SlideShare a Scribd company logo
Arthur CHARPENTIER - Probit transformation for nonparametric kernel estimation of the copula
Probit transformation for nonparametric kernel estimation of the copula
A. Charpentier (Université de Rennes 1 & UQAM),
joint work with G. Geenens (UNSW) & D. Paindaveine (ULB)
CIRM Workshop “Extremes - Copulas - Actuarial science”, February 2016
http://arxiv.org/abs/1404.4414, to appear in Bernoulli
url: http://freakonometrics.hypotheses.org
email : charpentier.arthur@uqam.ca
: @freakonometrics
1
Arthur CHARPENTIER - Probit transformation for nonparametric kernel estimation of the copula
Motivation
Consider some n-i.i.d. sample {(Xi, Yi)} with cu-
mulative distribution function FXY and joint den-
sity fXY . Let FX and FY denote the marginal
distributions, and C the copula,
FXY (x, y) = C(FX(x), FY (y))
so that
fXY (x, y) = fX(x)fY (y)c(FX(x), FY (y))
We want a nonparametric estimate of c on [0, 1]2
. 1e+01 1e+03 1e+05
1e+011e+021e+031e+041e+05
2
Arthur CHARPENTIER - Probit transformation for nonparametric kernel estimation of the copula
Notations
Define uniformized n-i.i.d. sample {(Ui, Vi)}
Ui = FX(Xi) and Vi = FY (Yi)
or uniformized n-i.i.d. pseudo-sample {( ˆUi, ˆVi)}
ˆUi =
n
n + 1
ˆFXn(Xi) and ˆVi =
n
n + 1
ˆFY n(Yi)
where ˆFXn and ˆFY n denote empirical c.d.f.
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
3
Arthur CHARPENTIER - Probit transformation for nonparametric kernel estimation of the copula
Standard Kernel Estimate
The standard kernel estimator for c, say ˆc∗
, at (u, v) ∈ I would be (see Wand &
Jones (1995))
ˆc∗
(u, v) =
1
n|HUV |1/2
n
i=1
K H
−1/2
UV
u − Ui
v − Vi
, (1)
where K : R2
→ R is a kernel function and HUV is a bandwidth matrix.
4
Arthur CHARPENTIER - Probit transformation for nonparametric kernel estimation of the copula
Standard Kernel Estimate
However, this estimator is not consistent along
boundaries of [0, 1]2
E(ˆc∗
(u, v)) =
1
4
c(u, v) + O(h) at corners
E(ˆc∗
(u, v)) =
1
2
c(u, v) + O(h) on the borders
if K is symmetric and HUV symmetric.
Corrections have been proposed, e.g. mirror reflec-
tion Gijbels (1990) or the usage of boundary kernels
Chen (2007), but with mixed results.
Remark: the graph on the bottom is ˆc∗
on the
(first) diagonal.
0.0
0.2
0.4
0.6
0.8
1.0 0.0
0.2
0.4
0.6
0.8
1.0
0
2
4
6
0.0 0.2 0.4 0.6 0.8 1.0
01234567
5
Arthur CHARPENTIER - Probit transformation for nonparametric kernel estimation of the copula
Mirror Kernel Estimate
Use an enlarged sample: instead of only {( ˆUi, ˆVi)},
add {(− ˆUi, ˆVi)}, {( ˆUi, − ˆVi)}, {(− ˆUi, − ˆVi)},
{( ˆUi, 2 − ˆVi)}, {(2 − ˆUi, ˆVi)},{(− ˆUi, 2 − ˆVi)},
{(2 − ˆUi, − ˆVi)} and {(2 − ˆUi, 2 − ˆVi)}.
See Gijbels & Mielniczuk (1990).
That estimator will be used as a benchmark in the
simulation study.
0.0
0.2
0.4
0.6
0.8
1.0 0.0
0.2
0.4
0.6
0.8
1.0
0
2
4
6
0.0 0.2 0.4 0.6 0.8 1.0
01234567
6
Arthur CHARPENTIER - Probit transformation for nonparametric kernel estimation of the copula
Using Beta Kernels
Use a Kernel which is a product of beta kernels
Kxi
(u)) ∝ u
x1,i
b
1 [1 − u1]
x1,i
b · u
x2,i
b
2 [1 − u2]
x2,i
b
See Chen (1999).
0.0
0.2
0.4
0.6
0.8
1.0 0.0
0.2
0.4
0.6
0.8
1.0
0
2
4
6
0.0 0.2 0.4 0.6 0.8 1.0
01234567
7
Arthur CHARPENTIER - Probit transformation for nonparametric kernel estimation of the copula
Probit Transformation
See Devroye & Gyöfi (1985) and Marron & Ruppert
(1994).
Define normalized n-i.i.d. sample {(Si, Ti)}
Si = Φ−1
(Ui) and Ti = Φ−1
(Vi)
or normalized n-i.i.d. pseudo-sample {( ˆSi, ˆTi)}
ˆUi = Φ−1
( ˆUi) and ˆVi = Φ−1
( ˆVi)
where Φ−1
is the quantile function of N(0, 1)
(probit transformation). −3 −2 −1 0 1 2 3
−3−2−10123
8
Arthur CHARPENTIER - Probit transformation for nonparametric kernel estimation of the copula
Probit Transformation
FST (x, y) = C(Φ(x), Φ(y))
so that
fST (x, y) = φ(x)φ(y)c(Φ(x), Φ(y))
Thus
c(u, v) =
fST (Φ−1
(u), Φ−1
(v))
φ(Φ−1(u))φ(Φ−1(v))
.
So use
ˆc(τ)
(u, v) =
ˆfST (Φ−1
(u), Φ−1
(v))
φ(Φ−1(u))φ(Φ−1(v))
−3 −2 −1 0 1 2 3
−3−2−10123
9
Arthur CHARPENTIER - Probit transformation for nonparametric kernel estimation of the copula
The naive estimator
Since we cannot use
ˆf∗
ST (s, t) =
1
n|HST |1/2
n
i=1
K H
−1/2
ST
s − Si
t − Ti
,
where K is a kernel function and HST is a band-
width matrix, use
ˆfST (s, t) =
1
n|HST |1/2
n
i=1
K H
−1/2
ST
s − ˆSi
t − ˆTi
.
and the copula density is
ˆc(τ)
(u, v) =
ˆfST (Φ−1
(u), Φ−1
(v))
φ(Φ−1(u))φ(Φ−1(v))
0.0
0.2
0.4
0.6
0.8
1.0 0.0
0.2
0.4
0.6
0.8
1.0
0
2
4
6
0.0 0.2 0.4 0.6 0.8 1.0
01234567
10
Arthur CHARPENTIER - Probit transformation for nonparametric kernel estimation of the copula
The naive estimator
ˆc(τ)
(u, v) =
1
n|HST |1/2φ(Φ−1(u))φ(Φ−1(v))
n
i=1
K H
−1/2
ST
Φ−1
(u) − Φ−1
( ˆUi)
Φ−1(v) − Φ−1( ˆVi)
as suggested in C., Fermanian & Scaillet (2007) and Lopez-Paz . et al. (2013).
Note that Omelka . et al. (2009) obtained theoretical properties on the
convergence of ˆC(τ)
(u, v) (not c).
11
Arthur CHARPENTIER - Probit transformation for nonparametric kernel estimation of the copula
Improved probit-transformation copula density estimators
When estimating a density from pseudo-sample, Loader (1996) and Hjort &
Jones (1996) define a local likelihood estimator
Around (s, t) ∈ R2
, use a polynomial approximation of order p for log fST
log fST (ˇs, ˇt) a1,0(s, t) + a1,1(s, t)(ˇs − s) + a1,2(s, t)(ˇt − t)
.
= Pa1
(ˇs − s, ˇt − t)
log fST (ˇs, ˇt) a2,0(s, t) + a2,1(s, t)(ˇs − s) + a2,2(s, t)(ˇt − t)
+ a2,3(s, t)(ˇs − s)2
+ a2,4(s, t)(ˇt − t)2
+ a2,5(s, t)(ˇs − s)(ˇt − t)
.
= Pa2 (ˇs − s, ˇt − t).
12
Arthur CHARPENTIER - Probit transformation for nonparametric kernel estimation of the copula
Improved probit-transformation copula density estimators
Remark Vectors a1(s, t) = (a1,0(s, t), a1,1(s, t), a1,2(s, t)) and
a2(s, t)
.
= (a2,0(s, t), . . . , a2,5(s, t)) are then estimated by solving a weighted
maximum likelihood problem.
˜ap(s, t) = arg max
ap
n
i=1
K H
−1/2
ST
s − ˆSi
t − ˆTi
Pap
( ˆSi − s, ˆTi − t)
−n
R2
K H
−1/2
ST
s − ˇs
t − ˇt
exp Pap (ˇs − s, ˇt − t) dˇs dˇt ,
The estimate of fST at (s, t) is then ˜f
(p)
ST (s, t) = exp(˜ap,0(s, t)), for p = 1, 2.
The Improved probit-transformation kernel copula density estimators are
˜c(τ,p)
(u, v) =
˜f
(p)
ST (Φ−1
(u), Φ−1
(v))
φ(Φ−1(u))φ(Φ−1(v))
13
Arthur CHARPENTIER - Probit transformation for nonparametric kernel estimation of the copula
Improved probit-transformation
copula density estimators
For the local log-linear (p = 1) approximation
˜c(τ,1)
(u, v) =
exp(˜a1,0(Φ−1
(u), Φ−1
(v))
φ(Φ−1(u))φ(Φ−1(v))
0.0
0.2
0.4
0.6
0.8
1.0 0.0
0.2
0.4
0.6
0.8
1.0
0
2
4
6
0.0 0.2 0.4 0.6 0.8 1.0
01234567
14
Arthur CHARPENTIER - Probit transformation for nonparametric kernel estimation of the copula
Improved probit-transformation
copula density estimators
For the local log-quadratic (p = 2) approximation
˜c(τ,2)
(u, v) =
exp(˜a2,0(Φ−1
(u), Φ−1
(v))
φ(Φ−1(u))φ(Φ−1(v))
0.0
0.2
0.4
0.6
0.8
1.0 0.0
0.2
0.4
0.6
0.8
1.0
0
2
4
6
0.0 0.2 0.4 0.6 0.8 1.0
01234567
15
Arthur CHARPENTIER - Probit transformation for nonparametric kernel estimation of the copula
Asymptotic properties
A1. The sample {(Xi, Yi)} is a n- i.i.d. sample from the joint distribution FXY ,
an absolutely continuous distribution with marginals FX and FY strictly
increasing on their support;
(uniqueness of the copula)
16
Arthur CHARPENTIER - Probit transformation for nonparametric kernel estimation of the copula
Asymptotic properties
A2. The copula C of FXY is such that (∂C/∂u)(u, v) and (∂2
C/∂u2
)(u, v) exist
and are continuous on {(u, v) : u ∈ (0, 1), v ∈ [0, 1]}, and (∂C/∂v)(u, v) and
(∂2
C/∂v2
)(u, v) exist and are continuous on {(u, v) : u ∈ [0, 1], v ∈ (0, 1)}. In
addition, there are constants K1 and K2 such that



∂2
C
∂u2
(u, v) ≤
K1
u(1 − u)
for (u, v) ∈ (0, 1) × [0, 1];
∂2
C
∂v2
(u, v) ≤
K2
v(1 − v)
for (u, v) ∈ [0, 1] × (0, 1);
A3. The density c of C exists, is positive and admits continuous second-order
partial derivatives on the interior of the unit square I. In addition, there is a
constant K00 such that
c(u, v) ≤ K00 min
1
u(1 − u)
,
1
v(1 − v)
∀(u, v) ∈ (0, 1)2
.
see Segers (2012).
17
Arthur CHARPENTIER - Probit transformation for nonparametric kernel estimation of the copula
Asymptotic properties
Assume that K(z1, z2) = φ(z1)φ(z2) and HST = h2
I with h ∼ n−a
for some
a ∈ (0, 1/4). Under Assumptions A1-A3, the ‘naive’ probit transformation kernel
copula density estimator at any (u, v) ∈ (0, 1)2
is such that
√
nh2 ˆc(τ)
(u, v) − c(u, v) − h2 b(u, v)
φ(Φ−1(u))φ(Φ−1(v))
L
−→ N 0, σ2
(u, v) ,
where b(u, v) =
1
2
∂2
c
∂u2
(u, v)φ2
(Φ−1
(u)) +
∂2
c
∂v2
(u, v)φ2
(Φ−1
(v))
− 3
∂c
∂u
(u, v)Φ−1
(u)φ(Φ−1
(u)) +
∂c
∂v
(u, v)Φ−1
(v)φ(Φ−1
(v))
+ c(u, v) {Φ−1
(u)}2
+ {Φ−1
(v)}2
− 2 (2)
and σ2
(u, v) =
c(u, v)
4πφ(Φ−1(u))φ(Φ−1(v))
.
18
Arthur CHARPENTIER - Probit transformation for nonparametric kernel estimation of the copula
The Amended version
The last unbounded term in b be easily adjusted.
ˆc(τam)
(u, v) =
ˆfST (Φ−1
(u), Φ−1
(v))
φ(Φ−1(u))φ(Φ−1(v))
×
1
1 + 1
2 h2 ({Φ−1(u)}2 + {Φ−1(v)}2 − 2)
.
The asymptotic bias becomes proportional to
b(am)
(u, v) =
1
2
∂2
c
∂u2
(u, v)φ2
(Φ−1
(u)) +
∂2
c
∂v2
(u, v)φ2
(Φ−1
(v))
−3
∂c
∂u
(u, v)Φ−1
(u)φ(Φ−1
(u)) +
∂c
∂v
(u, v)Φ−1
(v)φ(Φ−1
(v)) .
19
Arthur CHARPENTIER - Probit transformation for nonparametric kernel estimation of the copula
A local log-linear probit-transformation kernel estimator
˜c∗(τ,1)
(u, v) = ˜f
∗(1)
ST (Φ−1
(u), Φ−1
(v))/ φ(Φ−1
(u))φ(Φ−1
(v))
Then
√
nh2 ˜c∗(τ,1)
(u, v) − c(u, v) − h2 b(1)
(u, v)
φ(Φ−1(u))φ(Φ−1(v))
L
−→ N 0, σ(1) 2
(u, v) ,
where b(1)
(u, v) =
1
2
∂2
c
∂u2
(u, v)φ2
(Φ−1
(u)) +
∂2
c
∂v2
(u, v)φ2
(Φ−1
(v))
−
1
c(u, v)
∂c
∂u
(u, v)
2
φ2
(Φ−1
(u)) +
∂c
∂v
(u, v)
2
φ2
(Φ−1
(v))
−
∂c
∂u
(u, v)Φ−1
(u)φ(Φ−1
(u)) +
∂c
∂v
(u, v)Φ−1
(v)φ(Φ−1
(v)) − 2c(u, v)
20
Arthur CHARPENTIER - Probit transformation for nonparametric kernel estimation of the copula
Using a higher order polynomial approximation
Locally fitting a polynomial of a higher degree is known to reduce the asymptotic
bias of the estimator, here from order O(h2
) to order O(h4
), see Loader (1996) or
Hjort (1996), under sufficient smoothness conditions.
If fST admits continuous fourth-order partial derivatives and is positive at (s, t),
then
√
nh2 ˜f
∗(2)
ST (s, t) − fST (s, t) − h4
b
(2)
ST (s, t)
L
−→ N 0, σ
(2)
ST
2
(s, t) ,
where σ
(2)
ST
2
(s, t) =
5
2
fST (s, t)
4π
and
b
(2)
ST (s, t) = −
1
8
fST (s, t)
×
∂4
g
∂s4
+
∂4
g
∂t4
+ 4
∂3
g
∂s3
∂g
∂s
+
∂3
g
∂t3
∂g
∂t
+
∂3
g
∂s2∂t
∂g
∂t
+
∂3
g
∂s∂t2
∂g
∂s
+ 2
∂4
g
∂s2∂t2
(s, t),
with g(s, t) = log fST (s, t).
21
Arthur CHARPENTIER - Probit transformation for nonparametric kernel estimation of the copula
Using a higher order polynomial approximation
A4. The copula density c(u, v) = (∂2
C/∂u∂v)(u, v) admits continuous
fourth-order partial derivatives on the interior of the unit square [0, 1]2
.
Then
√
nh2 ˜c∗(τ,2)
(u, v) − c(u, v) − h4 b(2)
(u, v)
φ(Φ−1(u))φ(Φ−1(v))
L
−→ N 0, σ(2) 2
(u, v)
where σ(2) 2
(u, v) =
5
2
c(u, v)
4πφ(Φ−1(u))φ(Φ−1(v))
22
Arthur CHARPENTIER - Probit transformation for nonparametric kernel estimation of the copula
Improving Bandwidth choice
Consider the principal components decomposition of the (n × 2) matrix
[ˆS, ˆT ] = M.
Let W1 = (W11, W12)T
and W2 = (W21, W22)T
be the eigenvectors of MT
M. Set
Q
R
=


W11 W12
W21 W22

 S
T
= W
S
T
which is only a linear reparametrization of R2
, so
an estimate of fST can be readily obtained from an
estimate of the density of (Q, R)
Since { ˆQi} and { ˆRi} are empirically uncorrelated,
consider a diagonal bandwidth matrix HQR =
diag(h2
Q, h2
R).
−4 −2 0 2 4
−3−2−1012
23
Arthur CHARPENTIER - Probit transformation for nonparametric kernel estimation of the copula
Improving Bandwidth choice
Use univariate procedures to select hQ and hR independently
Denote ˜f
(p)
Q and ˜f
(p)
R (p = 1, 2), the local log-polynomial estimators for the
densities
hQ can be selected via cross-validation (see Section 5.3.3 in Loader (1999))
hQ = arg min
h>0
∞
−∞
˜f
(p)
Q (q)
2
dq −
2
n
n
i=1
˜f
(p)
Q(−i)( ˆQi) ,
where ˜f
(p)
Q(−i) is the ‘leave-one-out’ version of ˜f
(p)
Q .
24
Arthur CHARPENTIER - Probit transformation for nonparametric kernel estimation of the copula
Graphical Comparison (loss ALAE dataset)
c~(τ2)
Loss (X)
ALAE(Y)
0.25
0.25
0.5
0.5
0.75
0.75
1
1
1.25
1.25
1.5
1.5
2
2
4
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
0.25
0.25
0.5
0.5
0.75
0.75
1
1
1
1.25
1.25
1.5
1.5
2
2
4
c^
β
Loss (X)
ALAE(Y)
0.25
0.25
0.5
0.5
0.75
0.75
1
1
1.25
1.25
1.5
1.5
2
2
4
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
0.25
0.25
0.25 0.25
0.5
0.5
0.75
0.75
0.75
1
1
1
1
1
1.25
1.25
1.25
1.25
1.25
1.5
1.5
2
2
2
4
c^
b
Loss (X)
ALAE(Y)
0.25
0.25
0.5
0.5
0.75
0.75
1
1
1.25
1.25
1.5
1.5
2
2
4
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
0.25
0.25
0.5
0.5
0.75
0.75
1
1
1.25
1.25
1.5
1.5
2
2
c^
p
Loss (X)
ALAE(Y)
0.25
0.25
0.5
0.5
0.75
0.75
1
1
1.25
1.25
1.5
1.5
2
2
4
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
0.25
0.25
0.25
0.25
0.5
0.5
0.75
0.75
1
1
1
1.25
1.25
1.25
1.25
1.5
1.5
1.5
2
2
4
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
c~(τ2)
Loss (X)
ALAE(Y)
0.25
0.25
0.5
0.5
0.75
0.75
1
1
1
1.25
1.25
1.5
1.5
2
2
4
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
c^
β
Loss (X)
ALAE(Y)
0.25
0.25
0.25 0.25
0.5
0.5
0.75
0.75
0.75
1
1
1
1
1
1.25
1.25
1.25
1.25
1.25
1.5
1.5
1.5
2
2
2
4
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
c^
b
Loss (X)
ALAE(Y)
0.25
0.25
0.5
0.5
0.75
0.751
1
1.25
1.25
1.5
1.5
2
2
0.0 0.2 0.4 0.6 0.8 1.0
0.00.20.40.60.81.0
c^
p
Loss (X)
ALAE(Y)
0.25
0.25
0.25
0.25
0.5
0.5
0.75
0.75
1
1
1
1.25
1.25
1.25
1.25
1.5
1.5
1.5
2
2
4
25
Arthur CHARPENTIER - Probit transformation for nonparametric kernel estimation of the copula
Simulation Study
M = 1, 000 independent random samples {(Ui, Vi)}n
i=1 of sizes n = 200, n = 500
and n = 1000 were generated from each of the following copulas:
· the independence copula (i.e., Ui’s and Vi’s drawn independently);
· the Gaussian copula, with parameters ρ = 0.31, ρ = 0.59 and ρ = 0.81;
· the Student t-copula with 4 degrees of freedom, with parameters ρ = 0.31,
ρ = 0.59 and ρ = 0.81;
· the Frank copula, with parameter θ = 1.86, θ = 4.16 and θ = 7.93;
· the Gumbel copula, with parameter θ = 1.25, θ = 1.67 and θ = 2.5;
· the Clayton copula, with parameter θ = 0.5, θ = 1.67 and θ = 2.5.
(approximated) MISE relative to the MISE of the mirror-reflection estimator
(last column), n = 1000. Bold values show the minimum MISE for the
corresponding copula (non-significantly different values are highlighted as well).
26
Arthur CHARPENTIER - Probit transformation for nonparametric kernel estimation of the copula
n = 1000 ˆc(τ) ˆc(τam) ˜c(τ,1) ˜c(τ,2) ˆc
(β)
1 ˆc
(β)
2 ˆc
(B)
1 ˆc
(B)
2 ˆc
(p)
1 ˆc
(p)
2 ˆc
(p)
3
Indep 3.57 2.80 2.89 1.40 7.96 11.65 1.69 3.43 1.62 0.50 0.14
Gauss2 2.03 1.52 1.60 0.76 4.63 6.06 1.10 1.82 0.98 0.66 0.89
Gauss4 0.63 0.49 0.44 0.21 1.72 1.60 0.75 0.58 0.62 0.99 2.93
Gauss6 0.21 0.20 0.11 0.05 0.74 0.33 0.77 0.37 0.72 1.21 2.83
Std(4)2 0.61 0.56 0.50 0.40 1.57 1.80 0.78 0.67 0.75 1.01 1.88
Std(4)4 0.21 0.27 0.17 0.15 0.88 0.51 0.75 0.42 0.75 1.12 2.07
Std(4)6 0.09 0.17 0.08 0.09 0.70 0.19 0.82 0.47 0.90 1.17 1.90
Frank2 3.31 2.42 2.57 1.35 7.16 9.63 1.70 2.95 1.31 0.45 0.49
Frank4 2.35 1.45 1.51 0.99 4.42 4.89 1.49 1.65 0.60 0.72 6.14
Frank6 0.96 0.52 0.45 0.44 1.51 1.19 1.35 0.76 0.65 1.58 7.25
Gumbel2 0.65 0.62 0.56 0.43 1.77 1.97 0.82 0.75 0.83 1.03 1.52
Gumbel4 0.18 0.28 0.16 0.19 0.89 0.41 0.78 0.47 0.81 1.10 1.78
Gumbel6 0.09 0.21 0.10 0.15 0.78 0.29 0.85 0.58 0.94 1.12 1.63
Clayton2 0.63 0.60 0.51 0.34 1.78 1.99 0.78 0.70 0.79 1.04 1.79
Clayton4 0.11 0.26 0.10 0.15 0.79 0.27 0.83 0.56 0.90 1.10 1.50
Clayton6 0.11 0.28 0.08 0.15 0.82 0.35 0.88 0.67 0.96 1.09 1.36
27

More Related Content

PDF
slides tails copulas
PDF
Multiattribute utility copula
PDF
Inequality, slides #2
PDF
Inequalities #2
PDF
Slides ineq-4
PDF
Fougeres Besancon Archimax
PDF
So a webinar-2013-2
PDF
Multivariate Distributions, an overview
slides tails copulas
Multiattribute utility copula
Inequality, slides #2
Inequalities #2
Slides ineq-4
Fougeres Besancon Archimax
So a webinar-2013-2
Multivariate Distributions, an overview

What's hot (20)

PDF
Slides barcelona Machine Learning
PDF
Inequalities #3
PDF
Slides erm-cea-ia
PDF
Slides astin
PDF
Slides ACTINFO 2016
PDF
Quantile and Expectile Regression
PDF
Slides edf-2
PDF
Inequality #4
PDF
Slides ineq-2
PDF
Slides sales-forecasting-session2-web
PDF
Slides amsterdam-2013
PDF
Slides guanauato
PDF
Slides compiegne
PDF
Slides ensae 8
PDF
Slides econometrics-2017-graduate-2
PDF
Graduate Econometrics Course, part 4, 2017
PDF
Slides univ-van-amsterdam
PDF
Slides toulouse
PDF
Slides erasmus
PDF
Lundi 16h15-copules-charpentier
Slides barcelona Machine Learning
Inequalities #3
Slides erm-cea-ia
Slides astin
Slides ACTINFO 2016
Quantile and Expectile Regression
Slides edf-2
Inequality #4
Slides ineq-2
Slides sales-forecasting-session2-web
Slides amsterdam-2013
Slides guanauato
Slides compiegne
Slides ensae 8
Slides econometrics-2017-graduate-2
Graduate Econometrics Course, part 4, 2017
Slides univ-van-amsterdam
Slides toulouse
Slides erasmus
Lundi 16h15-copules-charpentier
Ad

Viewers also liked (18)

PDF
Slides saopaulo-catastrophe
PDF
Testing for Extreme Volatility Transmission
PDF
IA-advanced-R
PDF
Econometrics, PhD Course, #1 Nonlinearities
PDF
Econometrics 2017-graduate-3
PDF
Slides act6420-e2014-ts-2
PDF
Sildes buenos aires
PDF
Slides barcelona risk data
PDF
Slides smart-2015
PDF
Slides risk-rennes
PDF
Slides Prix Scor
PDF
Natural Disaster Risk Management
PDF
Slides ilb
PDF
Rappels stats-2014-part1
PDF
Actuariat et Données
PDF
Slides maths eco_rennes
PDF
Sildes big-data-ia-may
PDF
Slides 2016 ineq_1
Slides saopaulo-catastrophe
Testing for Extreme Volatility Transmission
IA-advanced-R
Econometrics, PhD Course, #1 Nonlinearities
Econometrics 2017-graduate-3
Slides act6420-e2014-ts-2
Sildes buenos aires
Slides barcelona risk data
Slides smart-2015
Slides risk-rennes
Slides Prix Scor
Natural Disaster Risk Management
Slides ilb
Rappels stats-2014-part1
Actuariat et Données
Slides maths eco_rennes
Sildes big-data-ia-may
Slides 2016 ineq_1
Ad

Similar to slides CIRM copulas, extremes and actuarial science (12)

PDF
transformations and nonparametric inference
PDF
Slides mevt
PDF
Slides csm
PDF
Slides ima
PDF
Talk slides isi-2014
PDF
Talk slides at ISI, 2014
PDF
Slides laval stat avril 2011
PDF
Chaubey seminarslides2017
PDF
TS-IASSL2014
PDF
PDF
Life Expectancy Estimate with Bivariate Weibull Distribution using Archimedea...
transformations and nonparametric inference
Slides mevt
Slides csm
Slides ima
Talk slides isi-2014
Talk slides at ISI, 2014
Slides laval stat avril 2011
Chaubey seminarslides2017
TS-IASSL2014
Life Expectancy Estimate with Bivariate Weibull Distribution using Archimedea...

More from Arthur Charpentier (20)

PDF
Family History and Life Insurance
PDF
ACT6100 introduction
PDF
Family History and Life Insurance (UConn actuarial seminar)
PDF
Control epidemics
PDF
STT5100 Automne 2020, introduction
PDF
Family History and Life Insurance
PDF
Machine Learning in Actuarial Science & Insurance
PDF
Reinforcement Learning in Economics and Finance
PDF
Optimal Control and COVID-19
PDF
Slides OICA 2020
PDF
Lausanne 2019 #3
PDF
Lausanne 2019 #4
PDF
Lausanne 2019 #2
PDF
Lausanne 2019 #1
PDF
Side 2019 #10
PDF
Side 2019 #11
PDF
Side 2019 #12
PDF
Side 2019 #9
PDF
Side 2019 #8
PDF
Side 2019 #7
Family History and Life Insurance
ACT6100 introduction
Family History and Life Insurance (UConn actuarial seminar)
Control epidemics
STT5100 Automne 2020, introduction
Family History and Life Insurance
Machine Learning in Actuarial Science & Insurance
Reinforcement Learning in Economics and Finance
Optimal Control and COVID-19
Slides OICA 2020
Lausanne 2019 #3
Lausanne 2019 #4
Lausanne 2019 #2
Lausanne 2019 #1
Side 2019 #10
Side 2019 #11
Side 2019 #12
Side 2019 #9
Side 2019 #8
Side 2019 #7

Recently uploaded (20)

PDF
annual-report-2024-2025 original latest.
PPTX
sac 451hinhgsgshssjsjsjheegdggeegegdggddgeg.pptx
PDF
Microsoft Core Cloud Services powerpoint
PDF
Capcut Pro Crack For PC Latest Version {Fully Unlocked 2025}
PPTX
mbdjdhjjodule 5-1 rhfhhfjtjjhafbrhfnfbbfnb
PPTX
CYBER SECURITY the Next Warefare Tactics
PPTX
Managing Community Partner Relationships
PDF
How to run a consulting project- client discovery
PPTX
A Complete Guide to Streamlining Business Processes
PPTX
modul_python (1).pptx for professional and student
PPTX
New ISO 27001_2022 standard and the changes
PPTX
01_intro xxxxxxxxxxfffffffffffaaaaaaaaaaafg
PPTX
Market Analysis -202507- Wind-Solar+Hybrid+Street+Lights+for+the+North+Amer...
PDF
REAL ILLUMINATI AGENT IN KAMPALA UGANDA CALL ON+256765750853/0705037305
PDF
Introduction to Data Science and Data Analysis
PPTX
Introduction to Inferential Statistics.pptx
PDF
Jean-Georges Perrin - Spark in Action, Second Edition (2020, Manning Publicat...
PPT
ISS -ESG Data flows What is ESG and HowHow
PDF
Optimise Shopper Experiences with a Strong Data Estate.pdf
PDF
OneRead_20250728_1808.pdfhdhddhshahwhwwjjaaja
annual-report-2024-2025 original latest.
sac 451hinhgsgshssjsjsjheegdggeegegdggddgeg.pptx
Microsoft Core Cloud Services powerpoint
Capcut Pro Crack For PC Latest Version {Fully Unlocked 2025}
mbdjdhjjodule 5-1 rhfhhfjtjjhafbrhfnfbbfnb
CYBER SECURITY the Next Warefare Tactics
Managing Community Partner Relationships
How to run a consulting project- client discovery
A Complete Guide to Streamlining Business Processes
modul_python (1).pptx for professional and student
New ISO 27001_2022 standard and the changes
01_intro xxxxxxxxxxfffffffffffaaaaaaaaaaafg
Market Analysis -202507- Wind-Solar+Hybrid+Street+Lights+for+the+North+Amer...
REAL ILLUMINATI AGENT IN KAMPALA UGANDA CALL ON+256765750853/0705037305
Introduction to Data Science and Data Analysis
Introduction to Inferential Statistics.pptx
Jean-Georges Perrin - Spark in Action, Second Edition (2020, Manning Publicat...
ISS -ESG Data flows What is ESG and HowHow
Optimise Shopper Experiences with a Strong Data Estate.pdf
OneRead_20250728_1808.pdfhdhddhshahwhwwjjaaja

slides CIRM copulas, extremes and actuarial science

  • 1. Arthur CHARPENTIER - Probit transformation for nonparametric kernel estimation of the copula Probit transformation for nonparametric kernel estimation of the copula A. Charpentier (Université de Rennes 1 & UQAM), joint work with G. Geenens (UNSW) & D. Paindaveine (ULB) CIRM Workshop “Extremes - Copulas - Actuarial science”, February 2016 http://arxiv.org/abs/1404.4414, to appear in Bernoulli url: http://freakonometrics.hypotheses.org email : charpentier.arthur@uqam.ca : @freakonometrics 1
  • 2. Arthur CHARPENTIER - Probit transformation for nonparametric kernel estimation of the copula Motivation Consider some n-i.i.d. sample {(Xi, Yi)} with cu- mulative distribution function FXY and joint den- sity fXY . Let FX and FY denote the marginal distributions, and C the copula, FXY (x, y) = C(FX(x), FY (y)) so that fXY (x, y) = fX(x)fY (y)c(FX(x), FY (y)) We want a nonparametric estimate of c on [0, 1]2 . 1e+01 1e+03 1e+05 1e+011e+021e+031e+041e+05 2
  • 3. Arthur CHARPENTIER - Probit transformation for nonparametric kernel estimation of the copula Notations Define uniformized n-i.i.d. sample {(Ui, Vi)} Ui = FX(Xi) and Vi = FY (Yi) or uniformized n-i.i.d. pseudo-sample {( ˆUi, ˆVi)} ˆUi = n n + 1 ˆFXn(Xi) and ˆVi = n n + 1 ˆFY n(Yi) where ˆFXn and ˆFY n denote empirical c.d.f. 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 3
  • 4. Arthur CHARPENTIER - Probit transformation for nonparametric kernel estimation of the copula Standard Kernel Estimate The standard kernel estimator for c, say ˆc∗ , at (u, v) ∈ I would be (see Wand & Jones (1995)) ˆc∗ (u, v) = 1 n|HUV |1/2 n i=1 K H −1/2 UV u − Ui v − Vi , (1) where K : R2 → R is a kernel function and HUV is a bandwidth matrix. 4
  • 5. Arthur CHARPENTIER - Probit transformation for nonparametric kernel estimation of the copula Standard Kernel Estimate However, this estimator is not consistent along boundaries of [0, 1]2 E(ˆc∗ (u, v)) = 1 4 c(u, v) + O(h) at corners E(ˆc∗ (u, v)) = 1 2 c(u, v) + O(h) on the borders if K is symmetric and HUV symmetric. Corrections have been proposed, e.g. mirror reflec- tion Gijbels (1990) or the usage of boundary kernels Chen (2007), but with mixed results. Remark: the graph on the bottom is ˆc∗ on the (first) diagonal. 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0 2 4 6 0.0 0.2 0.4 0.6 0.8 1.0 01234567 5
  • 6. Arthur CHARPENTIER - Probit transformation for nonparametric kernel estimation of the copula Mirror Kernel Estimate Use an enlarged sample: instead of only {( ˆUi, ˆVi)}, add {(− ˆUi, ˆVi)}, {( ˆUi, − ˆVi)}, {(− ˆUi, − ˆVi)}, {( ˆUi, 2 − ˆVi)}, {(2 − ˆUi, ˆVi)},{(− ˆUi, 2 − ˆVi)}, {(2 − ˆUi, − ˆVi)} and {(2 − ˆUi, 2 − ˆVi)}. See Gijbels & Mielniczuk (1990). That estimator will be used as a benchmark in the simulation study. 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0 2 4 6 0.0 0.2 0.4 0.6 0.8 1.0 01234567 6
  • 7. Arthur CHARPENTIER - Probit transformation for nonparametric kernel estimation of the copula Using Beta Kernels Use a Kernel which is a product of beta kernels Kxi (u)) ∝ u x1,i b 1 [1 − u1] x1,i b · u x2,i b 2 [1 − u2] x2,i b See Chen (1999). 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0 2 4 6 0.0 0.2 0.4 0.6 0.8 1.0 01234567 7
  • 8. Arthur CHARPENTIER - Probit transformation for nonparametric kernel estimation of the copula Probit Transformation See Devroye & Gyöfi (1985) and Marron & Ruppert (1994). Define normalized n-i.i.d. sample {(Si, Ti)} Si = Φ−1 (Ui) and Ti = Φ−1 (Vi) or normalized n-i.i.d. pseudo-sample {( ˆSi, ˆTi)} ˆUi = Φ−1 ( ˆUi) and ˆVi = Φ−1 ( ˆVi) where Φ−1 is the quantile function of N(0, 1) (probit transformation). −3 −2 −1 0 1 2 3 −3−2−10123 8
  • 9. Arthur CHARPENTIER - Probit transformation for nonparametric kernel estimation of the copula Probit Transformation FST (x, y) = C(Φ(x), Φ(y)) so that fST (x, y) = φ(x)φ(y)c(Φ(x), Φ(y)) Thus c(u, v) = fST (Φ−1 (u), Φ−1 (v)) φ(Φ−1(u))φ(Φ−1(v)) . So use ˆc(τ) (u, v) = ˆfST (Φ−1 (u), Φ−1 (v)) φ(Φ−1(u))φ(Φ−1(v)) −3 −2 −1 0 1 2 3 −3−2−10123 9
  • 10. Arthur CHARPENTIER - Probit transformation for nonparametric kernel estimation of the copula The naive estimator Since we cannot use ˆf∗ ST (s, t) = 1 n|HST |1/2 n i=1 K H −1/2 ST s − Si t − Ti , where K is a kernel function and HST is a band- width matrix, use ˆfST (s, t) = 1 n|HST |1/2 n i=1 K H −1/2 ST s − ˆSi t − ˆTi . and the copula density is ˆc(τ) (u, v) = ˆfST (Φ−1 (u), Φ−1 (v)) φ(Φ−1(u))φ(Φ−1(v)) 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0 2 4 6 0.0 0.2 0.4 0.6 0.8 1.0 01234567 10
  • 11. Arthur CHARPENTIER - Probit transformation for nonparametric kernel estimation of the copula The naive estimator ˆc(τ) (u, v) = 1 n|HST |1/2φ(Φ−1(u))φ(Φ−1(v)) n i=1 K H −1/2 ST Φ−1 (u) − Φ−1 ( ˆUi) Φ−1(v) − Φ−1( ˆVi) as suggested in C., Fermanian & Scaillet (2007) and Lopez-Paz . et al. (2013). Note that Omelka . et al. (2009) obtained theoretical properties on the convergence of ˆC(τ) (u, v) (not c). 11
  • 12. Arthur CHARPENTIER - Probit transformation for nonparametric kernel estimation of the copula Improved probit-transformation copula density estimators When estimating a density from pseudo-sample, Loader (1996) and Hjort & Jones (1996) define a local likelihood estimator Around (s, t) ∈ R2 , use a polynomial approximation of order p for log fST log fST (ˇs, ˇt) a1,0(s, t) + a1,1(s, t)(ˇs − s) + a1,2(s, t)(ˇt − t) . = Pa1 (ˇs − s, ˇt − t) log fST (ˇs, ˇt) a2,0(s, t) + a2,1(s, t)(ˇs − s) + a2,2(s, t)(ˇt − t) + a2,3(s, t)(ˇs − s)2 + a2,4(s, t)(ˇt − t)2 + a2,5(s, t)(ˇs − s)(ˇt − t) . = Pa2 (ˇs − s, ˇt − t). 12
  • 13. Arthur CHARPENTIER - Probit transformation for nonparametric kernel estimation of the copula Improved probit-transformation copula density estimators Remark Vectors a1(s, t) = (a1,0(s, t), a1,1(s, t), a1,2(s, t)) and a2(s, t) . = (a2,0(s, t), . . . , a2,5(s, t)) are then estimated by solving a weighted maximum likelihood problem. ˜ap(s, t) = arg max ap n i=1 K H −1/2 ST s − ˆSi t − ˆTi Pap ( ˆSi − s, ˆTi − t) −n R2 K H −1/2 ST s − ˇs t − ˇt exp Pap (ˇs − s, ˇt − t) dˇs dˇt , The estimate of fST at (s, t) is then ˜f (p) ST (s, t) = exp(˜ap,0(s, t)), for p = 1, 2. The Improved probit-transformation kernel copula density estimators are ˜c(τ,p) (u, v) = ˜f (p) ST (Φ−1 (u), Φ−1 (v)) φ(Φ−1(u))φ(Φ−1(v)) 13
  • 14. Arthur CHARPENTIER - Probit transformation for nonparametric kernel estimation of the copula Improved probit-transformation copula density estimators For the local log-linear (p = 1) approximation ˜c(τ,1) (u, v) = exp(˜a1,0(Φ−1 (u), Φ−1 (v)) φ(Φ−1(u))φ(Φ−1(v)) 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0 2 4 6 0.0 0.2 0.4 0.6 0.8 1.0 01234567 14
  • 15. Arthur CHARPENTIER - Probit transformation for nonparametric kernel estimation of the copula Improved probit-transformation copula density estimators For the local log-quadratic (p = 2) approximation ˜c(τ,2) (u, v) = exp(˜a2,0(Φ−1 (u), Φ−1 (v)) φ(Φ−1(u))φ(Φ−1(v)) 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0 2 4 6 0.0 0.2 0.4 0.6 0.8 1.0 01234567 15
  • 16. Arthur CHARPENTIER - Probit transformation for nonparametric kernel estimation of the copula Asymptotic properties A1. The sample {(Xi, Yi)} is a n- i.i.d. sample from the joint distribution FXY , an absolutely continuous distribution with marginals FX and FY strictly increasing on their support; (uniqueness of the copula) 16
  • 17. Arthur CHARPENTIER - Probit transformation for nonparametric kernel estimation of the copula Asymptotic properties A2. The copula C of FXY is such that (∂C/∂u)(u, v) and (∂2 C/∂u2 )(u, v) exist and are continuous on {(u, v) : u ∈ (0, 1), v ∈ [0, 1]}, and (∂C/∂v)(u, v) and (∂2 C/∂v2 )(u, v) exist and are continuous on {(u, v) : u ∈ [0, 1], v ∈ (0, 1)}. In addition, there are constants K1 and K2 such that    ∂2 C ∂u2 (u, v) ≤ K1 u(1 − u) for (u, v) ∈ (0, 1) × [0, 1]; ∂2 C ∂v2 (u, v) ≤ K2 v(1 − v) for (u, v) ∈ [0, 1] × (0, 1); A3. The density c of C exists, is positive and admits continuous second-order partial derivatives on the interior of the unit square I. In addition, there is a constant K00 such that c(u, v) ≤ K00 min 1 u(1 − u) , 1 v(1 − v) ∀(u, v) ∈ (0, 1)2 . see Segers (2012). 17
  • 18. Arthur CHARPENTIER - Probit transformation for nonparametric kernel estimation of the copula Asymptotic properties Assume that K(z1, z2) = φ(z1)φ(z2) and HST = h2 I with h ∼ n−a for some a ∈ (0, 1/4). Under Assumptions A1-A3, the ‘naive’ probit transformation kernel copula density estimator at any (u, v) ∈ (0, 1)2 is such that √ nh2 ˆc(τ) (u, v) − c(u, v) − h2 b(u, v) φ(Φ−1(u))φ(Φ−1(v)) L −→ N 0, σ2 (u, v) , where b(u, v) = 1 2 ∂2 c ∂u2 (u, v)φ2 (Φ−1 (u)) + ∂2 c ∂v2 (u, v)φ2 (Φ−1 (v)) − 3 ∂c ∂u (u, v)Φ−1 (u)φ(Φ−1 (u)) + ∂c ∂v (u, v)Φ−1 (v)φ(Φ−1 (v)) + c(u, v) {Φ−1 (u)}2 + {Φ−1 (v)}2 − 2 (2) and σ2 (u, v) = c(u, v) 4πφ(Φ−1(u))φ(Φ−1(v)) . 18
  • 19. Arthur CHARPENTIER - Probit transformation for nonparametric kernel estimation of the copula The Amended version The last unbounded term in b be easily adjusted. ˆc(τam) (u, v) = ˆfST (Φ−1 (u), Φ−1 (v)) φ(Φ−1(u))φ(Φ−1(v)) × 1 1 + 1 2 h2 ({Φ−1(u)}2 + {Φ−1(v)}2 − 2) . The asymptotic bias becomes proportional to b(am) (u, v) = 1 2 ∂2 c ∂u2 (u, v)φ2 (Φ−1 (u)) + ∂2 c ∂v2 (u, v)φ2 (Φ−1 (v)) −3 ∂c ∂u (u, v)Φ−1 (u)φ(Φ−1 (u)) + ∂c ∂v (u, v)Φ−1 (v)φ(Φ−1 (v)) . 19
  • 20. Arthur CHARPENTIER - Probit transformation for nonparametric kernel estimation of the copula A local log-linear probit-transformation kernel estimator ˜c∗(τ,1) (u, v) = ˜f ∗(1) ST (Φ−1 (u), Φ−1 (v))/ φ(Φ−1 (u))φ(Φ−1 (v)) Then √ nh2 ˜c∗(τ,1) (u, v) − c(u, v) − h2 b(1) (u, v) φ(Φ−1(u))φ(Φ−1(v)) L −→ N 0, σ(1) 2 (u, v) , where b(1) (u, v) = 1 2 ∂2 c ∂u2 (u, v)φ2 (Φ−1 (u)) + ∂2 c ∂v2 (u, v)φ2 (Φ−1 (v)) − 1 c(u, v) ∂c ∂u (u, v) 2 φ2 (Φ−1 (u)) + ∂c ∂v (u, v) 2 φ2 (Φ−1 (v)) − ∂c ∂u (u, v)Φ−1 (u)φ(Φ−1 (u)) + ∂c ∂v (u, v)Φ−1 (v)φ(Φ−1 (v)) − 2c(u, v) 20
  • 21. Arthur CHARPENTIER - Probit transformation for nonparametric kernel estimation of the copula Using a higher order polynomial approximation Locally fitting a polynomial of a higher degree is known to reduce the asymptotic bias of the estimator, here from order O(h2 ) to order O(h4 ), see Loader (1996) or Hjort (1996), under sufficient smoothness conditions. If fST admits continuous fourth-order partial derivatives and is positive at (s, t), then √ nh2 ˜f ∗(2) ST (s, t) − fST (s, t) − h4 b (2) ST (s, t) L −→ N 0, σ (2) ST 2 (s, t) , where σ (2) ST 2 (s, t) = 5 2 fST (s, t) 4π and b (2) ST (s, t) = − 1 8 fST (s, t) × ∂4 g ∂s4 + ∂4 g ∂t4 + 4 ∂3 g ∂s3 ∂g ∂s + ∂3 g ∂t3 ∂g ∂t + ∂3 g ∂s2∂t ∂g ∂t + ∂3 g ∂s∂t2 ∂g ∂s + 2 ∂4 g ∂s2∂t2 (s, t), with g(s, t) = log fST (s, t). 21
  • 22. Arthur CHARPENTIER - Probit transformation for nonparametric kernel estimation of the copula Using a higher order polynomial approximation A4. The copula density c(u, v) = (∂2 C/∂u∂v)(u, v) admits continuous fourth-order partial derivatives on the interior of the unit square [0, 1]2 . Then √ nh2 ˜c∗(τ,2) (u, v) − c(u, v) − h4 b(2) (u, v) φ(Φ−1(u))φ(Φ−1(v)) L −→ N 0, σ(2) 2 (u, v) where σ(2) 2 (u, v) = 5 2 c(u, v) 4πφ(Φ−1(u))φ(Φ−1(v)) 22
  • 23. Arthur CHARPENTIER - Probit transformation for nonparametric kernel estimation of the copula Improving Bandwidth choice Consider the principal components decomposition of the (n × 2) matrix [ˆS, ˆT ] = M. Let W1 = (W11, W12)T and W2 = (W21, W22)T be the eigenvectors of MT M. Set Q R =   W11 W12 W21 W22   S T = W S T which is only a linear reparametrization of R2 , so an estimate of fST can be readily obtained from an estimate of the density of (Q, R) Since { ˆQi} and { ˆRi} are empirically uncorrelated, consider a diagonal bandwidth matrix HQR = diag(h2 Q, h2 R). −4 −2 0 2 4 −3−2−1012 23
  • 24. Arthur CHARPENTIER - Probit transformation for nonparametric kernel estimation of the copula Improving Bandwidth choice Use univariate procedures to select hQ and hR independently Denote ˜f (p) Q and ˜f (p) R (p = 1, 2), the local log-polynomial estimators for the densities hQ can be selected via cross-validation (see Section 5.3.3 in Loader (1999)) hQ = arg min h>0 ∞ −∞ ˜f (p) Q (q) 2 dq − 2 n n i=1 ˜f (p) Q(−i)( ˆQi) , where ˜f (p) Q(−i) is the ‘leave-one-out’ version of ˜f (p) Q . 24
  • 25. Arthur CHARPENTIER - Probit transformation for nonparametric kernel estimation of the copula Graphical Comparison (loss ALAE dataset) c~(τ2) Loss (X) ALAE(Y) 0.25 0.25 0.5 0.5 0.75 0.75 1 1 1.25 1.25 1.5 1.5 2 2 4 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 0.25 0.25 0.5 0.5 0.75 0.75 1 1 1 1.25 1.25 1.5 1.5 2 2 4 c^ β Loss (X) ALAE(Y) 0.25 0.25 0.5 0.5 0.75 0.75 1 1 1.25 1.25 1.5 1.5 2 2 4 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 0.25 0.25 0.25 0.25 0.5 0.5 0.75 0.75 0.75 1 1 1 1 1 1.25 1.25 1.25 1.25 1.25 1.5 1.5 2 2 2 4 c^ b Loss (X) ALAE(Y) 0.25 0.25 0.5 0.5 0.75 0.75 1 1 1.25 1.25 1.5 1.5 2 2 4 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 0.25 0.25 0.5 0.5 0.75 0.75 1 1 1.25 1.25 1.5 1.5 2 2 c^ p Loss (X) ALAE(Y) 0.25 0.25 0.5 0.5 0.75 0.75 1 1 1.25 1.25 1.5 1.5 2 2 4 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 0.25 0.25 0.25 0.25 0.5 0.5 0.75 0.75 1 1 1 1.25 1.25 1.25 1.25 1.5 1.5 1.5 2 2 4 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 c~(τ2) Loss (X) ALAE(Y) 0.25 0.25 0.5 0.5 0.75 0.75 1 1 1 1.25 1.25 1.5 1.5 2 2 4 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 c^ β Loss (X) ALAE(Y) 0.25 0.25 0.25 0.25 0.5 0.5 0.75 0.75 0.75 1 1 1 1 1 1.25 1.25 1.25 1.25 1.25 1.5 1.5 1.5 2 2 2 4 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 c^ b Loss (X) ALAE(Y) 0.25 0.25 0.5 0.5 0.75 0.751 1 1.25 1.25 1.5 1.5 2 2 0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.81.0 c^ p Loss (X) ALAE(Y) 0.25 0.25 0.25 0.25 0.5 0.5 0.75 0.75 1 1 1 1.25 1.25 1.25 1.25 1.5 1.5 1.5 2 2 4 25
  • 26. Arthur CHARPENTIER - Probit transformation for nonparametric kernel estimation of the copula Simulation Study M = 1, 000 independent random samples {(Ui, Vi)}n i=1 of sizes n = 200, n = 500 and n = 1000 were generated from each of the following copulas: · the independence copula (i.e., Ui’s and Vi’s drawn independently); · the Gaussian copula, with parameters ρ = 0.31, ρ = 0.59 and ρ = 0.81; · the Student t-copula with 4 degrees of freedom, with parameters ρ = 0.31, ρ = 0.59 and ρ = 0.81; · the Frank copula, with parameter θ = 1.86, θ = 4.16 and θ = 7.93; · the Gumbel copula, with parameter θ = 1.25, θ = 1.67 and θ = 2.5; · the Clayton copula, with parameter θ = 0.5, θ = 1.67 and θ = 2.5. (approximated) MISE relative to the MISE of the mirror-reflection estimator (last column), n = 1000. Bold values show the minimum MISE for the corresponding copula (non-significantly different values are highlighted as well). 26
  • 27. Arthur CHARPENTIER - Probit transformation for nonparametric kernel estimation of the copula n = 1000 ˆc(τ) ˆc(τam) ˜c(τ,1) ˜c(τ,2) ˆc (β) 1 ˆc (β) 2 ˆc (B) 1 ˆc (B) 2 ˆc (p) 1 ˆc (p) 2 ˆc (p) 3 Indep 3.57 2.80 2.89 1.40 7.96 11.65 1.69 3.43 1.62 0.50 0.14 Gauss2 2.03 1.52 1.60 0.76 4.63 6.06 1.10 1.82 0.98 0.66 0.89 Gauss4 0.63 0.49 0.44 0.21 1.72 1.60 0.75 0.58 0.62 0.99 2.93 Gauss6 0.21 0.20 0.11 0.05 0.74 0.33 0.77 0.37 0.72 1.21 2.83 Std(4)2 0.61 0.56 0.50 0.40 1.57 1.80 0.78 0.67 0.75 1.01 1.88 Std(4)4 0.21 0.27 0.17 0.15 0.88 0.51 0.75 0.42 0.75 1.12 2.07 Std(4)6 0.09 0.17 0.08 0.09 0.70 0.19 0.82 0.47 0.90 1.17 1.90 Frank2 3.31 2.42 2.57 1.35 7.16 9.63 1.70 2.95 1.31 0.45 0.49 Frank4 2.35 1.45 1.51 0.99 4.42 4.89 1.49 1.65 0.60 0.72 6.14 Frank6 0.96 0.52 0.45 0.44 1.51 1.19 1.35 0.76 0.65 1.58 7.25 Gumbel2 0.65 0.62 0.56 0.43 1.77 1.97 0.82 0.75 0.83 1.03 1.52 Gumbel4 0.18 0.28 0.16 0.19 0.89 0.41 0.78 0.47 0.81 1.10 1.78 Gumbel6 0.09 0.21 0.10 0.15 0.78 0.29 0.85 0.58 0.94 1.12 1.63 Clayton2 0.63 0.60 0.51 0.34 1.78 1.99 0.78 0.70 0.79 1.04 1.79 Clayton4 0.11 0.26 0.10 0.15 0.79 0.27 0.83 0.56 0.90 1.10 1.50 Clayton6 0.11 0.28 0.08 0.15 0.82 0.35 0.88 0.67 0.96 1.09 1.36 27