05-01-2013 3rd BCGL Conference 1/22
Resilience in Transaction-Oriented
Networks
Dmitry Zinoviev*, Hamid Benbrahim,
Greta Meszoely+
, Dan Stefanescu*
*Mathematics and Computer Science Department
+
Sawyer School of Management
Suffolk University, Boston
05-01-2013 3rd BCGL Conference 2/22
Outline
 Transaction­oriented networks
 Network model and its interpretations
 Simulation results:
 Dense and sparse networks
 Throughput amplification
 Equivalence of excessive traffic and faulty nodes
 Network as a four­phase matter
 Conclusion and future work
05-01-2013 3rd BCGL Conference 3/22
Transaction-Oriented Networks
 Used to execute distributed transactions (compound operations that succeed or fail 
atomically)
 Interpretations:
 Distributed database transactions (original, HPC­related interpretation)
 Financial transactions (e.g., loans)
 Transportation (e.g., multi­leg flights)
 How resilient are these networks to externally and internally induced failures?
05-01-2013 3rd BCGL Conference 4/22
Transactions and Network
Network
Incoming
transactions
Committed transactions
Aborted
transactions
05-01-2013 3rd BCGL Conference 5/22
Network Model Overview
 Random Erdös–Rényi network, N=1,600 identical nodes representing network 
hosts, density d.
 Each node can simultaneously execute up to C almost independent 
subtransactions. Each subtransaction takes constant time 
0
 to complete. The 
network is simulated for the duration of S
0
.
 Each node can be used for injecting transactions into the network and for 
terminating transactions. Transactions are injected uniformly across the network. 
The delays between subsequent transactions are drawn from the exponential 
distribution E(1/r).
 Each transaction has L=N(10,4) subtransactions.
05-01-2013 3rd BCGL Conference 6/22
Opportunistic Routing
 The node for the next subtransaction is chosen uniformly at random from all 
neighbors of the current node.
 If the next node is disabled, then another neighbor is chosen.
 If all neighbors are disabled, the subtransaction is aborted, and the master 
transaction rolls back.
 If a transaction is aborted, all other transactions that crossed path with it in the past 
T time units (T=100
), are also aborted with probability p0
=.01.
 We observed very little dependence of the simulated network measures on p0
.
05-01-2013 3rd BCGL Conference 7/22
Node Shutdown
 When a node is overloaded (load > C), it shuts down.
 A node may fail randomly after an initial delay drawn from the exponential 
distribution E(Tf
).
 Once disabled, a node is not restarted. All subtransactions currently executed at a 
disabled node are aborted.
05-01-2013 3rd BCGL Conference 8/22
Simulation Framework
 Custom­built network simulator in C++
 In each experiment, the network has been simulated for a variety of combinations 
of node capacities and densities (C, d):
 d  {0.01, 0.011, 0.015, 0.025, 0.04, 0.055, 0.075, 0.1, 0.2, 0.3, 0.5, 0.6, 
0.75, 0.85, 0.99}
 C  {2, 3, 4, ... 22}
 Red color indicates sparse networks (they behave diferently from the dense 
networks)
05-01-2013 3rd BCGL Conference 9/22
Failing by Overloading
 Start with a fully functional network.
 Gradually increase the injection rate from 
0 to r0
 until at least 10­6
 of all 
transactions abort (superconductive 
mode ⇒ resistive mode).
 The fraction of aborted transactions 
monotonically increases, until at some 
rate r1
  the network chokes (resistive 
mode ⇒ dielectric mode). 
 Define 0 
= r0 
/ r1
.
 r0
 and r1
 slightly depend on the simulation 
running time. Our results have been 
obtained for S=84,6000
 (“one day”).
05-01-2013 3rd BCGL Conference 10/22
Phase Transition Injection Rates
r1
, smaller d
r0
, smaller d
dense
05-01-2013 3rd BCGL Conference 11/22
Quadratic Amplification
 Both r0
(C) and r1
(C) can be approximated by a power function:
 The exponents i
 for the dense networks are ~1.7 and ~2.1, respectively. Both i
's 
tend to 1 as d tends to 0.
 The mantissas Ai
 for the dense networks are ~0.7 and ~2.8, respectively. Both Ai
 
increase and possibly diverge as d tends to 0.
 Doubling node capacity almost quadruples the throughput.
r0,1C ≈A0,1C−2
0,1
05-01-2013 3rd BCGL Conference 12/22
Failing by Internal Faults
 Start with a fully functional network.
 Gradually increase the injection rate 
from 0 to r0
.
 At the fixed injection rate, fail 
random nodes after random delays. 
 Let m0
 be the smallest fraction of 
failed nodes that causes the network 
to choke.
05-01-2013 3rd BCGL Conference 13/22
Phase Transition Fault Rate
smaller d
dense
05-01-2013 3rd BCGL Conference 14/22
Faulty Nodes Effect
 Estimation of m0
:
 For the dense networks, A tends to [0...0.23]
 That is, it takes no more 23% of internally faulty nodes to choke a dense network 
with infinite buffer space in the presence of the highest superconductive injection 
rate.
m0C≈
 A−1erf logC−2/− A1
2
05-01-2013 3rd BCGL Conference 15/22
Failing by Overloading and Internal
Faults
 Start with a fully functional network.
 Gradually increase the injection rate 
from 0 to r () and simultaneously 
fail random nodes after random 
delays, until the network chokes.
05-01-2013 3rd BCGL Conference 16/22
Phase Space Summary (C=4, d=.2)
dielectric
resistive
superconductive
05-01-2013 3rd BCGL Conference 17/22
Equivalence of Excessive Traffic and
Node Failures
dense
05-01-2013 3rd BCGL Conference 18/22
Equivalence of Excessive Traffic and
Node Failures
 To a first approximation, the relationship between the network resilience 
parameters 0
 and m0
 is almost linear, with the slope of ­1
 Tolerating additional superconductive traffic 0
is equivalent to disabling extra 
network nodes m0
 due to internal faults:
≈−m0
05-01-2013 3rd BCGL Conference 19/22
A Closer Look at the Resistive Phase
r1
r0
???
05-01-2013 3rd BCGL Conference 20/22
What Happens around the “knee”?
 The “knee” is visible only in sparse networks
 Network state at the end of the simulation run: red circles correspond to faulty 
nodes, cyan circles—to healthy nodes
05-01-2013 3rd BCGL Conference 21/22
How Many Nodes Are in the GC?
 Percentage of faulty (red) 
and healthy (blue) nodes 
in the respective giant 
component for various r's
 The phase transition 
happens when all faulty 
nodes join the giant 
component
 Two “resistive” phases: 
“resistive­A” (truly 
“resistive”) and 
“resistive­B” (“resistive­
dielectric”)
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
0%
20%
40%
60%
80%
100%
r
All faulty nodes join 
the giant component!
05-01-2013 3rd BCGL Conference 22/22
Conclusion
 Random transactional networks can stay in four phases of interest: 
“superconductive” (no transactions fail), “resistive­A and ­B'' (some transactions 
fail), and “dielectric” (all transactions fail)
 Injection rates associated with the phase transitions, scale almost quadratically with 
respect to the node capacity
 At the resistive­to­dielectric phase transition, the effects of excessive network load 
and internal, spontaneous, and irreparable node faults are equivalent and almost 
perfectly anticorrelated
 The phase transition between two “resistive” phases can be attributed to the 
evolution of the giant component of faulty nodes

More Related Content

PDF
Six Degrees of Separation to Improve Routing in Opportunistic Networks
PPT
Mets2011 dlf lightning ppt
PDF
Perfect Integration
PDF
Blockchain Design and Modelling
PDF
Towards a Design Philosophy for Interoperable Blockchain Systems
PDF
A PNML extension for the HCI design
PDF
Prototype Models of IoTs Interoperability
PDF
10.1.1.21.5883
Six Degrees of Separation to Improve Routing in Opportunistic Networks
Mets2011 dlf lightning ppt
Perfect Integration
Blockchain Design and Modelling
Towards a Design Philosophy for Interoperable Blockchain Systems
A PNML extension for the HCI design
Prototype Models of IoTs Interoperability
10.1.1.21.5883

Similar to Resilience in Transactional Networks (20)

PDF
A02120201010
PDF
SIX DEGREES OF SEPARATION TO IMPROVE ROUTING IN OPPORTUNISTIC NETWORKS
PDF
Proposed Scheme for Secured Routing in MANET
PPTX
Jamming aware traffic allocation for multiple-path routing using portfolio se...
PDF
Delay-Tolerant Networking Paradigm and the Ongoing Research Activities
PPTX
Machine Learning Meets Communication Networks.pptx
PDF
A Comprehensive Study on Vehicular Ad-Hoc Delay Tolerant Networking for Infra...
PDF
SECURITY IN ROUTING PROTOCOLS OF AD-HOC NETWORKS: A REVIEW
PDF
1. 8481 1-pb
PDF
CLBNSRM - CONFIDENCE LEVEL BASED UNBLEND NEIGHBOR SELECTION &BLEND NODE REPOR...
PDF
Opportunistic Routing in Delay Tolerant Network with Different Routing Algorithm
PDF
Wiki2010 Unit 4
PDF
Design of an Efficient Communication Protocol for 3d Interconnection Network
PDF
50120130406027
PPTX
Best-Fit Topology - LO1 Part I.pptx
PDF
Delay and Throughput Aware Cross-Layer TDMA Approach in WSN-based IoT Networks
PDF
Delay and Throughput Aware Cross-Layer TDMA Approach in WSN-based IoT Networks
PDF
Booysen machine 2012
PDF
The impact of channel model on the performance of distance-based schemes in v...
PDF
Design and Implementation of Multistage Interconnection Networks for SoC Netw...
A02120201010
SIX DEGREES OF SEPARATION TO IMPROVE ROUTING IN OPPORTUNISTIC NETWORKS
Proposed Scheme for Secured Routing in MANET
Jamming aware traffic allocation for multiple-path routing using portfolio se...
Delay-Tolerant Networking Paradigm and the Ongoing Research Activities
Machine Learning Meets Communication Networks.pptx
A Comprehensive Study on Vehicular Ad-Hoc Delay Tolerant Networking for Infra...
SECURITY IN ROUTING PROTOCOLS OF AD-HOC NETWORKS: A REVIEW
1. 8481 1-pb
CLBNSRM - CONFIDENCE LEVEL BASED UNBLEND NEIGHBOR SELECTION &BLEND NODE REPOR...
Opportunistic Routing in Delay Tolerant Network with Different Routing Algorithm
Wiki2010 Unit 4
Design of an Efficient Communication Protocol for 3d Interconnection Network
50120130406027
Best-Fit Topology - LO1 Part I.pptx
Delay and Throughput Aware Cross-Layer TDMA Approach in WSN-based IoT Networks
Delay and Throughput Aware Cross-Layer TDMA Approach in WSN-based IoT Networks
Booysen machine 2012
The impact of channel model on the performance of distance-based schemes in v...
Design and Implementation of Multistage Interconnection Networks for SoC Netw...
Ad

More from Dmitry Zinoviev (20)

PDF
What You Can Learn from Obscure Programming Languages
PDF
Machine Learning Basics for Dummies (no math!)
PDF
WHat is star discourse in post-Soviet film journals?
PDF
The “Musk” Effect at Twitter
PDF
Are Twitter Networks of Regional Entrepreneurs Gendered?
PDF
Using Complex Network Analysis for Periodization
PDF
Algorithms
PDF
Text analysis of The Book Club Play
ODP
Exploring the History of Mental Stigma
ODP
Roles and Words in a massive NSSI-Related Interaction Network
PDF
“A Quaint and Curious Volume of Forgotten Lore,” or an Exercise in Digital Hu...
PDF
Network analysis of the 2016 USA presidential campaign tweets
PDF
Network Analysis of The Shining
PDF
The Lord of the Ring. A Network Analysis
PPTX
Pickling and CSV
PPTX
Python overview
PPTX
Welcome to CS310!
ODP
Programming languages
ODP
The P4 of Networkacy
PDF
DaVinci Code. Network Analysis
What You Can Learn from Obscure Programming Languages
Machine Learning Basics for Dummies (no math!)
WHat is star discourse in post-Soviet film journals?
The “Musk” Effect at Twitter
Are Twitter Networks of Regional Entrepreneurs Gendered?
Using Complex Network Analysis for Periodization
Algorithms
Text analysis of The Book Club Play
Exploring the History of Mental Stigma
Roles and Words in a massive NSSI-Related Interaction Network
“A Quaint and Curious Volume of Forgotten Lore,” or an Exercise in Digital Hu...
Network analysis of the 2016 USA presidential campaign tweets
Network Analysis of The Shining
The Lord of the Ring. A Network Analysis
Pickling and CSV
Python overview
Welcome to CS310!
Programming languages
The P4 of Networkacy
DaVinci Code. Network Analysis
Ad

Recently uploaded (20)

PPTX
Tartificialntelligence_presentation.pptx
PDF
Hybrid model detection and classification of lung cancer
PDF
WOOl fibre morphology and structure.pdf for textiles
PDF
A novel scalable deep ensemble learning framework for big data classification...
PDF
ENT215_Completing-a-large-scale-migration-and-modernization-with-AWS.pdf
PDF
TrustArc Webinar - Click, Consent, Trust: Winning the Privacy Game
PDF
A comparative study of natural language inference in Swahili using monolingua...
PDF
Five Habits of High-Impact Board Members
PDF
A review of recent deep learning applications in wood surface defect identifi...
PDF
Developing a website for English-speaking practice to English as a foreign la...
PDF
Univ-Connecticut-ChatGPT-Presentaion.pdf
PPTX
Group 1 Presentation -Planning and Decision Making .pptx
PPTX
observCloud-Native Containerability and monitoring.pptx
PDF
From MVP to Full-Scale Product A Startup’s Software Journey.pdf
PDF
Enhancing emotion recognition model for a student engagement use case through...
PPTX
Modernising the Digital Integration Hub
DOCX
search engine optimization ppt fir known well about this
PDF
DASA ADMISSION 2024_FirstRound_FirstRank_LastRank.pdf
PPTX
Web Crawler for Trend Tracking Gen Z Insights.pptx
PDF
A contest of sentiment analysis: k-nearest neighbor versus neural network
Tartificialntelligence_presentation.pptx
Hybrid model detection and classification of lung cancer
WOOl fibre morphology and structure.pdf for textiles
A novel scalable deep ensemble learning framework for big data classification...
ENT215_Completing-a-large-scale-migration-and-modernization-with-AWS.pdf
TrustArc Webinar - Click, Consent, Trust: Winning the Privacy Game
A comparative study of natural language inference in Swahili using monolingua...
Five Habits of High-Impact Board Members
A review of recent deep learning applications in wood surface defect identifi...
Developing a website for English-speaking practice to English as a foreign la...
Univ-Connecticut-ChatGPT-Presentaion.pdf
Group 1 Presentation -Planning and Decision Making .pptx
observCloud-Native Containerability and monitoring.pptx
From MVP to Full-Scale Product A Startup’s Software Journey.pdf
Enhancing emotion recognition model for a student engagement use case through...
Modernising the Digital Integration Hub
search engine optimization ppt fir known well about this
DASA ADMISSION 2024_FirstRound_FirstRank_LastRank.pdf
Web Crawler for Trend Tracking Gen Z Insights.pptx
A contest of sentiment analysis: k-nearest neighbor versus neural network

Resilience in Transactional Networks

  • 1. 05-01-2013 3rd BCGL Conference 1/22 Resilience in Transaction-Oriented Networks Dmitry Zinoviev*, Hamid Benbrahim, Greta Meszoely+ , Dan Stefanescu* *Mathematics and Computer Science Department + Sawyer School of Management Suffolk University, Boston
  • 2. 05-01-2013 3rd BCGL Conference 2/22 Outline  Transaction­oriented networks  Network model and its interpretations  Simulation results:  Dense and sparse networks  Throughput amplification  Equivalence of excessive traffic and faulty nodes  Network as a four­phase matter  Conclusion and future work
  • 3. 05-01-2013 3rd BCGL Conference 3/22 Transaction-Oriented Networks  Used to execute distributed transactions (compound operations that succeed or fail  atomically)  Interpretations:  Distributed database transactions (original, HPC­related interpretation)  Financial transactions (e.g., loans)  Transportation (e.g., multi­leg flights)  How resilient are these networks to externally and internally induced failures?
  • 4. 05-01-2013 3rd BCGL Conference 4/22 Transactions and Network Network Incoming transactions Committed transactions Aborted transactions
  • 5. 05-01-2013 3rd BCGL Conference 5/22 Network Model Overview  Random Erdös–Rényi network, N=1,600 identical nodes representing network  hosts, density d.  Each node can simultaneously execute up to C almost independent  subtransactions. Each subtransaction takes constant time  0  to complete. The  network is simulated for the duration of S 0 .  Each node can be used for injecting transactions into the network and for  terminating transactions. Transactions are injected uniformly across the network.  The delays between subsequent transactions are drawn from the exponential  distribution E(1/r).  Each transaction has L=N(10,4) subtransactions.
  • 6. 05-01-2013 3rd BCGL Conference 6/22 Opportunistic Routing  The node for the next subtransaction is chosen uniformly at random from all  neighbors of the current node.  If the next node is disabled, then another neighbor is chosen.  If all neighbors are disabled, the subtransaction is aborted, and the master  transaction rolls back.  If a transaction is aborted, all other transactions that crossed path with it in the past  T time units (T=100 ), are also aborted with probability p0 =.01.  We observed very little dependence of the simulated network measures on p0 .
  • 7. 05-01-2013 3rd BCGL Conference 7/22 Node Shutdown  When a node is overloaded (load > C), it shuts down.  A node may fail randomly after an initial delay drawn from the exponential  distribution E(Tf ).  Once disabled, a node is not restarted. All subtransactions currently executed at a  disabled node are aborted.
  • 8. 05-01-2013 3rd BCGL Conference 8/22 Simulation Framework  Custom­built network simulator in C++  In each experiment, the network has been simulated for a variety of combinations  of node capacities and densities (C, d):  d  {0.01, 0.011, 0.015, 0.025, 0.04, 0.055, 0.075, 0.1, 0.2, 0.3, 0.5, 0.6,  0.75, 0.85, 0.99}  C  {2, 3, 4, ... 22}  Red color indicates sparse networks (they behave diferently from the dense  networks)
  • 9. 05-01-2013 3rd BCGL Conference 9/22 Failing by Overloading  Start with a fully functional network.  Gradually increase the injection rate from  0 to r0  until at least 10­6  of all  transactions abort (superconductive  mode ⇒ resistive mode).  The fraction of aborted transactions  monotonically increases, until at some  rate r1   the network chokes (resistive  mode ⇒ dielectric mode).   Define 0  = r0  / r1 .  r0  and r1  slightly depend on the simulation  running time. Our results have been  obtained for S=84,6000  (“one day”).
  • 10. 05-01-2013 3rd BCGL Conference 10/22 Phase Transition Injection Rates r1 , smaller d r0 , smaller d dense
  • 11. 05-01-2013 3rd BCGL Conference 11/22 Quadratic Amplification  Both r0 (C) and r1 (C) can be approximated by a power function:  The exponents i  for the dense networks are ~1.7 and ~2.1, respectively. Both i 's  tend to 1 as d tends to 0.  The mantissas Ai  for the dense networks are ~0.7 and ~2.8, respectively. Both Ai   increase and possibly diverge as d tends to 0.  Doubling node capacity almost quadruples the throughput. r0,1C ≈A0,1C−2 0,1
  • 12. 05-01-2013 3rd BCGL Conference 12/22 Failing by Internal Faults  Start with a fully functional network.  Gradually increase the injection rate  from 0 to r0 .  At the fixed injection rate, fail  random nodes after random delays.   Let m0  be the smallest fraction of  failed nodes that causes the network  to choke.
  • 13. 05-01-2013 3rd BCGL Conference 13/22 Phase Transition Fault Rate smaller d dense
  • 14. 05-01-2013 3rd BCGL Conference 14/22 Faulty Nodes Effect  Estimation of m0 :  For the dense networks, A tends to [0...0.23]  That is, it takes no more 23% of internally faulty nodes to choke a dense network  with infinite buffer space in the presence of the highest superconductive injection  rate. m0C≈  A−1erf logC−2/− A1 2
  • 15. 05-01-2013 3rd BCGL Conference 15/22 Failing by Overloading and Internal Faults  Start with a fully functional network.  Gradually increase the injection rate  from 0 to r () and simultaneously  fail random nodes after random  delays, until the network chokes.
  • 16. 05-01-2013 3rd BCGL Conference 16/22 Phase Space Summary (C=4, d=.2) dielectric resistive superconductive
  • 17. 05-01-2013 3rd BCGL Conference 17/22 Equivalence of Excessive Traffic and Node Failures dense
  • 18. 05-01-2013 3rd BCGL Conference 18/22 Equivalence of Excessive Traffic and Node Failures  To a first approximation, the relationship between the network resilience  parameters 0  and m0  is almost linear, with the slope of ­1  Tolerating additional superconductive traffic 0 is equivalent to disabling extra  network nodes m0  due to internal faults: ≈−m0
  • 19. 05-01-2013 3rd BCGL Conference 19/22 A Closer Look at the Resistive Phase r1 r0 ???
  • 20. 05-01-2013 3rd BCGL Conference 20/22 What Happens around the “knee”?  The “knee” is visible only in sparse networks  Network state at the end of the simulation run: red circles correspond to faulty  nodes, cyan circles—to healthy nodes
  • 21. 05-01-2013 3rd BCGL Conference 21/22 How Many Nodes Are in the GC?  Percentage of faulty (red)  and healthy (blue) nodes  in the respective giant  component for various r's  The phase transition  happens when all faulty  nodes join the giant  component  Two “resistive” phases:  “resistive­A” (truly  “resistive”) and  “resistive­B” (“resistive­ dielectric”) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 0% 20% 40% 60% 80% 100% r All faulty nodes join  the giant component!
  • 22. 05-01-2013 3rd BCGL Conference 22/22 Conclusion  Random transactional networks can stay in four phases of interest:  “superconductive” (no transactions fail), “resistive­A and ­B'' (some transactions  fail), and “dielectric” (all transactions fail)  Injection rates associated with the phase transitions, scale almost quadratically with  respect to the node capacity  At the resistive­to­dielectric phase transition, the effects of excessive network load  and internal, spontaneous, and irreparable node faults are equivalent and almost  perfectly anticorrelated  The phase transition between two “resistive” phases can be attributed to the  evolution of the giant component of faulty nodes