SlideShare a Scribd company logo
‫ارائه‬ ‫عنوان‬
‫راهنما‬ ‫اساتید‬
:
‫اول‬ ‫استاد‬ ‫نام‬
‫دوم‬ ‫استاد‬ ‫نام‬
‫دهنده‬ ‫ارائه‬
:
‫باقی‬ ‫وحید‬
‫بهمن‬
۱۳۹۹
‫تهران‬ ‫دانشگاه‬
‫فنی‬ ‫های‬ ‫دانشکده‬ ‫پردیس‬
‫مهندسی‬ ‫علوم‬ ‫دانشکده‬
‫کامپیوتر‬ ‫مهندسی‬
–
‫محاسبات‬ ‫و‬ ‫ها‬ ‫الگوریتم‬
Department of Algorithms and Computation
School of Engineering Science
College of Engineering
University of Tehran
Winter 2019
Test Subject
Presentation by : Vahid Baghi
mode of computation
deterministic mode
Parameters for a Complexity Class
nondeterministic mode
Time is Tape Dependent
Theorem : Let 𝑡 𝑛 be a function , where 𝑡 𝑛 > 𝑛 .Then every 𝑡 𝑛 time multitape Turing
machine has an equivalent 𝑂(𝑡2
(𝑛)) time single-tape Turing machine.
Transition
Logic
⊔
1
0 ∞
⊔
#
0
0
1
#
0
1
1
#
1
0
∞
⊔
0
1
1 ∞
⊔
0
0
1
Transition
Logic
110
Proper Complexity Functions
Definition
There exists a TM M that outputs
exactly 𝑓 𝑛 symbols on input 1𝑛
and runs in time O(𝑓 𝑛 + 𝑛) and
space O(𝑓 𝑛 )
f is a proper complexity function if :
∀𝑛 ∶ 𝑓 𝑛 ≥ 𝑓(𝑛 − 1)
For Example : log 𝑛
, 𝑛 , 𝑛2 , …
A complexity class is a set of classes of decision problems (or languages) with the same
worst-case complexity
Complexity Classes
DTIME or TIME is the computational resource of
computation time for a deterministic Turing
machine
DTIME
DSPACE
DSPACE or SPACE is the computational
resource describing the resource of memory
space for a deterministic Turing machine
Time Complexity Hierarchy
Theorem : for any 𝑡 𝑛 > 0 , there exists a decidable language
L ∉ 𝐷𝑇𝐼𝑀𝐸(𝑡 𝑛 )
Define 𝐿 = 𝑖 𝑀𝑖 does not accept i within 𝑡 𝑖 time }
Question : is L ∈ 𝐷𝑇𝐼𝑀𝐸 𝑡 𝑛 ?
Proof :
Assume (towards contradiction) L ∈ 𝐷𝑇𝐼𝑀𝐸 𝑡 𝑛
∃ a fixed K ∈ 𝑁 such that Turing machine 𝑀𝐾 decides L within time bound 𝑡 𝑛
‫تصادفی‬ ‫شبه‬ ‫و‬ ‫تصادفی‬ ‫اعداد‬ ‫مولد‬
‫تصادفی‬ ‫اعداد‬ ‫مولد‬
(
Random Number Generator
)
‫ای‬‫وسیله‬
‫تولید‬ ‫برای‬ ‫که‬ ‫است‬ ‫فیزیکی‬
‫ای‬‫دنباله‬
‫کار‬ ‫به‬ ‫ندارند‬ ‫خاصی‬ ‫الگوی‬ ‫که‬ ‫اعداد‬ ‫از‬
‫رو‬‫می‬
‫د‬
.
‫مثال‬ ‫برای‬
•
‫پرتاب‬
‫تاس‬
•
‫سکه‬ ‫پرتاب‬
•
‫شانس‬ ‫گردونه‬
‫تصادفی‬ ‫شبه‬ ‫اعداد‬ ‫مولد‬
(
Pseudo Random Number Generator
: )
‫که‬ ‫است‬ ‫الگوریتمی‬
‫ای‬‫دنباله‬
‫تول‬ ، ‫هستند‬ ‫تصادفی‬ ‫مناسبی‬ ‫تقریب‬ ‫با‬ ‫که‬ ‫را‬ ‫اعداد‬ ‫از‬
‫ید‬
‫کند‬‫می‬
.
‫تصادفی‬ ‫اعداد‬ ‫های‬ ‫مولد‬ ‫تست‬
‫روش‬
‫مونت‬
‫کارلو‬
‫عدد‬ ‫تخمین‬ ‫برای‬
𝜋
𝐴𝑐𝑖𝑟𝑐𝑙𝑒
𝐴𝑠𝑞𝑢𝑎𝑟𝑒
=
𝜋𝑟2
(2𝑟)2 =
𝜋
4
𝜋 = 4 ∗
𝐴𝑐𝑖𝑟𝑐𝑙𝑒
𝐴𝑠𝑞𝑢𝑎𝑟𝑒
X
Y
‫مقدمه‬
‫تحق‬ ‫پیشینه‬
‫یق‬
‫پیشنهادی‬ ‫روش‬
‫نتایج‬ ‫ارزیابی‬
‫گیری‬ ‫نتیجه‬
‫پیشنهادات‬
‫نمونه‬ ‫عنوان‬
1/n
‫مقدمه‬
‫تحق‬ ‫پیشینه‬
‫یق‬
‫پیشنهادی‬ ‫روش‬
‫نتایج‬ ‫ارزیابی‬
‫گیری‬ ‫نتیجه‬
‫پیشنهادات‬
‫نمونه‬ ‫عنوان‬
‫عنوان‬ ‫زیر‬
۱
‫عنوان‬ ‫زیر‬
۲
‫نمونه‬ ‫فرمول‬
1/n
𝑠𝑡+1 = {𝑒𝑖, 𝑒𝑖 ∈ 𝑠𝑡, 𝑟 + 1 ≤ 𝑖 ≤ 𝑛} ∪ {𝑝i|𝑝i ∈ 𝑝, 1 ≤ 𝑖 ≤ 𝑟}
Sample presentation slides
Big Picture
User ID Movie ID Rating Timestamp
1 40 3 881250929
2 32 4 886176814
1 10 3.5 881250939
3 20 5 874833878
1 20 2 881250949
2 50 3 886176824
4 11 4.5 879196566
User ID Movie ID Rating Timestamp
1 40 3 881250929
1 10 3.5 881250939
1 20 2 881250949
2 32 4 886176814
2 50 3 886176824
3 20 5 874833878
4 11 4.5 879196566
MovieLens Dataset

More Related Content

PPT
18103010 algorithm complexity (iterative)
PPT
Complexity of Algorithm
PPTX
Church Turing Thesis
PPT
Introducción al Análisis y diseño de algoritmos
PPTX
NP completeness
PPT
PPT
Turing Machine
PPTX
Computability - Tractable, Intractable and Non-computable Function
18103010 algorithm complexity (iterative)
Complexity of Algorithm
Church Turing Thesis
Introducción al Análisis y diseño de algoritmos
NP completeness
Turing Machine
Computability - Tractable, Intractable and Non-computable Function

What's hot (20)

PPT
Time andspacecomplexity
PDF
Algorithm Analyzing
PPTX
asymptotic notation
PPT
Algorithmic Notations
PPTX
Asymptotic Notations
PPT
multi threaded and distributed algorithms
PPT
Parallel algorithms
PPTX
Theory of Automata and formal languages Unit 5
PPTX
Introduction to Algorithms and Asymptotic Notation
PDF
Introduction to Algorithms Complexity Analysis
PPTX
Unit 1
PDF
A Numerical Analytic Continuation and Its Application to Fourier Transform
PPTX
asymptotic analysis and insertion sort analysis
PDF
P, NP, NP-Complete, and NP-Hard
PDF
Daa notes 3
PPTX
Introducction to Algorithm
PDF
Data Structure: Algorithm and analysis
PPTX
NP-Completeness - II
PPTX
Turing machine
DOCX
Basic Computer Engineering Unit II as per RGPV Syllabus
Time andspacecomplexity
Algorithm Analyzing
asymptotic notation
Algorithmic Notations
Asymptotic Notations
multi threaded and distributed algorithms
Parallel algorithms
Theory of Automata and formal languages Unit 5
Introduction to Algorithms and Asymptotic Notation
Introduction to Algorithms Complexity Analysis
Unit 1
A Numerical Analytic Continuation and Its Application to Fourier Transform
asymptotic analysis and insertion sort analysis
P, NP, NP-Complete, and NP-Hard
Daa notes 3
Introducction to Algorithm
Data Structure: Algorithm and analysis
NP-Completeness - II
Turing machine
Basic Computer Engineering Unit II as per RGPV Syllabus
Ad

Similar to Sample presentation slides (20)

PPT
Lec7.ppt
PPT
Lec7.ppt
PPT
analysis of algorithms
PDF
Computational Complexity: Introduction-Turing Machines-Undecidability
PPT
Analysis of Algorithum
PPT
Analysis of the time complexity of data structures.ppt
PDF
Randomization
PPT
2009 CSBB LAB 新生訓練
PPTX
01 - DAA - PPT.pptx
PPTX
Analysis of Algorithms, recurrence relation, solving recurrences
PPT
2010 3-24 cryptography stamatiou
PPTX
Analysis of Algorithms (1).pptx, asymptotic
PPT
CS8451 - Design and Analysis of Algorithms
PPTX
Randomized Algorithm- Advanced Algorithm
PPT
PPT
Big Oh.ppt
PPTX
DAA-Unit1.pptx
PPT
01-algo.ppt
PPTX
cse couse aefrfrqewrbqwrgbqgvq2w3vqbvq23rbgw3rnw345
Lec7.ppt
Lec7.ppt
analysis of algorithms
Computational Complexity: Introduction-Turing Machines-Undecidability
Analysis of Algorithum
Analysis of the time complexity of data structures.ppt
Randomization
2009 CSBB LAB 新生訓練
01 - DAA - PPT.pptx
Analysis of Algorithms, recurrence relation, solving recurrences
2010 3-24 cryptography stamatiou
Analysis of Algorithms (1).pptx, asymptotic
CS8451 - Design and Analysis of Algorithms
Randomized Algorithm- Advanced Algorithm
Big Oh.ppt
DAA-Unit1.pptx
01-algo.ppt
cse couse aefrfrqewrbqwrgbqgvq2w3vqbvq23rbgw3rnw345
Ad

Recently uploaded (20)

PDF
Dropbox Q2 2025 Financial Results & Investor Presentation
PDF
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
PDF
cuic standard and advanced reporting.pdf
PDF
Approach and Philosophy of On baking technology
PPTX
Cloud computing and distributed systems.
PDF
Empathic Computing: Creating Shared Understanding
PDF
Mobile App Security Testing_ A Comprehensive Guide.pdf
PDF
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
PDF
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
PDF
The Rise and Fall of 3GPP – Time for a Sabbatical?
PDF
Spectral efficient network and resource selection model in 5G networks
PDF
Encapsulation_ Review paper, used for researhc scholars
PDF
Agricultural_Statistics_at_a_Glance_2022_0.pdf
PDF
Unlocking AI with Model Context Protocol (MCP)
PPTX
MYSQL Presentation for SQL database connectivity
PDF
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
PDF
Chapter 3 Spatial Domain Image Processing.pdf
PDF
Machine learning based COVID-19 study performance prediction
PDF
NewMind AI Weekly Chronicles - August'25 Week I
PDF
Advanced methodologies resolving dimensionality complications for autism neur...
Dropbox Q2 2025 Financial Results & Investor Presentation
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
cuic standard and advanced reporting.pdf
Approach and Philosophy of On baking technology
Cloud computing and distributed systems.
Empathic Computing: Creating Shared Understanding
Mobile App Security Testing_ A Comprehensive Guide.pdf
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
The Rise and Fall of 3GPP – Time for a Sabbatical?
Spectral efficient network and resource selection model in 5G networks
Encapsulation_ Review paper, used for researhc scholars
Agricultural_Statistics_at_a_Glance_2022_0.pdf
Unlocking AI with Model Context Protocol (MCP)
MYSQL Presentation for SQL database connectivity
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
Chapter 3 Spatial Domain Image Processing.pdf
Machine learning based COVID-19 study performance prediction
NewMind AI Weekly Chronicles - August'25 Week I
Advanced methodologies resolving dimensionality complications for autism neur...

Sample presentation slides

  • 1. ‫ارائه‬ ‫عنوان‬ ‫راهنما‬ ‫اساتید‬ : ‫اول‬ ‫استاد‬ ‫نام‬ ‫دوم‬ ‫استاد‬ ‫نام‬ ‫دهنده‬ ‫ارائه‬ : ‫باقی‬ ‫وحید‬ ‫بهمن‬ ۱۳۹۹ ‫تهران‬ ‫دانشگاه‬ ‫فنی‬ ‫های‬ ‫دانشکده‬ ‫پردیس‬ ‫مهندسی‬ ‫علوم‬ ‫دانشکده‬ ‫کامپیوتر‬ ‫مهندسی‬ – ‫محاسبات‬ ‫و‬ ‫ها‬ ‫الگوریتم‬
  • 2. Department of Algorithms and Computation School of Engineering Science College of Engineering University of Tehran Winter 2019 Test Subject Presentation by : Vahid Baghi
  • 3. mode of computation deterministic mode Parameters for a Complexity Class nondeterministic mode
  • 4. Time is Tape Dependent Theorem : Let 𝑡 𝑛 be a function , where 𝑡 𝑛 > 𝑛 .Then every 𝑡 𝑛 time multitape Turing machine has an equivalent 𝑂(𝑡2 (𝑛)) time single-tape Turing machine. Transition Logic ⊔ 1 0 ∞ ⊔ # 0 0 1 # 0 1 1 # 1 0 ∞ ⊔ 0 1 1 ∞ ⊔ 0 0 1 Transition Logic 110
  • 5. Proper Complexity Functions Definition There exists a TM M that outputs exactly 𝑓 𝑛 symbols on input 1𝑛 and runs in time O(𝑓 𝑛 + 𝑛) and space O(𝑓 𝑛 ) f is a proper complexity function if : ∀𝑛 ∶ 𝑓 𝑛 ≥ 𝑓(𝑛 − 1) For Example : log 𝑛 , 𝑛 , 𝑛2 , …
  • 6. A complexity class is a set of classes of decision problems (or languages) with the same worst-case complexity Complexity Classes DTIME or TIME is the computational resource of computation time for a deterministic Turing machine DTIME DSPACE DSPACE or SPACE is the computational resource describing the resource of memory space for a deterministic Turing machine
  • 7. Time Complexity Hierarchy Theorem : for any 𝑡 𝑛 > 0 , there exists a decidable language L ∉ 𝐷𝑇𝐼𝑀𝐸(𝑡 𝑛 ) Define 𝐿 = 𝑖 𝑀𝑖 does not accept i within 𝑡 𝑖 time } Question : is L ∈ 𝐷𝑇𝐼𝑀𝐸 𝑡 𝑛 ? Proof : Assume (towards contradiction) L ∈ 𝐷𝑇𝐼𝑀𝐸 𝑡 𝑛 ∃ a fixed K ∈ 𝑁 such that Turing machine 𝑀𝐾 decides L within time bound 𝑡 𝑛
  • 8. ‫تصادفی‬ ‫شبه‬ ‫و‬ ‫تصادفی‬ ‫اعداد‬ ‫مولد‬ ‫تصادفی‬ ‫اعداد‬ ‫مولد‬ ( Random Number Generator ) ‫ای‬‫وسیله‬ ‫تولید‬ ‫برای‬ ‫که‬ ‫است‬ ‫فیزیکی‬ ‫ای‬‫دنباله‬ ‫کار‬ ‫به‬ ‫ندارند‬ ‫خاصی‬ ‫الگوی‬ ‫که‬ ‫اعداد‬ ‫از‬ ‫رو‬‫می‬ ‫د‬ . ‫مثال‬ ‫برای‬ • ‫پرتاب‬ ‫تاس‬ • ‫سکه‬ ‫پرتاب‬ • ‫شانس‬ ‫گردونه‬ ‫تصادفی‬ ‫شبه‬ ‫اعداد‬ ‫مولد‬ ( Pseudo Random Number Generator : ) ‫که‬ ‫است‬ ‫الگوریتمی‬ ‫ای‬‫دنباله‬ ‫تول‬ ، ‫هستند‬ ‫تصادفی‬ ‫مناسبی‬ ‫تقریب‬ ‫با‬ ‫که‬ ‫را‬ ‫اعداد‬ ‫از‬ ‫ید‬ ‫کند‬‫می‬ .
  • 9. ‫تصادفی‬ ‫اعداد‬ ‫های‬ ‫مولد‬ ‫تست‬ ‫روش‬ ‫مونت‬ ‫کارلو‬ ‫عدد‬ ‫تخمین‬ ‫برای‬ 𝜋 𝐴𝑐𝑖𝑟𝑐𝑙𝑒 𝐴𝑠𝑞𝑢𝑎𝑟𝑒 = 𝜋𝑟2 (2𝑟)2 = 𝜋 4 𝜋 = 4 ∗ 𝐴𝑐𝑖𝑟𝑐𝑙𝑒 𝐴𝑠𝑞𝑢𝑎𝑟𝑒 X Y
  • 10. ‫مقدمه‬ ‫تحق‬ ‫پیشینه‬ ‫یق‬ ‫پیشنهادی‬ ‫روش‬ ‫نتایج‬ ‫ارزیابی‬ ‫گیری‬ ‫نتیجه‬ ‫پیشنهادات‬ ‫نمونه‬ ‫عنوان‬ 1/n
  • 11. ‫مقدمه‬ ‫تحق‬ ‫پیشینه‬ ‫یق‬ ‫پیشنهادی‬ ‫روش‬ ‫نتایج‬ ‫ارزیابی‬ ‫گیری‬ ‫نتیجه‬ ‫پیشنهادات‬ ‫نمونه‬ ‫عنوان‬ ‫عنوان‬ ‫زیر‬ ۱ ‫عنوان‬ ‫زیر‬ ۲ ‫نمونه‬ ‫فرمول‬ 1/n 𝑠𝑡+1 = {𝑒𝑖, 𝑒𝑖 ∈ 𝑠𝑡, 𝑟 + 1 ≤ 𝑖 ≤ 𝑛} ∪ {𝑝i|𝑝i ∈ 𝑝, 1 ≤ 𝑖 ≤ 𝑟}
  • 14. User ID Movie ID Rating Timestamp 1 40 3 881250929 2 32 4 886176814 1 10 3.5 881250939 3 20 5 874833878 1 20 2 881250949 2 50 3 886176824 4 11 4.5 879196566 User ID Movie ID Rating Timestamp 1 40 3 881250929 1 10 3.5 881250939 1 20 2 881250949 2 32 4 886176814 2 50 3 886176824 3 20 5 874833878 4 11 4.5 879196566 MovieLens Dataset