SlideShare a Scribd company logo
Seaborn & Plotly: A Visual
Exploration of Data
Welcome! This presentation explores Seaborn and Plotly. Discover the
power of Python for data visualization. We'll cover various chart types and
their code.
by Vishant Singh
Introduction: Unveiling the Power of Data
Visualization
Why Visualize Data?
• Gain insights: Quickly understand complex data trends and
patterns.
• Improve communication: Effectively convey findings to
diverse audiences.
• Data visualization: Identify outliers and anomalies for
deeper analysis.
Seaborn & Plotly
Seaborn provides high-level interface. Plotly allows interactive,
web-based visualizations. Both work with Pandas DataFrames.
import seaborn as sns
import plotly.express as px
Seaborn Essentials: Setting
the Stage for Elegant Plots
Aesthetic Control
Customize plot styles, color
palettes, and fonts to create
visually appealing graphics.
DataFrame Integration
Seamlessly integrates with
Pandas DataFrames for easy
data input and manipulation.
Simplified Syntax
Offers a high-level interface, reducing code complexity for common
statistical plots.
Scatter Plots with Seaborn: Unveiling
Relationships
Load Data
Import your dataset into a Pandas DataFrame.
Create Plot
Use sns.scatterplot() to visualize relationships.
Customize
Adjust markers, colors, and labels for clarity and aesthetic appeal.
import seaborn as sns
import matplotlib.pyplot as plt
sns.scatterplot(x='x_column', y='y_column', data=df)
plt.show()
Bubble Charts with Seaborn:
Adding a Dimension of Insight
1 Set Up Plot
Use scatterplot() with the size parameter.
2 Define Size
Map a third variable to the size of the bubbles.
3 Enhance Appearance
Adjust bubble sizes and transparency for optimal visual representation.
sns.scatterplot(x='x_column', y='y_column',
size='size_column', data=df, alpha=0.5)
Pie Charts with Seaborn: Visualizing Proportions
1
Aggregate Data
Group data to calculate category sizes.
2
Create Pie
Use matplotlib to create the pie chart with the aggregated data.
3
Customize
Add labels, colors, and explode effects for clarity and visual impact.
import matplotlib.pyplot as plt
plt.pie(df['category_size'], labels=df['category'])
plt.show()
Gantt Charts with Plotly: Project Management Made Visual
Data Prep
Format task data (start, end, resource).
1
Create Chart
Use plotly.figure_factory.create_gantt().
2
Customize
Adjust colors, labels, and add annotations for
enhanced project overview.
3
import plotly.figure_factory as ff
fig = ff.create_gantt(df, index_col='Resource', show_colorbar=True)
fig.show()
Contour Plots with Plotly: Exploring 3D Data in 2D
1
Prepare Data
Create a grid of x, y, and z values.
2
Generate Plot
Use plotly.graph_objects.Contour() to represent the data in 2D.
3
Refine Appearance
Adjust contour levels, color scales, and labels for optimal data
interpretation.
import plotly.graph_objects as go
fig = go.Figure(data=[go.Contour(z=z_values, x=x_values, y=y_values)])
fig.show()
Sunburst Charts with Plotly:
Hierarchical Data Visualization
Structure Data
Organize data into parent-child
hierarchies.
Create Chart
Use plotly.express.sunburst() to
visualize hierarchical relationships.
Customize
Refine colors, labels, and levels to highlight key hierarchical structures.
import plotly.express as px
fig = px.sunburst(df, path=['parent', 'child'],
values='values')
fig.show()
Polar Charts & Heatmaps with
Plotly: Unique Visualizations
Polar Plots
Visualize data in a circular coordinate
system, ideal for representing angles
and magnitudes.
Heatmaps
Display data as a color-coded matrix,
ideal for showing correlations and
patterns in large datasets.
import plotly.express as px
fig = px.line_polar(df, r='radius', theta='angle')
fig.show()
fig = px.imshow(data)
fig.show()

More Related Content

PPTX
Plot ly graphs with implementations.pptx
PPTX
Lecture 6 Data Visualisation.pptxsfsfsfsfsdfs
PPTX
Seaborn & Plotly ................Intro.pptx
PPTX
python data science libray seaborn.pptx
PDF
12-IP.pdf
PPTX
Python Pyplot Class XII
PPTX
python libray for data analytics seaborn[1].pptx
PDF
Dynamic Graph Plotting with WPF
Plot ly graphs with implementations.pptx
Lecture 6 Data Visualisation.pptxsfsfsfsfsdfs
Seaborn & Plotly ................Intro.pptx
python data science libray seaborn.pptx
12-IP.pdf
Python Pyplot Class XII
python libray for data analytics seaborn[1].pptx
Dynamic Graph Plotting with WPF

Similar to Seaborn-and-Plotly-A-Visual-Exploration-of-Data.pptx (20)

PPTX
Datascape Introduction
PPTX
Data-Analysis-and-Visualization-in-Python-1.pptx
PDF
Pink and beige Data Visualization Basics modern presentation.pdf
PDF
DAVLectuer3 Exploratory data analysis .pdf
PDF
DATA VISUALIZATION
PPT
Techwave 2006 Advanced Datawindow Techniques
PPT
Techwave 2006 Advanced Datawindow Functionality
PDF
Plan601 e session 2 demob
PDF
datavisualization-5thUnit.pdf
PPTX
BDA_MO_1_S6_Basic_data_analytics_,reporting,_and_apply_basic_data.pptx
PPTX
Introduction to Data Visualization for Agriculture and Allied Sciences using ...
PDF
plan601 e session 2 demo
PDF
Unlocking Insights Data Analysis Visualization
PPTX
A Picture is Worth a Thousand Words
DOCX
Phase 3 Document vetri.docxdfhdfhdfhdhdfhgdferegdfhgDFHG
PPTX
Brief Intro to Data Visualisation
PPTX
Data-Visualization-with-Python-4 PPT.ppt
DOCX
manual.docx
PDF
Making attractive Big Data Diagrams
PDF
Data Visualizations with D3.js
Datascape Introduction
Data-Analysis-and-Visualization-in-Python-1.pptx
Pink and beige Data Visualization Basics modern presentation.pdf
DAVLectuer3 Exploratory data analysis .pdf
DATA VISUALIZATION
Techwave 2006 Advanced Datawindow Techniques
Techwave 2006 Advanced Datawindow Functionality
Plan601 e session 2 demob
datavisualization-5thUnit.pdf
BDA_MO_1_S6_Basic_data_analytics_,reporting,_and_apply_basic_data.pptx
Introduction to Data Visualization for Agriculture and Allied Sciences using ...
plan601 e session 2 demo
Unlocking Insights Data Analysis Visualization
A Picture is Worth a Thousand Words
Phase 3 Document vetri.docxdfhdfhdfhdhdfhgdferegdfhgDFHG
Brief Intro to Data Visualisation
Data-Visualization-with-Python-4 PPT.ppt
manual.docx
Making attractive Big Data Diagrams
Data Visualizations with D3.js
Ad

Recently uploaded (20)

PPTX
IB Computer Science - Internal Assessment.pptx
PPT
Miokarditis (Inflamasi pada Otot Jantung)
PPTX
iec ppt-1 pptx icmr ppt on rehabilitation.pptx
PDF
Lecture1 pattern recognition............
PPTX
DISORDERS OF THE LIVER, GALLBLADDER AND PANCREASE (1).pptx
PPTX
oil_refinery_comprehensive_20250804084928 (1).pptx
PPT
Quality review (1)_presentation of this 21
PDF
Business Analytics and business intelligence.pdf
PPTX
MODULE 8 - DISASTER risk PREPAREDNESS.pptx
PDF
22.Patil - Early prediction of Alzheimer’s disease using convolutional neural...
PPTX
Qualitative Qantitative and Mixed Methods.pptx
PPTX
IBA_Chapter_11_Slides_Final_Accessible.pptx
PPTX
Introduction to Firewall Analytics - Interfirewall and Transfirewall.pptx
PDF
Galatica Smart Energy Infrastructure Startup Pitch Deck
PDF
Clinical guidelines as a resource for EBP(1).pdf
PPTX
Business Acumen Training GuidePresentation.pptx
PDF
annual-report-2024-2025 original latest.
PDF
Fluorescence-microscope_Botany_detailed content
PPTX
ALIMENTARY AND BILIARY CONDITIONS 3-1.pptx
IB Computer Science - Internal Assessment.pptx
Miokarditis (Inflamasi pada Otot Jantung)
iec ppt-1 pptx icmr ppt on rehabilitation.pptx
Lecture1 pattern recognition............
DISORDERS OF THE LIVER, GALLBLADDER AND PANCREASE (1).pptx
oil_refinery_comprehensive_20250804084928 (1).pptx
Quality review (1)_presentation of this 21
Business Analytics and business intelligence.pdf
MODULE 8 - DISASTER risk PREPAREDNESS.pptx
22.Patil - Early prediction of Alzheimer’s disease using convolutional neural...
Qualitative Qantitative and Mixed Methods.pptx
IBA_Chapter_11_Slides_Final_Accessible.pptx
Introduction to Firewall Analytics - Interfirewall and Transfirewall.pptx
Galatica Smart Energy Infrastructure Startup Pitch Deck
Clinical guidelines as a resource for EBP(1).pdf
Business Acumen Training GuidePresentation.pptx
annual-report-2024-2025 original latest.
Fluorescence-microscope_Botany_detailed content
ALIMENTARY AND BILIARY CONDITIONS 3-1.pptx
Ad

Seaborn-and-Plotly-A-Visual-Exploration-of-Data.pptx

  • 1. Seaborn & Plotly: A Visual Exploration of Data Welcome! This presentation explores Seaborn and Plotly. Discover the power of Python for data visualization. We'll cover various chart types and their code. by Vishant Singh
  • 2. Introduction: Unveiling the Power of Data Visualization Why Visualize Data? • Gain insights: Quickly understand complex data trends and patterns. • Improve communication: Effectively convey findings to diverse audiences. • Data visualization: Identify outliers and anomalies for deeper analysis. Seaborn & Plotly Seaborn provides high-level interface. Plotly allows interactive, web-based visualizations. Both work with Pandas DataFrames. import seaborn as sns import plotly.express as px
  • 3. Seaborn Essentials: Setting the Stage for Elegant Plots Aesthetic Control Customize plot styles, color palettes, and fonts to create visually appealing graphics. DataFrame Integration Seamlessly integrates with Pandas DataFrames for easy data input and manipulation. Simplified Syntax Offers a high-level interface, reducing code complexity for common statistical plots.
  • 4. Scatter Plots with Seaborn: Unveiling Relationships Load Data Import your dataset into a Pandas DataFrame. Create Plot Use sns.scatterplot() to visualize relationships. Customize Adjust markers, colors, and labels for clarity and aesthetic appeal. import seaborn as sns import matplotlib.pyplot as plt sns.scatterplot(x='x_column', y='y_column', data=df) plt.show()
  • 5. Bubble Charts with Seaborn: Adding a Dimension of Insight 1 Set Up Plot Use scatterplot() with the size parameter. 2 Define Size Map a third variable to the size of the bubbles. 3 Enhance Appearance Adjust bubble sizes and transparency for optimal visual representation. sns.scatterplot(x='x_column', y='y_column', size='size_column', data=df, alpha=0.5)
  • 6. Pie Charts with Seaborn: Visualizing Proportions 1 Aggregate Data Group data to calculate category sizes. 2 Create Pie Use matplotlib to create the pie chart with the aggregated data. 3 Customize Add labels, colors, and explode effects for clarity and visual impact. import matplotlib.pyplot as plt plt.pie(df['category_size'], labels=df['category']) plt.show()
  • 7. Gantt Charts with Plotly: Project Management Made Visual Data Prep Format task data (start, end, resource). 1 Create Chart Use plotly.figure_factory.create_gantt(). 2 Customize Adjust colors, labels, and add annotations for enhanced project overview. 3 import plotly.figure_factory as ff fig = ff.create_gantt(df, index_col='Resource', show_colorbar=True) fig.show()
  • 8. Contour Plots with Plotly: Exploring 3D Data in 2D 1 Prepare Data Create a grid of x, y, and z values. 2 Generate Plot Use plotly.graph_objects.Contour() to represent the data in 2D. 3 Refine Appearance Adjust contour levels, color scales, and labels for optimal data interpretation. import plotly.graph_objects as go fig = go.Figure(data=[go.Contour(z=z_values, x=x_values, y=y_values)]) fig.show()
  • 9. Sunburst Charts with Plotly: Hierarchical Data Visualization Structure Data Organize data into parent-child hierarchies. Create Chart Use plotly.express.sunburst() to visualize hierarchical relationships. Customize Refine colors, labels, and levels to highlight key hierarchical structures. import plotly.express as px fig = px.sunburst(df, path=['parent', 'child'], values='values') fig.show()
  • 10. Polar Charts & Heatmaps with Plotly: Unique Visualizations Polar Plots Visualize data in a circular coordinate system, ideal for representing angles and magnitudes. Heatmaps Display data as a color-coded matrix, ideal for showing correlations and patterns in large datasets. import plotly.express as px fig = px.line_polar(df, r='radius', theta='angle') fig.show() fig = px.imshow(data) fig.show()