SlideShare a Scribd company logo
2
Most read
4
Most read
5
Most read
Arthur CHARPENTIER - Quantile and Expectile Regression Models
Quantile and Expectile Regression Models
A. Charpentier (Université de Rennes 1)
with A.D. Barry & K. Oualkacha (UQàM)
ESC Rennes, December 2016.
http://freakonometrics.hypotheses.org
@freakonometrics 1
Arthur CHARPENTIER - Quantile and Expectile Regression Models
Mediane/Quantiles ( 1-norm)
Empirical median m(y) is solution of
m(y) = argmin
θ ∈ R
1
n
n
i=1
1
2
|yi − θ|
=rQ
1/2
(yi−θ)
.
Empirical quantile q(α, y) is solution of
q(α, y) = argmin
θ ∈ R
1
n
n
i=1
rQ
α (yi − θ) ,
with rQ
α (u) = |α − 1(u ≤ 0)| · |u|.
−2 −1 0 1 2
@freakonometrics 2
Arthur CHARPENTIER - Quantile and Expectile Regression Models
Quantiles
Consider Y ∼ F, and a level α ∈ (0, 1), then q(α, Y ) = inf{y; FY (y) ≥ α}.
Equivalently
q(α, Y ) = argmin
θ ∈ R
E αQ
(Y − θ) , with rQ
α (u) = |α − 1(u ≤ 0)| · |u|
The empirical version, with a sample y = {y1, · · · , yn}, is
q(α, y) = argmin
θ ∈ R
1
n
n
i=1
rQ
α (yi − θ) .
The conditional α-quantile of Y |x is q(α, Y, x) = inf{y; FY |x(y) ≥ α}. Assuming
that F−1
Y |x(α) = xT
i βQ
(α), quantile regression parameters are obtained from
sample (y, X) = {(y1, x1), · · · , (yn, xn)} as
β
Q
(α, y, X) = argmin
β ∈ Rp
1
n
n
i=1
rQ
α (yi − xT
i βQ
(α)) .
@freakonometrics 3
Arthur CHARPENTIER - Quantile and Expectile Regression Models
Expected value/Expectiles ( 2-norm)
Empirical meam y is solution of
y = argmin
θ ∈ R
1
n
n
i=1
1
2
[yi − θ]2
=rE
1/2
(yi−θ)
.
Empirical expectile µ(τ, y) is solution of
µ(τ, y) = argmin
θ ∈ R
1
n
n
i=1
rE
τ (yi − θ) ,
with rE
τ (u) = |τ − 1(u ≤ 0)| · u2
.
See −2 −1 0 1 2
@freakonometrics 4
Arthur CHARPENTIER - Quantile and Expectile Regression Models
Expectiles
Consider Y ∼ F, and a level τ ∈ (0, 1),
µ(τ, Y ) = argmin
θ ∈ R
E{rE
τ (Y − θ)} with rE
τ (u) = |τ − 1(u ≤ 0)| · u2
.
The empirical version, with a sample y = {y1, · · · , yn} is
µ(τ, y) = argmin
θ ∈ R
1
n
n
i=1
rE
τ (yi − θ) .
The conditional τ-expectile of Y |x is
µ(τ, Y, x) = argmin
θ ∈ R
E{rE
τ (Y − θ)|x},
and assuming that µ(τ, x) = xTβE
(τ), parameters of the expectile regression are
β
E
(τ, y, X) = argmin
β ∈ Rp
1
n
n
i=1
rE
τ (yi − xiTβE
(τ)) .
@freakonometrics 5
Arthur CHARPENTIER - Quantile and Expectile Regression Models
Quantiles and Expectiles
Observe that q(α, Y ) is solution of
α = F(q(α, Y )) = E[1(Y < q(α, Y ))]
while µ(τ, Y ) is solution of
τ =
E[|Y − µ(τ, Y )| · 1{Y < µ(τ, Y )}]
E[|Y − µ(τ, Y )|]
@freakonometrics 6
Arthur CHARPENTIER - Quantile and Expectile Regression Models
Quantile Regression with Fixed Effects (QRFE)
In a panel linear regression model, yi,t = xT
i,tβ + ui + εi,t,
where u is an unobserved individual specific effect.
In a fixed effects models, u is treated as a parameter. Quantile Regression is
min
β,u



i,t
rQ
α (yi,t − [xT
i,tβ + ui])



Consider Penalized QRFE, as in Koenker & Bilias (2001),
min
β1,··· ,βκ,u



k,i,t
ωkrQ
αk
(yi,t − [xT
i,tβk + ui]) + λ
i
|ui|



where ωk is a relative weight associated with quantile of level αk.
@freakonometrics 7
Arthur CHARPENTIER - Quantile and Expectile Regression Models
Quantile Regression with Random Effects (QRRE)
Assume here that yi,t = xT
i,tβ + ui + εi,t
=ηi,t
.
Quantile Regression Random Effect (QRRE) yields solving
min
β



i,t
rQ
α (yi,t − xT
i,tβ)



which is a weighted assymmetric least square deviation estimator.
Let Σ = [σs,t(α)] denote the matrix
σts(α) =



α(1 − α) if t = s
E[1{εit(α) < 0, εis(α) < 0}] − α2
if t = s
If (nT)−1
XT
{In ⊗ΣT ×T (α)}X → D0 as n → ∞ and (nT)−1
XT
Ωf X = D1, then
√
nT β
Q
(α) − βQ
(α)
L
−→ N 0, D−1
1 D0D−1
1 .
@freakonometrics 8
Arthur CHARPENTIER - Quantile and Expectile Regression Models
Expectile Regression with Random Effects (ERRE)
Quantile Regression Random Effect (QRRE) yields solving
min
β



i,t
rE
α (yi,t − xT
i,tβ)



One can prove that
β
E
(τ) =
n
i=1
T
t=1
ωi,t(τ)xitxT
it
−1 n
i=1
T
t=1
ωi,t(τ)xityit ,
where ωit(τ) = |τ − 1(yit < xT
itβ
E
(τ))|.
@freakonometrics 9
Arthur CHARPENTIER - Quantile and Expectile Regression Models
Expectile Regression with Random Effects (ERRE)
If W = diag(ω11(τ), . . . ωnT (τ)), set
W = E(W), H = XT
WX and Σ = XT
E(WεεT
W)X.
and then
√
nT β
E
(τ) − βE
(τ)
L
−→ N(0, H−1
ΣH−1
).
@freakonometrics 10
Arthur CHARPENTIER - Quantile and Expectile Regression Models
Application to Real Data
@freakonometrics 11

More Related Content

PPTX
Analytic function
PDF
DSP_FOEHU - MATLAB 01 - Discrete Time Signals and Systems
PPTX
Gram-Schmidt process
PPTX
効果検証入門#1 セレクションバイアスとRCT
PDF
クラシックな機械学習の入門 6. 最適化と学習アルゴリズム
PPT
inverse z-transform ppt
PPTX
parametric method of power spectrum Estimation
PDF
Dcs lec02 - z-transform
Analytic function
DSP_FOEHU - MATLAB 01 - Discrete Time Signals and Systems
Gram-Schmidt process
効果検証入門#1 セレクションバイアスとRCT
クラシックな機械学習の入門 6. 最適化と学習アルゴリズム
inverse z-transform ppt
parametric method of power spectrum Estimation
Dcs lec02 - z-transform

What's hot (20)

PDF
Homotopy法による非線形方程式の解法
PDF
Interference_ppt_2.2 (1).pdf
PDF
Kapur, J. N - Mathematical Modelling ..pdf
PDF
Distributed Stochastic Gradient MCMC
PPTX
EC8352- Signals and Systems - Unit 2 - Fourier transform
PDF
Complex function
PPTX
Properties of Fourier transform
PDF
EC202 SIGNALS & SYSTEMS PREVIOUS QUESTION PAPER
PPTX
Applications of differential equation in Physics and Biology
PDF
FPDE presentation
PDF
Fractional calculus and applications
PPT
Engineering Mathematics - Total derivatives, chain rule and derivative of imp...
PPT
Introduction To Filters.ppt
PPTX
IIR filter
PPTX
Fourier series
PPT
fourier transforms
PPT
Use Of DFT In Power Spectral Estimation
PPSX
Backstepping control of cart pole system
PPT
First order non-linear partial differential equation & its applications
PPTX
Conformal Mapping - Introduction & Examples
Homotopy法による非線形方程式の解法
Interference_ppt_2.2 (1).pdf
Kapur, J. N - Mathematical Modelling ..pdf
Distributed Stochastic Gradient MCMC
EC8352- Signals and Systems - Unit 2 - Fourier transform
Complex function
Properties of Fourier transform
EC202 SIGNALS & SYSTEMS PREVIOUS QUESTION PAPER
Applications of differential equation in Physics and Biology
FPDE presentation
Fractional calculus and applications
Engineering Mathematics - Total derivatives, chain rule and derivative of imp...
Introduction To Filters.ppt
IIR filter
Fourier series
fourier transforms
Use Of DFT In Power Spectral Estimation
Backstepping control of cart pole system
First order non-linear partial differential equation & its applications
Conformal Mapping - Introduction & Examples
Ad

Viewers also liked (20)

PDF
Testing for Extreme Volatility Transmission
PDF
Slides econometrics-2017-graduate-2
PDF
Econometrics 2017-graduate-3
PDF
Econometrics, PhD Course, #1 Nonlinearities
PDF
Slides ensae-2016-7
PDF
Slides ensae-2016-5
PDF
Slides ensae-2016-6
PDF
Slides ensae-2016-9
PDF
Slides ensae-2016-8
PDF
Graduate Econometrics Course, part 4, 2017
PDF
Slides ensae-2016-10
PDF
Slides inequality 2017
PDF
Slides ensae-2016-11
PDF
Natural Disaster Risk Management
PDF
Classification
PDF
Slides barcelona Machine Learning
PDF
Pricing Game, 100% Data Sciences
PDF
Slides ensae-2016-4
PDF
Slides big-data-laval
Testing for Extreme Volatility Transmission
Slides econometrics-2017-graduate-2
Econometrics 2017-graduate-3
Econometrics, PhD Course, #1 Nonlinearities
Slides ensae-2016-7
Slides ensae-2016-5
Slides ensae-2016-6
Slides ensae-2016-9
Slides ensae-2016-8
Graduate Econometrics Course, part 4, 2017
Slides ensae-2016-10
Slides inequality 2017
Slides ensae-2016-11
Natural Disaster Risk Management
Classification
Slides barcelona Machine Learning
Pricing Game, 100% Data Sciences
Slides ensae-2016-4
Slides big-data-laval
Ad

Similar to Quantile and Expectile Regression (20)

PDF
Slides erasmus
PDF
Slides ACTINFO 2016
PDF
Slides erm-cea-ia
PDF
Slides erm-cea-ia
PDF
Appendix to MLPI Lecture 2 - Monte Carlo Methods (Basics)
PDF
Existance Theory for First Order Nonlinear Random Dfferential Equartion
PDF
SIAMSEAS2015
PDF
Slides econometrics-2018-graduate-4
PDF
Slides mc gill-v3
PDF
Approximate Bayesian Computation with Quasi-Likelihoods
PDF
Slides mc gill-v4
PPTX
orthogonal.pptx
PDF
Slides univ-van-amsterdam
PDF
The feedback-control-for-distributed-systems
PDF
Bayesian computation with INLA
PDF
Basic concepts and how to measure price volatility
PDF
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
PDF
Talk in BayesComp 2018
PDF
Slides compiegne
Slides erasmus
Slides ACTINFO 2016
Slides erm-cea-ia
Slides erm-cea-ia
Appendix to MLPI Lecture 2 - Monte Carlo Methods (Basics)
Existance Theory for First Order Nonlinear Random Dfferential Equartion
SIAMSEAS2015
Slides econometrics-2018-graduate-4
Slides mc gill-v3
Approximate Bayesian Computation with Quasi-Likelihoods
Slides mc gill-v4
orthogonal.pptx
Slides univ-van-amsterdam
The feedback-control-for-distributed-systems
Bayesian computation with INLA
Basic concepts and how to measure price volatility
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
Talk in BayesComp 2018
Slides compiegne

More from Arthur Charpentier (20)

PDF
Family History and Life Insurance
PDF
ACT6100 introduction
PDF
Family History and Life Insurance (UConn actuarial seminar)
PDF
Control epidemics
PDF
STT5100 Automne 2020, introduction
PDF
Family History and Life Insurance
PDF
Machine Learning in Actuarial Science & Insurance
PDF
Reinforcement Learning in Economics and Finance
PDF
Optimal Control and COVID-19
PDF
Slides OICA 2020
PDF
Lausanne 2019 #3
PDF
Lausanne 2019 #4
PDF
Lausanne 2019 #2
PDF
Lausanne 2019 #1
PDF
Side 2019 #10
PDF
Side 2019 #11
PDF
Side 2019 #12
PDF
Side 2019 #9
PDF
Side 2019 #8
PDF
Side 2019 #7
Family History and Life Insurance
ACT6100 introduction
Family History and Life Insurance (UConn actuarial seminar)
Control epidemics
STT5100 Automne 2020, introduction
Family History and Life Insurance
Machine Learning in Actuarial Science & Insurance
Reinforcement Learning in Economics and Finance
Optimal Control and COVID-19
Slides OICA 2020
Lausanne 2019 #3
Lausanne 2019 #4
Lausanne 2019 #2
Lausanne 2019 #1
Side 2019 #10
Side 2019 #11
Side 2019 #12
Side 2019 #9
Side 2019 #8
Side 2019 #7

Recently uploaded (20)

PDF
TR - Agricultural Crops Production NC III.pdf
PDF
VCE English Exam - Section C Student Revision Booklet
PDF
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
PDF
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
PDF
O7-L3 Supply Chain Operations - ICLT Program
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PDF
Microbial disease of the cardiovascular and lymphatic systems
PDF
Complications of Minimal Access Surgery at WLH
PPTX
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
PPTX
Pharma ospi slides which help in ospi learning
PDF
Supply Chain Operations Speaking Notes -ICLT Program
PPTX
BOWEL ELIMINATION FACTORS AFFECTING AND TYPES
PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PPTX
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PPTX
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
PPTX
human mycosis Human fungal infections are called human mycosis..pptx
PPTX
Renaissance Architecture: A Journey from Faith to Humanism
PPTX
Cell Types and Its function , kingdom of life
PPTX
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
TR - Agricultural Crops Production NC III.pdf
VCE English Exam - Section C Student Revision Booklet
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
O7-L3 Supply Chain Operations - ICLT Program
Final Presentation General Medicine 03-08-2024.pptx
Microbial disease of the cardiovascular and lymphatic systems
Complications of Minimal Access Surgery at WLH
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
Pharma ospi slides which help in ospi learning
Supply Chain Operations Speaking Notes -ICLT Program
BOWEL ELIMINATION FACTORS AFFECTING AND TYPES
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
Module 4: Burden of Disease Tutorial Slides S2 2025
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
human mycosis Human fungal infections are called human mycosis..pptx
Renaissance Architecture: A Journey from Faith to Humanism
Cell Types and Its function , kingdom of life
school management -TNTEU- B.Ed., Semester II Unit 1.pptx

Quantile and Expectile Regression

  • 1. Arthur CHARPENTIER - Quantile and Expectile Regression Models Quantile and Expectile Regression Models A. Charpentier (Université de Rennes 1) with A.D. Barry & K. Oualkacha (UQàM) ESC Rennes, December 2016. http://freakonometrics.hypotheses.org @freakonometrics 1
  • 2. Arthur CHARPENTIER - Quantile and Expectile Regression Models Mediane/Quantiles ( 1-norm) Empirical median m(y) is solution of m(y) = argmin θ ∈ R 1 n n i=1 1 2 |yi − θ| =rQ 1/2 (yi−θ) . Empirical quantile q(α, y) is solution of q(α, y) = argmin θ ∈ R 1 n n i=1 rQ α (yi − θ) , with rQ α (u) = |α − 1(u ≤ 0)| · |u|. −2 −1 0 1 2 @freakonometrics 2
  • 3. Arthur CHARPENTIER - Quantile and Expectile Regression Models Quantiles Consider Y ∼ F, and a level α ∈ (0, 1), then q(α, Y ) = inf{y; FY (y) ≥ α}. Equivalently q(α, Y ) = argmin θ ∈ R E αQ (Y − θ) , with rQ α (u) = |α − 1(u ≤ 0)| · |u| The empirical version, with a sample y = {y1, · · · , yn}, is q(α, y) = argmin θ ∈ R 1 n n i=1 rQ α (yi − θ) . The conditional α-quantile of Y |x is q(α, Y, x) = inf{y; FY |x(y) ≥ α}. Assuming that F−1 Y |x(α) = xT i βQ (α), quantile regression parameters are obtained from sample (y, X) = {(y1, x1), · · · , (yn, xn)} as β Q (α, y, X) = argmin β ∈ Rp 1 n n i=1 rQ α (yi − xT i βQ (α)) . @freakonometrics 3
  • 4. Arthur CHARPENTIER - Quantile and Expectile Regression Models Expected value/Expectiles ( 2-norm) Empirical meam y is solution of y = argmin θ ∈ R 1 n n i=1 1 2 [yi − θ]2 =rE 1/2 (yi−θ) . Empirical expectile µ(τ, y) is solution of µ(τ, y) = argmin θ ∈ R 1 n n i=1 rE τ (yi − θ) , with rE τ (u) = |τ − 1(u ≤ 0)| · u2 . See −2 −1 0 1 2 @freakonometrics 4
  • 5. Arthur CHARPENTIER - Quantile and Expectile Regression Models Expectiles Consider Y ∼ F, and a level τ ∈ (0, 1), µ(τ, Y ) = argmin θ ∈ R E{rE τ (Y − θ)} with rE τ (u) = |τ − 1(u ≤ 0)| · u2 . The empirical version, with a sample y = {y1, · · · , yn} is µ(τ, y) = argmin θ ∈ R 1 n n i=1 rE τ (yi − θ) . The conditional τ-expectile of Y |x is µ(τ, Y, x) = argmin θ ∈ R E{rE τ (Y − θ)|x}, and assuming that µ(τ, x) = xTβE (τ), parameters of the expectile regression are β E (τ, y, X) = argmin β ∈ Rp 1 n n i=1 rE τ (yi − xiTβE (τ)) . @freakonometrics 5
  • 6. Arthur CHARPENTIER - Quantile and Expectile Regression Models Quantiles and Expectiles Observe that q(α, Y ) is solution of α = F(q(α, Y )) = E[1(Y < q(α, Y ))] while µ(τ, Y ) is solution of τ = E[|Y − µ(τ, Y )| · 1{Y < µ(τ, Y )}] E[|Y − µ(τ, Y )|] @freakonometrics 6
  • 7. Arthur CHARPENTIER - Quantile and Expectile Regression Models Quantile Regression with Fixed Effects (QRFE) In a panel linear regression model, yi,t = xT i,tβ + ui + εi,t, where u is an unobserved individual specific effect. In a fixed effects models, u is treated as a parameter. Quantile Regression is min β,u    i,t rQ α (yi,t − [xT i,tβ + ui])    Consider Penalized QRFE, as in Koenker & Bilias (2001), min β1,··· ,βκ,u    k,i,t ωkrQ αk (yi,t − [xT i,tβk + ui]) + λ i |ui|    where ωk is a relative weight associated with quantile of level αk. @freakonometrics 7
  • 8. Arthur CHARPENTIER - Quantile and Expectile Regression Models Quantile Regression with Random Effects (QRRE) Assume here that yi,t = xT i,tβ + ui + εi,t =ηi,t . Quantile Regression Random Effect (QRRE) yields solving min β    i,t rQ α (yi,t − xT i,tβ)    which is a weighted assymmetric least square deviation estimator. Let Σ = [σs,t(α)] denote the matrix σts(α) =    α(1 − α) if t = s E[1{εit(α) < 0, εis(α) < 0}] − α2 if t = s If (nT)−1 XT {In ⊗ΣT ×T (α)}X → D0 as n → ∞ and (nT)−1 XT Ωf X = D1, then √ nT β Q (α) − βQ (α) L −→ N 0, D−1 1 D0D−1 1 . @freakonometrics 8
  • 9. Arthur CHARPENTIER - Quantile and Expectile Regression Models Expectile Regression with Random Effects (ERRE) Quantile Regression Random Effect (QRRE) yields solving min β    i,t rE α (yi,t − xT i,tβ)    One can prove that β E (τ) = n i=1 T t=1 ωi,t(τ)xitxT it −1 n i=1 T t=1 ωi,t(τ)xityit , where ωit(τ) = |τ − 1(yit < xT itβ E (τ))|. @freakonometrics 9
  • 10. Arthur CHARPENTIER - Quantile and Expectile Regression Models Expectile Regression with Random Effects (ERRE) If W = diag(ω11(τ), . . . ωnT (τ)), set W = E(W), H = XT WX and Σ = XT E(WεεT W)X. and then √ nT β E (τ) − βE (τ) L −→ N(0, H−1 ΣH−1 ). @freakonometrics 10
  • 11. Arthur CHARPENTIER - Quantile and Expectile Regression Models Application to Real Data @freakonometrics 11