Financial data analysis in Python with pandas

                  Wes McKinney
                   @wesmckinn


                    10/17/2011




@wesmckinn ()     Data analysis with pandas   10/17/2011   1 / 22
My background




   3 years as a quant hacker at AQR, now consultant / entrepreneur
   Math and statistics background with the zest of computer science
   Active in scientific Python community
   My blog: http://blog.wesmckinney.com
   Twitter: @wesmckinn




    @wesmckinn ()          Data analysis with pandas      10/17/2011   2 / 22
Bare essentials for financial research



    Fast time series functionality
         Easy data alignment
         Date/time handling
         Moving window statistics
         Resamping / frequency conversion
    Fast data access (SQL databases, flat files, etc.)
    Data visualization (plotting)
    Statistical models
         Linear regression
         Time series models: ARMA, VAR, ...




     @wesmckinn ()            Data analysis with pandas   10/17/2011   3 / 22
Would be nice to have




   Portfolio and risk analytics, backtesting
        Easy enough to write yourself, though most people do a bad job of it
   Portfolio optimization
        Most financial firms use a 3rd party library anyway
   Derivative pricing
        Can use QuantLib in most languages




    @wesmckinn ()            Data analysis with pandas          10/17/2011   4 / 22
What are financial firms using?



   HFT: a C++ and hardware arms race, a different topic
   Research
        Mainstream: R, MATLAB, Python, ...
        Econometrics: Stata, eViews, RATS, etc.
        Non-programmatic environments: ClariFI, Palantir, ...
   Production
        Popular: Java, C#, C++
        Less popular, but growing: Python
        Fringe: Functional languages (Ocaml, Haskell, F#)




    @wesmckinn ()            Data analysis with pandas          10/17/2011   5 / 22
What are financial firms using?



   Many hybrid languages environments (e.g. Java/R, C++/R,
   C++/MATLAB, Python/C++)
        Which is the main implementation language?
        If main language is Java/C++, result is lower productivity and higher
        cost to prototyping new functionality
   Trends
        Banks and hedge funds are realizing that Java-based production
        systems can be replaced with 20% as much Python code (or less)
        MATLAB is being increasingly ditched in favor of Python. R and
        Python use for research generally growing




    @wesmckinn ()            Data analysis with pandas          10/17/2011   6 / 22
Python language



   Simple, expressive syntax
   Designed for readability, like “runnable pseudocode”
   Easy-to-use, powerful built-in types and data structures:
        Lists and tuples (fixed-size, immutable lists)
        Dicts (hash maps / associative arrays) and sets
   Everything’s an object, including functions
   “There should be one, and preferably only one way to do it”
   “Batteries included”: great general purpose standard library




    @wesmckinn ()            Data analysis with pandas         10/17/2011   7 / 22
A simple example: quicksort


Pseudocode from Wikipedia:

function qsort(array)
    if length(array) < 2
        return array
    var list less, greater
    select and remove a pivot value pivot from array
    for each x in array
        if x < pivot then append x to less
        else append x to greater
    return concat(qsort(less), pivot, qsort(greater))




     @wesmckinn ()           Data analysis with pandas   10/17/2011   8 / 22
A simple example: quicksort

First try Python implementation:
def qsort ( array ):
    if len ( array ) < 2:
        return array

    less , greater = [] , []

    pivot , rest = array [0] , array [1:]

    for x in rest :
        if x < pivot :
             less . append ( x )
        else :
             greater . append ( x )

    return qsort ( less ) + [ pivot ] + qsort ( greater )



      @wesmckinn ()         Data analysis with pandas       10/17/2011   9 / 22
A simple example: quicksort



Use list comprehensions:
def qsort ( array ):
    if len ( array ) < 2:
        return array

     pivot , rest = array [0] , array [1:]
     less = [ x for x in rest if x < pivot ]
     greater = [ x for x in rest if x >= pivot ]

     return qsort ( less ) + [ pivot ] + qsort ( greater )




      @wesmckinn ()         Data analysis with pandas        10/17/2011   10 / 22
A simple example: quicksort




Heck, fit it onto one line!
qs = lambda r : ( r if len ( r ) < 2
                  else ( qs ([ x for x in r [1:] if x < r [0]])
                         + [ r [0]]
                         + qs ([ x for x in r [1:] if x >= r [0]])))

Though that’s starting to look like Lisp code...




      @wesmckinn ()           Data analysis with pandas   10/17/2011   11 / 22
A simple example: quicksort


A quicksort using NumPy arrays
def qsort ( array ):
    if len ( array ) < 2:
        return array
    pivot , rest = array [0] , array [1:]
    less = rest [ rest < pivot ]
    greater = rest [ rest >= pivot ]
    return np . r_ [ qsort ( less ) , [ pivot ] , qsort ( greater )]

Of course no need for this when you can just do:

sorted_array = np.sort(array)




      @wesmckinn ()           Data analysis with pandas       10/17/2011   12 / 22
Python: drunk with power
This comic has way too much airtime but:




     @wesmckinn ()          Data analysis with pandas   10/17/2011   13 / 22
Staples of Python for science: MINS




   (M) matplotlib: plotting and data visualization
   (I) IPython: rich interactive computing and development environment
   (N) NumPy: multi-dimensional arrays, linear algebra, FFTs, random
   number generation, etc.
   (S) SciPy: optimization, probability distributions, signal processing,
   ODEs, sparse matrices, ...




     @wesmckinn ()          Data analysis with pandas        10/17/2011   14 / 22
Why did Python become popular in science?



   NumPy traces its roots to 1995
   Extremely easy to integrate C/C++/Fortran code
   Access fast low level algorithms in a high level, interpreted language
   The language itself
        “It fits in your head”
        “It [Python] doesn’t get in my way” - Robert Kern
   Python is good at all the things other scientific programming
   languages are not good at (e.g. networking, string processing, OOP)
   Liberal BSD license: can use Python for commercial applications




    @wesmckinn ()            Data analysis with pandas       10/17/2011   15 / 22
Some exciting stuff in the last few years


    Cython
         “Augmented” Python language with type declarations, for generating
         compiled extensions
         C-like speedups with Python-like development time
    IPython: enhanced interactive Python interpreter
         The best research and software development env for Python
         An integrated parallel / distributed computing backend
         GUI console with inline plotting and a rich HTML notebook (more on
         this later)
    PyCUDA / PyOpenCL: GPU computing in Python
         Transformed Python overnight into one of the best languages for doing
         GPU computing




     @wesmckinn ()            Data analysis with pandas        10/17/2011   16 / 22
Where has Python historically been weak?



   Rich data structures for data analysis and statistics
         NumPy arrays, while powerful, feel distinctly “lower level” if you’re
         used to R’s data.frame
         pandas has filled this gap over the last 2 years
   Statistics libraries
         Nowhere near the depth of R’s CRAN repository
         statsmodels provides tested implementations a lot of standard
         regression and time series models
         Turns out that most financial data analysis requires only fairly
         elementary statistical models




     @wesmckinn ()             Data analysis with pandas           10/17/2011    17 / 22
pandas library



    Began building at AQR in 2008, open-sourced late 2009
    Why
         R / MATLAB, while good for research / data analysis, are not suitable
         implementation languages for large-scale production systems
                (I personally don’t care for them for data analysis)
         Existing data structures for time series in R / MATLAB were too
         limited / not flexible enough my needs
    Core idea: indexed data structures capable of storing heterogeneous
    data
    Etymology: panel data structures




     @wesmckinn ()                Data analysis with pandas            10/17/2011   18 / 22
pandas in a nutshell



    A clean axis indexing design to support fast data alignment, lookups,
    hierarchical indexing, and more
    High-performance data structures
         Series/TimeSeries: 1D labeled vector
         DataFrame: 2D spreadsheet-like structure
         Panel: 3D labeled array, collection of DataFrames
    SQL-like functionality: GroupBy, joining/merging, etc.
    Missing data handling
    Time series functionality




     @wesmckinn ()              Data analysis with pandas    10/17/2011   19 / 22
pandas design philosophy



   “Think outside the matrix”: stop thinking about shape and start
   thinking about indexes
   Indexing and data alignment are essential
   Fault-tolerance: save you from common blunders caused by coding
   errors (specifically misaligned data)
   Lift the best features of other data analysis environments (R,
   MATLAB, Stata, etc.) and make them better, faster
   Performance and usability equally important




     @wesmckinn ()          Data analysis with pandas       10/17/2011   20 / 22
The pandas killer feature: indexing



    Each axis has an index
    Automatic alignment between differently-indexed objects: makes it
    nearly impossible to accidentally combine misaligned data
    Hierarchical indexing provides an intuitive way of structuring and
    working with higher-dimensional data
    Natural way of expressing “group by” and join-type operations
    Better integrated and more flexible indexing than anything available
    in R or MATLAB




     @wesmckinn ()           Data analysis with pandas       10/17/2011   21 / 22
Tutorial time




                     To the IPython console!




     @wesmckinn ()          Data analysis with pandas   10/17/2011   22 / 22

More Related Content

PDF
Data visualization
PDF
Data Wrangling and Visualization Using Python
PDF
Data visualization in Python
PDF
Introduction to Data streaming - 05/12/2014
ODP
Five python libraries should know for machine learning
PDF
Python and R for quantitative finance
PPT
Evaluating Classification Algorithms Applied To Data Streams Esteban Donato
PDF
Parallel Computing with R
Data visualization
Data Wrangling and Visualization Using Python
Data visualization in Python
Introduction to Data streaming - 05/12/2014
Five python libraries should know for machine learning
Python and R for quantitative finance
Evaluating Classification Algorithms Applied To Data Streams Esteban Donato
Parallel Computing with R

What's hot (20)

PPTX
Session 2
PPTX
"Spark, Deep Learning and Life Sciences, Systems Biology in the Big Data Age"...
PPTX
Yarn spark next_gen_hadoop_8_jan_2014
PPTX
Intro to Python Data Analysis in Wakari
PPTX
The lifecycle of reproducible science data and what provenance has got to do ...
PDF
Lightning fast genomics with Spark, Adam and Scala
PPTX
Scalable Whole-Exome Sequence Data Processing Using Workflow On A Cloud
PDF
High Performance Python - Marc Garcia
PDF
BKK16-408B Data Analytics and Machine Learning From Node to Cluster
PDF
Parikshit Ram – Senior Machine Learning Scientist, Skytree at MLconf ATL
PDF
Pivotal Data Labs - Technology and Tools in our Data Scientist's Arsenal
PPTX
Streaming Algorithms
PDF
20190110 tfug fukuoka
PDF
Scalable Parallel Programming in Python with Parsl
PPT
Stream data mining & CluStream framework
PDF
18 Data Streams
PPTX
Data-Centric Parallel Programming
PDF
Python Powered Data Science at Pivotal (PyData 2013)
PPT
5.1 mining data streams
PDF
Study of Various Tools for Data Science
Session 2
"Spark, Deep Learning and Life Sciences, Systems Biology in the Big Data Age"...
Yarn spark next_gen_hadoop_8_jan_2014
Intro to Python Data Analysis in Wakari
The lifecycle of reproducible science data and what provenance has got to do ...
Lightning fast genomics with Spark, Adam and Scala
Scalable Whole-Exome Sequence Data Processing Using Workflow On A Cloud
High Performance Python - Marc Garcia
BKK16-408B Data Analytics and Machine Learning From Node to Cluster
Parikshit Ram – Senior Machine Learning Scientist, Skytree at MLconf ATL
Pivotal Data Labs - Technology and Tools in our Data Scientist's Arsenal
Streaming Algorithms
20190110 tfug fukuoka
Scalable Parallel Programming in Python with Parsl
Stream data mining & CluStream framework
18 Data Streams
Data-Centric Parallel Programming
Python Powered Data Science at Pivotal (PyData 2013)
5.1 mining data streams
Study of Various Tools for Data Science
Ad

Similar to Slides 111017220255-phpapp01 (20)

PDF
pandas: a Foundational Python Library for Data Analysis and Statistics
PDF
ytuiuyuyuyryuuytryuryruyrjgjhgfnyfpug.pdf
PDF
A look inside pandas design and development
PDF
What's new in pandas and the SciPy stack for financial users
PPTX
Meetup Junio Data Analysis with python 2018
PDF
pandas: Powerful data analysis tools for Python
PDF
PyCon Colombia 2020 Python for Data Analysis: Past, Present, and Future
PDF
Migrating from matlab to python
PPTX
DATA ANALYSIS AND VISUALISATION using python
PPTX
Q-Step_WS_06112019_Data_Analysis_and_visualisation_with_Python.pptx
PPTX
Q-Step_WS_06112019_Data_Analysis_and_visualisation_with_Python (3).pptx
PPTX
Dc python meetup
PPTX
To understand the importance of Python libraries in data analysis.
PDF
Python for Data Analysis_ Data Wrangling with Pandas, Numpy, and Ipython ( PD...
PDF
Wes McKinney - Python for Data Analysis-O'Reilly Media (2012).pdf
PPTX
python-pandas-For-Data-Analysis-Manipulate.pptx
PPTX
Unit 3_Numpy_VP.pptx
PPTX
Adarsh_Masekar(2GP19CS003).pptx
PPTX
Comparing EDA with classical and Bayesian analysis.pptx
PDF
Python for Data Analysis Data Wrangling with Pandas NumPy and IPython Wes Mck...
pandas: a Foundational Python Library for Data Analysis and Statistics
ytuiuyuyuyryuuytryuryruyrjgjhgfnyfpug.pdf
A look inside pandas design and development
What's new in pandas and the SciPy stack for financial users
Meetup Junio Data Analysis with python 2018
pandas: Powerful data analysis tools for Python
PyCon Colombia 2020 Python for Data Analysis: Past, Present, and Future
Migrating from matlab to python
DATA ANALYSIS AND VISUALISATION using python
Q-Step_WS_06112019_Data_Analysis_and_visualisation_with_Python.pptx
Q-Step_WS_06112019_Data_Analysis_and_visualisation_with_Python (3).pptx
Dc python meetup
To understand the importance of Python libraries in data analysis.
Python for Data Analysis_ Data Wrangling with Pandas, Numpy, and Ipython ( PD...
Wes McKinney - Python for Data Analysis-O'Reilly Media (2012).pdf
python-pandas-For-Data-Analysis-Manipulate.pptx
Unit 3_Numpy_VP.pptx
Adarsh_Masekar(2GP19CS003).pptx
Comparing EDA with classical and Bayesian analysis.pptx
Python for Data Analysis Data Wrangling with Pandas NumPy and IPython Wes Mck...
Ad

Slides 111017220255-phpapp01

  • 1. Financial data analysis in Python with pandas Wes McKinney @wesmckinn 10/17/2011 @wesmckinn () Data analysis with pandas 10/17/2011 1 / 22
  • 2. My background 3 years as a quant hacker at AQR, now consultant / entrepreneur Math and statistics background with the zest of computer science Active in scientific Python community My blog: http://blog.wesmckinney.com Twitter: @wesmckinn @wesmckinn () Data analysis with pandas 10/17/2011 2 / 22
  • 3. Bare essentials for financial research Fast time series functionality Easy data alignment Date/time handling Moving window statistics Resamping / frequency conversion Fast data access (SQL databases, flat files, etc.) Data visualization (plotting) Statistical models Linear regression Time series models: ARMA, VAR, ... @wesmckinn () Data analysis with pandas 10/17/2011 3 / 22
  • 4. Would be nice to have Portfolio and risk analytics, backtesting Easy enough to write yourself, though most people do a bad job of it Portfolio optimization Most financial firms use a 3rd party library anyway Derivative pricing Can use QuantLib in most languages @wesmckinn () Data analysis with pandas 10/17/2011 4 / 22
  • 5. What are financial firms using? HFT: a C++ and hardware arms race, a different topic Research Mainstream: R, MATLAB, Python, ... Econometrics: Stata, eViews, RATS, etc. Non-programmatic environments: ClariFI, Palantir, ... Production Popular: Java, C#, C++ Less popular, but growing: Python Fringe: Functional languages (Ocaml, Haskell, F#) @wesmckinn () Data analysis with pandas 10/17/2011 5 / 22
  • 6. What are financial firms using? Many hybrid languages environments (e.g. Java/R, C++/R, C++/MATLAB, Python/C++) Which is the main implementation language? If main language is Java/C++, result is lower productivity and higher cost to prototyping new functionality Trends Banks and hedge funds are realizing that Java-based production systems can be replaced with 20% as much Python code (or less) MATLAB is being increasingly ditched in favor of Python. R and Python use for research generally growing @wesmckinn () Data analysis with pandas 10/17/2011 6 / 22
  • 7. Python language Simple, expressive syntax Designed for readability, like “runnable pseudocode” Easy-to-use, powerful built-in types and data structures: Lists and tuples (fixed-size, immutable lists) Dicts (hash maps / associative arrays) and sets Everything’s an object, including functions “There should be one, and preferably only one way to do it” “Batteries included”: great general purpose standard library @wesmckinn () Data analysis with pandas 10/17/2011 7 / 22
  • 8. A simple example: quicksort Pseudocode from Wikipedia: function qsort(array) if length(array) < 2 return array var list less, greater select and remove a pivot value pivot from array for each x in array if x < pivot then append x to less else append x to greater return concat(qsort(less), pivot, qsort(greater)) @wesmckinn () Data analysis with pandas 10/17/2011 8 / 22
  • 9. A simple example: quicksort First try Python implementation: def qsort ( array ): if len ( array ) < 2: return array less , greater = [] , [] pivot , rest = array [0] , array [1:] for x in rest : if x < pivot : less . append ( x ) else : greater . append ( x ) return qsort ( less ) + [ pivot ] + qsort ( greater ) @wesmckinn () Data analysis with pandas 10/17/2011 9 / 22
  • 10. A simple example: quicksort Use list comprehensions: def qsort ( array ): if len ( array ) < 2: return array pivot , rest = array [0] , array [1:] less = [ x for x in rest if x < pivot ] greater = [ x for x in rest if x >= pivot ] return qsort ( less ) + [ pivot ] + qsort ( greater ) @wesmckinn () Data analysis with pandas 10/17/2011 10 / 22
  • 11. A simple example: quicksort Heck, fit it onto one line! qs = lambda r : ( r if len ( r ) < 2 else ( qs ([ x for x in r [1:] if x < r [0]]) + [ r [0]] + qs ([ x for x in r [1:] if x >= r [0]]))) Though that’s starting to look like Lisp code... @wesmckinn () Data analysis with pandas 10/17/2011 11 / 22
  • 12. A simple example: quicksort A quicksort using NumPy arrays def qsort ( array ): if len ( array ) < 2: return array pivot , rest = array [0] , array [1:] less = rest [ rest < pivot ] greater = rest [ rest >= pivot ] return np . r_ [ qsort ( less ) , [ pivot ] , qsort ( greater )] Of course no need for this when you can just do: sorted_array = np.sort(array) @wesmckinn () Data analysis with pandas 10/17/2011 12 / 22
  • 13. Python: drunk with power This comic has way too much airtime but: @wesmckinn () Data analysis with pandas 10/17/2011 13 / 22
  • 14. Staples of Python for science: MINS (M) matplotlib: plotting and data visualization (I) IPython: rich interactive computing and development environment (N) NumPy: multi-dimensional arrays, linear algebra, FFTs, random number generation, etc. (S) SciPy: optimization, probability distributions, signal processing, ODEs, sparse matrices, ... @wesmckinn () Data analysis with pandas 10/17/2011 14 / 22
  • 15. Why did Python become popular in science? NumPy traces its roots to 1995 Extremely easy to integrate C/C++/Fortran code Access fast low level algorithms in a high level, interpreted language The language itself “It fits in your head” “It [Python] doesn’t get in my way” - Robert Kern Python is good at all the things other scientific programming languages are not good at (e.g. networking, string processing, OOP) Liberal BSD license: can use Python for commercial applications @wesmckinn () Data analysis with pandas 10/17/2011 15 / 22
  • 16. Some exciting stuff in the last few years Cython “Augmented” Python language with type declarations, for generating compiled extensions C-like speedups with Python-like development time IPython: enhanced interactive Python interpreter The best research and software development env for Python An integrated parallel / distributed computing backend GUI console with inline plotting and a rich HTML notebook (more on this later) PyCUDA / PyOpenCL: GPU computing in Python Transformed Python overnight into one of the best languages for doing GPU computing @wesmckinn () Data analysis with pandas 10/17/2011 16 / 22
  • 17. Where has Python historically been weak? Rich data structures for data analysis and statistics NumPy arrays, while powerful, feel distinctly “lower level” if you’re used to R’s data.frame pandas has filled this gap over the last 2 years Statistics libraries Nowhere near the depth of R’s CRAN repository statsmodels provides tested implementations a lot of standard regression and time series models Turns out that most financial data analysis requires only fairly elementary statistical models @wesmckinn () Data analysis with pandas 10/17/2011 17 / 22
  • 18. pandas library Began building at AQR in 2008, open-sourced late 2009 Why R / MATLAB, while good for research / data analysis, are not suitable implementation languages for large-scale production systems (I personally don’t care for them for data analysis) Existing data structures for time series in R / MATLAB were too limited / not flexible enough my needs Core idea: indexed data structures capable of storing heterogeneous data Etymology: panel data structures @wesmckinn () Data analysis with pandas 10/17/2011 18 / 22
  • 19. pandas in a nutshell A clean axis indexing design to support fast data alignment, lookups, hierarchical indexing, and more High-performance data structures Series/TimeSeries: 1D labeled vector DataFrame: 2D spreadsheet-like structure Panel: 3D labeled array, collection of DataFrames SQL-like functionality: GroupBy, joining/merging, etc. Missing data handling Time series functionality @wesmckinn () Data analysis with pandas 10/17/2011 19 / 22
  • 20. pandas design philosophy “Think outside the matrix”: stop thinking about shape and start thinking about indexes Indexing and data alignment are essential Fault-tolerance: save you from common blunders caused by coding errors (specifically misaligned data) Lift the best features of other data analysis environments (R, MATLAB, Stata, etc.) and make them better, faster Performance and usability equally important @wesmckinn () Data analysis with pandas 10/17/2011 20 / 22
  • 21. The pandas killer feature: indexing Each axis has an index Automatic alignment between differently-indexed objects: makes it nearly impossible to accidentally combine misaligned data Hierarchical indexing provides an intuitive way of structuring and working with higher-dimensional data Natural way of expressing “group by” and join-type operations Better integrated and more flexible indexing than anything available in R or MATLAB @wesmckinn () Data analysis with pandas 10/17/2011 21 / 22
  • 22. Tutorial time To the IPython console! @wesmckinn () Data analysis with pandas 10/17/2011 22 / 22