	
  than	
  specific	
  
  tools	
  used
• Mixed	
  methods	
  seems	
  reasonable,	
  and	
  worked	
  well	
  
  in	
  prac;ce
• Baseline	
  data	
  are	
  needed	
  to	
  situate	
  findings
• Modeling	
  is	
  an	
  act	
  of	
  systema;c	
  specula;on	
  
  influenced	
  by	
  data	
  (not	
  limited	
  by	
  data)
• Most	
  enjoyable	
  part:	
  the	
  hunt

More Related Content

PPTX
Action research for_librarians_carl2012
PDF
DLA2009 Presentation S Porto
PPT
Participation Patterns in Formal, Non-Formal, and Informal Online Learning En...
PDF
Drupal - LinuxDay 2010 (Pistoia)
PDF
What's the Deal with Open Standards and Open Source Software
PDF
What Is A Distance Educator?
PDF
LPI Points on Facts and Focus
PDF
Qt Mobile: Sviluppo mobile con Python e Qt Framework
Action research for_librarians_carl2012
DLA2009 Presentation S Porto
Participation Patterns in Formal, Non-Formal, and Informal Online Learning En...
Drupal - LinuxDay 2010 (Pistoia)
What's the Deal with Open Standards and Open Source Software
What Is A Distance Educator?
LPI Points on Facts and Focus
Qt Mobile: Sviluppo mobile con Python e Qt Framework

Viewers also liked (20)

PPTX
Rubricas
PPS
Pets in the US
PPTX
Porto China-US Distance Education Research & Exchange 2011
PDF
Designing for Change
PDF
Mde Presentation Semana EAD 2009
ODP
Presentazione Ubuntu Oneiric 11.10 - LinuxDay 2011
PPTX
Agenda gadla-event-08-19-2011
PDF
Innovatie en Kennisdeling
PDF
Drupal - LinuxDay 2010 (Pistoia)
PDF
Life In Finland, blog texts in Chinese and Images
PDF
Manhattan Elite Prep GMAT Tip: Get to the Right Answer Quickly
PDF
Gevangen in de Wolken (saMBO-ICT versie)
PDF
Creating a custom Django Middleware
PDF
Porto USDLA'2009 Presentation
KEY
Mountain
PDF
L'uso del VOIP in azienda (LinuxDay 2010 - Pistoia)
PPTX
Managing Online Programs
PPT
Git preso to valtech cfml team
PPTX
Scad de l2010-s_porto
PDF
USDLA 2010 - S.Porto
Rubricas
Pets in the US
Porto China-US Distance Education Research & Exchange 2011
Designing for Change
Mde Presentation Semana EAD 2009
Presentazione Ubuntu Oneiric 11.10 - LinuxDay 2011
Agenda gadla-event-08-19-2011
Innovatie en Kennisdeling
Drupal - LinuxDay 2010 (Pistoia)
Life In Finland, blog texts in Chinese and Images
Manhattan Elite Prep GMAT Tip: Get to the Right Answer Quickly
Gevangen in de Wolken (saMBO-ICT versie)
Creating a custom Django Middleware
Porto USDLA'2009 Presentation
Mountain
L'uso del VOIP in azienda (LinuxDay 2010 - Pistoia)
Managing Online Programs
Git preso to valtech cfml team
Scad de l2010-s_porto
USDLA 2010 - S.Porto
Ad

Similar to Research Methods for Identifying and Analysing Virtual Learning Communities (20)

PPTX
Action research for_librarians_carl2012
PPTX
Scientific data management from the lab to the web
PPTX
CETS 2012, Jeff Merrell & Keeley Sorokti, slides for Social Technology & Lear...
PPT
Uconn Coiro Assessment 2008
PPTX
Lak12 learning designs and learning analytics workshop
PPT
Metaphors as design points for collaboration 2012
PPTX
Чираг Шах «Коллективный поиск, взаимодействие пользователей: подходы к изучен...
PPTX
Rapid Qualitative Inquiry (2nd Edition)
PDF
Learningprogramexamples kak6003
PPTX
Castle Redesign RDT Presentation 022312
PPT
A Framework for Multi-Level Analysis of Distributed Interaction
PPTX
Web services for supporting the interactions of learners in the social web - ...
PDF
How Virtual is Virtual: Designing for Distributed Work in Research and Develo...
PPT
How to conduct a social network analysis: A tool for empowering teams and wor...
PPT
Communication And Connectnedness B A World V2
PPTX
Data Communities - reusable data in and outside your organization.
PDF
How Search 2.0 Has Been Redefined by Enterprise 2.0
PPTX
Leicester 2011
Action research for_librarians_carl2012
Scientific data management from the lab to the web
CETS 2012, Jeff Merrell & Keeley Sorokti, slides for Social Technology & Lear...
Uconn Coiro Assessment 2008
Lak12 learning designs and learning analytics workshop
Metaphors as design points for collaboration 2012
Чираг Шах «Коллективный поиск, взаимодействие пользователей: подходы к изучен...
Rapid Qualitative Inquiry (2nd Edition)
Learningprogramexamples kak6003
Castle Redesign RDT Presentation 022312
A Framework for Multi-Level Analysis of Distributed Interaction
Web services for supporting the interactions of learners in the social web - ...
How Virtual is Virtual: Designing for Distributed Work in Research and Develo...
How to conduct a social network analysis: A tool for empowering teams and wor...
Communication And Connectnedness B A World V2
Data Communities - reusable data in and outside your organization.
How Search 2.0 Has Been Redefined by Enterprise 2.0
Leicester 2011
Ad

More from Richard Schwier (8)

PPTX
Connections and Contexts: The Birth, Growth and Death of Online Learning Comm...
PPT
Open Scholarship of Teaching and Learning
KEY
Pursuing the elusive metaphor of community in e-learning environments
PPT
ID as Social Process
PPT
Agency and Instructional Design
PPT
Some History Of Educational Technology
PPT
Technology for Important Things: TLt Keynote 2008
PPT
WBE 08 - VLC Comparison
Connections and Contexts: The Birth, Growth and Death of Online Learning Comm...
Open Scholarship of Teaching and Learning
Pursuing the elusive metaphor of community in e-learning environments
ID as Social Process
Agency and Instructional Design
Some History Of Educational Technology
Technology for Important Things: TLt Keynote 2008
WBE 08 - VLC Comparison

Recently uploaded (20)

PDF
RMMM.pdf make it easy to upload and study
PPTX
Cell Structure & Organelles in detailed.
PDF
Supply Chain Operations Speaking Notes -ICLT Program
PDF
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
PPTX
Pharma ospi slides which help in ospi learning
PPTX
Cell Types and Its function , kingdom of life
PPTX
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
PPTX
Lesson notes of climatology university.
PDF
102 student loan defaulters named and shamed – Is someone you know on the list?
PDF
01-Introduction-to-Information-Management.pdf
PDF
2.FourierTransform-ShortQuestionswithAnswers.pdf
PPTX
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
PDF
STATICS OF THE RIGID BODIES Hibbelers.pdf
PDF
Pre independence Education in Inndia.pdf
PDF
Complications of Minimal Access Surgery at WLH
PDF
Insiders guide to clinical Medicine.pdf
PDF
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
PPTX
human mycosis Human fungal infections are called human mycosis..pptx
PDF
Abdominal Access Techniques with Prof. Dr. R K Mishra
PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
RMMM.pdf make it easy to upload and study
Cell Structure & Organelles in detailed.
Supply Chain Operations Speaking Notes -ICLT Program
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
Pharma ospi slides which help in ospi learning
Cell Types and Its function , kingdom of life
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
Lesson notes of climatology university.
102 student loan defaulters named and shamed – Is someone you know on the list?
01-Introduction-to-Information-Management.pdf
2.FourierTransform-ShortQuestionswithAnswers.pdf
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
STATICS OF THE RIGID BODIES Hibbelers.pdf
Pre independence Education in Inndia.pdf
Complications of Minimal Access Surgery at WLH
Insiders guide to clinical Medicine.pdf
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
human mycosis Human fungal infections are called human mycosis..pptx
Abdominal Access Techniques with Prof. Dr. R K Mishra
Module 4: Burden of Disease Tutorial Slides S2 2025

Research Methods for Identifying and Analysing Virtual Learning Communities

  • 1. Methods for Identifying and Analysing Learning Communities Richard  A.  Schwier Virtual  Community  Research  Laboratory Educa;onal  Technology  and  Design University  of  Saskatchewan Higher  Educa;on  Development  Centre University  of  Otago Dunedin,  New  Zealand February  7,  2011
  • 2. Central  Concerns • ShiNing  focus  of  research • Atomized  view  of  communi;es • Tools  for  analysis • Genera;on  of  models • Using  research  to  inform  development   of  online  learning  environments
  • 3. Community Modeling Cons;tuents Comparison
  • 6. Sense  of  Community • Chavis’  “Sense  of  Community  Index” • Rovai  &  Jordan’s  “Classroom  Community   Scale”  (Chronbach’s  alpha  =  .93) – Connectedness  (.92) – Learning  (.87) • Pre-­‐post  design  (t-­‐Test,  p<.005)
  • 7. Interac;on  Analysis • Fahy,  Crawford  &  Ally  (TAT) • Intensity – “levels of participation," or the degree to which the number of postings observed in a group exceed the number of required postings – 858 actual/490 required = 1.75
  • 8. Interac;on  analysis • Density   – Included  only  peripheral  interac;ons – the  ra;o  of  the  actual  number  of  connec;ons   observed,  to  the  total  poten;al  number  of   possible  connec;ons 2a/N(N-­‐1)  =  2(122)/13(12)  =  .78
  • 9. Reciprocity  ra;o the parity of communication among participants
  • 11. Characteris;cs  of  Community • Transcript  analysis • Interviews • Focus  groups
  • 12. Characteris;cs • Awareness • Par;cipa;on • Social  protocols • Trust • Historicity • Trajectory • Iden;ty • Technology • Mutuality • Learning • Plurality • Reflec;on • Autonomy • Intensity
  • 13. Comparison  of  characteris;cs • Thurstone  analysis
  • 15. Modeling Bayesian  Belief  Network  Model  of  a  Virtual   Learning  Community
  • 16. BBN  -­‐  Query  the  network
  • 17. BBN  -­‐  Query  the  network
  • 18. Sense  of  Community Rovai  &  Jordan’s  “Classroom  Community  Scale”  (Chronbach’s  alpha  =  .93) 90.0 67.5 45.0 Formal 22.5 Non-Formal 0
  • 19. Intensity Fahy,  Crawford  &  Ally  (TAT) 2.0 1.5 1.0 Formal 0.5 0 Non-Formal
  • 20. Density Fahy,  Crawford  &  Ally  (TAT) 0.8 0.6 0.4 Formal 0.2 Non-Formal 0
  • 21. Reciprocity  ra;o   Instructors 15.0 11.3 7.5 3.8 Non-Formal 0 Formal
  • 22. Reciprocity par;cipants 1.0 0.8 0.5 Mean Mean sd 0.3 sd 0 Formal Non-Formal 0.376276399
  • 23. Order  of  importance  -­‐  elements Element Formal Non-­‐formal Trust 1 7 Learning 2 3 Par;cipa;on 3 6 Mutuality 4 10 Intensity 5 7 Protocols 6 10 Reflec;on 7 2 Autonomy 8 10 Awareness 9 1 Iden;ty 10 4 Trajectory 11 13 Technology 12 4 Historicity 13 13 Plurality 14 7
  • 26. Interac;on  analysis • Thread  density  and  depth  (Wiley,  2010) – Calcula;on  of  levels  of  replies  in  conversa;on   threads – Data  flawed,  but  useful Mean  Reply  Depth  (MRD  crude)  =  sum  of  reply  depth  for  all  messages/messages  in  the  thread Mean  Reply  Depth  (corrected)=  MRD  (crude)  x  ((n-­‐b(childless  messages)/n)
  • 27. Do  not  akempt  to  read  this!
  • 28. Do  not  akempt  to  read  this! Mulitlogue/discussion Simple  Q&A/chit-­‐chat Monologue/no  discussion
  • 30. Keep  an  eye  on... Technology  Enhanced  Knowledge  Research   Ins;tute  (TEKRI)-­‐  hkps://tekri.athabascau.ca/ George  Siemens  &  data  analy;cs
  • 31. Conclusions • Cycle  of  analysis  is  more  important  than  specific   tools  used • Mixed  methods  seems  reasonable,  and  worked  well   in  prac;ce • Baseline  data  are  needed  to  situate  findings • Modeling  is  an  act  of  systema;c  specula;on   influenced  by  data  (not  limited  by  data) • Most  enjoyable  part:  the  hunt