SlideShare a Scribd company logo
Arthur CHARPENTIER - Optimal reinsurance with ruin probability target
Optimal reinsurance with ruin probability target
Arthur Charpentier
7th International Workshop on Rare Event Simulation, Sept. 2008
http ://blogperso.univ-rennes1.fr/arthur.charpentier/
1
Arthur CHARPENTIER - Optimal reinsurance with ruin probability target
Ruin, solvency and reinsurance
“reinsurance plays an important role in reducing the risk in an insurance
portfolio.”
Goovaerts & Vyncke (2004). Reinsurance Forms in Encyclopedia of Actuarial
Science.
“reinsurance is able to offer additional underwriting capacity for cedants, but also
to reduce the probability of a direct insurer’s ruin .”
Engelmann & Kipp (1995). Reinsurance. in Encyclopaedia of Financial
Engineering and Risk Management.
2
Arthur CHARPENTIER - Optimal reinsurance with ruin probability target
Proportional Reinsurance (Quota-Share)
• claim loss X : αX paid by the cedant, (1 − α)X paid by the reinsurer,
• premium P : αP kept by the cedant, (1 − α)P transfered to the reinsurer,
Nonproportional Reinsurance (Excess-of-Loss)
• claim loss X : min{X, u} paid by the cedant, max{0, X − u} paid by the
reinsurer,
• premium P : Pu kept by the cedant, P − Pu transfered to the reinsurer,
3
Arthur CHARPENTIER - Optimal reinsurance with ruin probability target
Proportional versus nonproportional reinsurance
claim 1 claim 2 claim 3 claim 4 claim 5
reinsurer
cedent
02468101214
Proportional reinsurance (QS)
claim 1 claim 2 claim 3 claim 4 claim 5
reinsurer
cedent
02468101214
Nonproportional reinsurance (XL)
Fig. 1 – Reinsurance mechanism for claims indemnity, proportional versus non-
proportional treaties.
4
Arthur CHARPENTIER - Optimal reinsurance with ruin probability target
Mathematical framework
Classical Cram´er-Lundberg framework :
• claims arrival is driven by an homogeneous Poisson process, Nt ∼ P(λt),
• durations between consecutive arrivals Ti+1 − Ti are independent E(λ),
• claims size X1, · · · , Xn, · · · are i.i.d. non-negative random variables,
independent of claims arrival.
Let Yt =
Nt
i=1
Xi denote the aggregate amount of claims during period [0, t].
5
Arthur CHARPENTIER - Optimal reinsurance with ruin probability target
Premium
The pure premium required over period [0, t] is
πt = E(Yt) = E(Nt)E(X) = λE(X)
π
t.
Note that more general premiums can be considered, e.g.
• safety loading proportional to the pure premium, πt = [1 + λ] · E(Yt),
• safety loading proportional to the variance, πt = E(Yt) + λ · V ar(Yt),
•
safety loading proportional to the standard deviation, πt = E(Yt) + λ · V ar(Yt),
• entropic premium (exponential expected utility) πt =
1
α
log E(eαYt
) ,
• Esscher premium πt =
E(X · eαYt
)
E(eαYt )
,
• Wang distorted premium πt =
∞
0
Φ Φ−1
(P(Yt > x)) + λ dx,
6
Arthur CHARPENTIER - Optimal reinsurance with ruin probability target
A classical solvency problem
Given a ruin probability target, e.g. 0.1%, on a give, time horizon T, find capital
u such that,
ψ(T, u) = 1 − P(u + πt ≥ Yt, ∀t ∈ [0, T])
= 1 − P(St ≥ 0∀t ∈ [0, T])
= P(inf{St} < 0) = 0.1%,
where St = u + πt − Yt denotes the insurance company surplus.
7
Arthur CHARPENTIER - Optimal reinsurance with ruin probability target
A classical solvency problem
After reinsurance, the net surplus is then
S
(θ)
t = u + π(θ)
t −
Nt
i=1
X
(θ)
i ,
where π(θ)
= E
N1
i=1
X
(θ)
i and



X
(θ)
i = θXi, θ ∈ [0, 1], for quota share treaties,
X
(θ)
i = min{θ, Xi}, θ > 0, for excess-of-loss treaties.
8
Arthur CHARPENTIER - Optimal reinsurance with ruin probability target
Classical answers : using upper bounds
Instead of targeting a ruin probability level, Centeno (1986) and Chapter 9 in
Dickson (2005) target an upper bound of the ruin probability.
In the case of light tailed claims, let γ denote the “adjustment coefficient”,
defined as the unique positive root of
λ + πγ = λMX(γ), where MX(t) = E(exp(tX)).
The Lundberg inequality states that
0 ≤ ψ(T, u) ≤ ψ(∞, u) ≤ exp[−γu] = ψCL(u).
Gerber (1976) proposed an improvement in the case of finite horizon (T < ∞).
9
Arthur CHARPENTIER - Optimal reinsurance with ruin probability target
Classical answers : using approximations u → ∞
de Vylder (1996) proposed the following approximation, assuming that
E(|X|3
) < ∞,
ψdV (u) ∼
1
1 + γ
exp −
β γ µ
1 + γ
quand u → ∞
where
γ =
2µm3
3m2
2
γ et β =
3m2
m3
.
Beekman (1969) considered
ψB (u)
1
1 + γ
[1 − Γ (u)] quand u → ∞
where Γ is the c.d.f. of the Γ(α, β) distribution
α =
1
1 + γ
1 +
4µm3
3m2
2
− 1 γ et β = 2µγ m2 +
4µm3
3m2
2
− m2 γ
−1
10
Arthur CHARPENTIER - Optimal reinsurance with ruin probability target
Classical answers : using approximations u → ∞
R´enyi - see Grandell (2000) - proposed an exponential approximation of the
convoluted distribution function
ψR (u) ∼
1
1 + γ
exp −
2µγu
m2 (1 + γ)
quand u → ∞
In the case of subexponential claims
ψSE (u) ∼
1
γµ
µ −
u
0
F (x) dx
11
Arthur CHARPENTIER - Optimal reinsurance with ruin probability target
Classical answers : using approximations u → ∞
CL dV B R SE
Exponential yes yes yes yes no
Gamma yes yes yes yes no
Weibull no yes yes yes β ∈]0, 1[
Lognormal no yes yes yes yes
Pareto no α > 3 α > 3 α > 2 yes
Burr no αγ > 3 αγ > 3 αγ > 2 yes
12
Arthur CHARPENTIER - Optimal reinsurance with ruin probability target
Proportional reinsurance (QS)
With proportional reinsurance, if 1 − α is the ceding ratio,
S
(α)
t = u + απt −
Nt
i=1
αXi = (1 − α)u + αSt
Reinsurance can always decrease ruin probability.
Assuming that there was ruin (without reinsurance) before time T, if the insurance had
ceded a proportion 1 − α∗
of its business, where
α∗
=
u
u − inf{St, t ∈ [0, T]}
,
there would have been no ruin (at least on the period [0, T]).
α∗
=
u
u − min{St, t ∈ [0, T]}
1(min{St, t ∈ [0, T]} < 0) + 1(min{St, t ∈ [0, T]} ≥ 0),
then
ψ(T, u, α) = ψ(T, u) · P(α∗
≤ α).
13
Arthur CHARPENTIER - Optimal reinsurance with ruin probability target
Proportional reinsurance (QS)
q
q
0.0 0.2 0.4 0.6 0.8 1.0
−4−2024
Time (one year)
Impact of proportional reinsurance in case of ruin
Fig. 2 – Proportional reinsurance used to decrease ruin probability, the plain line is
the brut surplus, and the dotted line the cedant surplus with a reinsurance treaty.
14
Arthur CHARPENTIER - Optimal reinsurance with ruin probability target
Proportional reinsurance (QS)
In that case, the algorithm to plot the ruin probability as a function of the reinsurance
share is simply the following
RUIN <- 0; ALPHA <- NA
for(i in 1:Nb.Simul){
T <- rexp(N,lambda); T <- T[cumsum(T)<1]; n <- length(T)
X <- r.claims(n); S <- u+premium*cumsum(T)-cumsum(X)
if(min(S)<0) { RUIN <- RUIN +1
ALPHA <- c(ALPHA,u/(u-min(S))) }
}
rate <- seq(0,1,by=.01); proportion <- rep(NA,length(rate))
for(i in 1:length(rate)){
proportion[i]=sum(ALPHA<rate[i])/length(ALPHA)
}
plot(rate,proportion*RUIN/Nb.Simul)
15
Arthur CHARPENTIER - Optimal reinsurance with ruin probability target
Proportional reinsurance (QS)
0.0 0.2 0.4 0.6 0.8 1.0
0123456
Cedent's quota share
Ruinprobability(in%)
Pareto claims
Exponential claims
Fig. 3 – Ruin probability as a function of the cedant’s share.
16
Arthur CHARPENTIER - Optimal reinsurance with ruin probability target
Proportional reinsurance (QS)
0.0 0.2 0.4 0.6 0.8 1.0
020406080100
rate
Ruinprobability(w.r.t.nonproportionalcase,in%)
1.05 (tail index of Pareto individual claims)
1.25
1.75
3
Fig. 4 – Ruin probability as a function of the cedant’s share.
17
Arthur CHARPENTIER - Optimal reinsurance with ruin probability target
Nonproportional reinsurance (QS)
With nonproportional reinsurance, if d ≥ 0 is the priority of the reinsurance contract,
the surplus process for the company is
S
(d)
t = u + π(d)
t −
Nt
i=1
min{Xi, d} where π(d)
= E(S
(d)
1 ) = E(N1) · E(min{Xi, d}).
Here the problem is that it is possible to have a lot of small claims (smaller than d), and
to have ruin with the reinsurance cover (since p(d)
< p and min{Xi, d} = Xi for all i if
claims are no very large), while there was no ruin without the reinsurance cover (see
Figure 5).
18
Arthur CHARPENTIER - Optimal reinsurance with ruin probability target
Proportional reinsurance (QS)
q
q
0.0 0.2 0.4 0.6 0.8 1.0
−2−1012345
Time (one year)
Impact of nonproportional reinsurance in case of nonruin
Fig. 5 – Case where nonproportional reinsurance can cause ruin, the plain line is
the brut surplus, and the dotted line the cedant surplus with a reinsurance treaty.
19
Arthur CHARPENTIER - Optimal reinsurance with ruin probability target
Proportional reinsurance (QS), homogeneous Poisson
0 5 10 15 20
0510152025
Deductible of the reinsurance treaty
Ruinprobability(in%)
Fig. 6 – Monte Carlo computation of ruin probabilities, where n = 100, 000 tra-
jectories are generated for each deductible.
20
Arthur CHARPENTIER - Optimal reinsurance with ruin probability target
Proportional reinsurance (QS), nonhomogeneous Poisson
0 5 10 15 20
0510152025
Deductible of the reinsurance treaty
Ruinprobability(in%)
+10%
−10%
Fig. 7 – Monte Carlo computation of ruin probabilities, where n = 100, 000 tra-
jectories are generated for each deductible.
21
Arthur CHARPENTIER - Optimal reinsurance with ruin probability target
Proportional reinsurance (QS), nonhomogeneous Poisson
0 5 10 15 20
0510152025
Deductible of the reinsurance treaty
Ruinprobability(in%)
Fig. 8 – Monte Carlo computation of ruin probabilities, where n = 100, 000 tra-
jectories are generated for each deductible.
22
Arthur CHARPENTIER - Optimal reinsurance with ruin probability target
Proportional reinsurance (QS), nonhomogeneous Poisson
0 5 10 15 20
0510152025
Deductible of the reinsurance treaty
Ruinprobability(in%)
+20%
−20%
Fig. 9 – Monte Carlo computation of ruin probabilities, where n = 100, 000 tra-
jectories are generated for each deductible.
23
Arthur CHARPENTIER - Optimal reinsurance with ruin probability target
R´ef´erences
[1] Asmussen, S. (2000). Ruin Probability. World Scientific Publishing Company.
[2] Beekmann, J.A. (1969). A ruin function approximation. Transactions of the Society
of Actuaries,21, 41-48.
[3] B¨uhlmann, H. (1970). Mathematical Methods in Risk Theory. Springer-Verlag.
[4] Burnecki, K. Mista, P. & Weron, A. (2005). Ruin Probabilities in Finite and
Infinite Time. in Statistical Tools for Finance and Insurance, C´ızek,P., H¨ardle, W.
& Weron, R. Eds., 341-380. Springer Verlag.
[5] Centeno, L. (1986). Measuring the Effects of Reinsurance by the Adjustment
Coefficient. Insurance : Mathematics and Economics 5, 169-182.
[6] Dickson, D.C.M. & Waters, H.R. (1996). Reinsurance and ruin. Insurance :
Mathematics and Economics, 19, 1, 61-80.
[7] Dickson, D.C.M. (2005). Reinsurance risk and ruin. Cambridge University Press.
24
Arthur CHARPENTIER - Optimal reinsurance with ruin probability target
[8] Engelmann, B. & Kipp, S. (1995). Reinsurance. in Peter Moles (ed.) :
Encyclopaedia of Financial Engineering and Risk Management, New York &
London : Routledge.
[9] Gerber, H.U. (1979). An Introduction to Mathematical Risk Theory. Huebner.
[10] Grandell, J. (1991). Aspects of Risk Theory. Springer Verlag.
[11] Goovaerts, M. & Vyncke, D. (2004). Reinsurance forms. in Encyclopedia of
Actuarial Science, Wiley, Vol. III , 1403-1404.
[12] Kravych, Y. (2001). On existence of insurer’s optimal excess of loss reinsurance
strategy. Proceedings of 32nd ASTIN Colloquium.
[13] de Longueville, P. (1995). Optimal reinsurance from the point of view of the excess
of loss reinsurer under the finite-time ruin criterion.
[14] de Vylder, F.E. (1996). Advanced Risk Theory. A Self-Contained Introduction.
Editions de l’Universit de Bruxelles and Swiss Association of Actuaries.
25

More Related Content

PDF
Slides edf-1
PDF
Slides angers-sfds
PDF
Slides lyon-anr
PDF
Slides ihp
PDF
Slides compiegne
PDF
Slides toulouse
PDF
Slides erm
PDF
Slides sales-forecasting-session2-web
Slides edf-1
Slides angers-sfds
Slides lyon-anr
Slides ihp
Slides compiegne
Slides toulouse
Slides erm
Slides sales-forecasting-session2-web

What's hot (20)

PDF
Slides euria-1
PDF
Slides risk-rennes
PDF
Slides univ-van-amsterdam
PDF
Slides ensae 9
PDF
Slides amsterdam-2013
PDF
Slides erasmus
PDF
Slides ensae 8
PDF
Slides edf-2
PDF
Slides astin
PDF
Slides ACTINFO 2016
PDF
Lundi 16h15-copules-charpentier
PDF
Slides ensae-2016-8
PDF
Slides dauphine
PDF
Slides ensae-2016-9
PDF
Quantile and Expectile Regression
PDF
Predictive Modeling in Insurance in the context of (possibly) big data
PDF
Proba stats-r1-2017
PDF
Sildes buenos aires
PDF
Econometrics 2017-graduate-3
Slides euria-1
Slides risk-rennes
Slides univ-van-amsterdam
Slides ensae 9
Slides amsterdam-2013
Slides erasmus
Slides ensae 8
Slides edf-2
Slides astin
Slides ACTINFO 2016
Lundi 16h15-copules-charpentier
Slides ensae-2016-8
Slides dauphine
Slides ensae-2016-9
Quantile and Expectile Regression
Predictive Modeling in Insurance in the context of (possibly) big data
Proba stats-r1-2017
Sildes buenos aires
Econometrics 2017-graduate-3
Ad

Viewers also liked (13)

PDF
Slides picard-6
PDF
Slides ensae-2016-4
PDF
So a webinar-2013-2
PDF
Pricing Game, 100% Data Sciences
PDF
Slides ensae-2016-1
PDF
Slides ensae-2016-2
PDF
Slides ensae-2016-6
PDF
Slides ensae-2016-7
PDF
Slides ensae-2016-5
PDF
Slides ensae-2016-3
PDF
Slides ensae-2016-10
PDF
Slides ensae-2016-11
PDF
Slides econometrics-2017-graduate-2
Slides picard-6
Slides ensae-2016-4
So a webinar-2013-2
Pricing Game, 100% Data Sciences
Slides ensae-2016-1
Slides ensae-2016-2
Slides ensae-2016-6
Slides ensae-2016-7
Slides ensae-2016-5
Slides ensae-2016-3
Slides ensae-2016-10
Slides ensae-2016-11
Slides econometrics-2017-graduate-2
Ad

Similar to Slides irisa (20)

PDF
Slides hec-v3
PDF
Natural Disaster Risk Management
PDF
Slides anr-jeu
PDF
Slides essec
PDF
Slides erm-cea-ia
PDF
Slides erm-cea-ia
PDF
Machine Learning in Actuarial Science & Insurance
PDF
Slides ima
PDF
Slides mevt
PDF
Slides mc gill-v3
PDF
Slides mc gill-v4
PDF
Stable_pool_optimal_allocation.pdf
PDF
Robust Optimal Reinsurance and Investment Problem with p-Thinning Dependent a...
PDF
Slides emerging-charpentier
PDF
Calisto 2016a 251116
PDF
Slides rmetrics-1
PDF
Slides edf-1
PDF
Slides ineq-4
PDF
Vidyasagar rocond09
PDF
quebec.pdf
Slides hec-v3
Natural Disaster Risk Management
Slides anr-jeu
Slides essec
Slides erm-cea-ia
Slides erm-cea-ia
Machine Learning in Actuarial Science & Insurance
Slides ima
Slides mevt
Slides mc gill-v3
Slides mc gill-v4
Stable_pool_optimal_allocation.pdf
Robust Optimal Reinsurance and Investment Problem with p-Thinning Dependent a...
Slides emerging-charpentier
Calisto 2016a 251116
Slides rmetrics-1
Slides edf-1
Slides ineq-4
Vidyasagar rocond09
quebec.pdf

More from Arthur Charpentier (20)

PDF
Family History and Life Insurance
PDF
ACT6100 introduction
PDF
Family History and Life Insurance (UConn actuarial seminar)
PDF
Control epidemics
PDF
STT5100 Automne 2020, introduction
PDF
Family History and Life Insurance
PDF
Reinforcement Learning in Economics and Finance
PDF
Optimal Control and COVID-19
PDF
Slides OICA 2020
PDF
Lausanne 2019 #3
PDF
Lausanne 2019 #4
PDF
Lausanne 2019 #2
PDF
Lausanne 2019 #1
PDF
Side 2019 #10
PDF
Side 2019 #11
PDF
Side 2019 #12
PDF
Side 2019 #9
PDF
Side 2019 #8
PDF
Side 2019 #7
PDF
Side 2019 #6
Family History and Life Insurance
ACT6100 introduction
Family History and Life Insurance (UConn actuarial seminar)
Control epidemics
STT5100 Automne 2020, introduction
Family History and Life Insurance
Reinforcement Learning in Economics and Finance
Optimal Control and COVID-19
Slides OICA 2020
Lausanne 2019 #3
Lausanne 2019 #4
Lausanne 2019 #2
Lausanne 2019 #1
Side 2019 #10
Side 2019 #11
Side 2019 #12
Side 2019 #9
Side 2019 #8
Side 2019 #7
Side 2019 #6

Recently uploaded (20)

PDF
ECONOMICS AND ENTREPRENEURS LESSONSS AND
PDF
1a In Search of the Numbers ssrn 1488130 Oct 2009.pdf
PPTX
Session 11-13. Working Capital Management and Cash Budget.pptx
PPTX
social-studies-subject-for-high-school-globalization.pptx
PDF
NAPF_RESPONSE_TO_THE_PENSIONS_COMMISSION_8 _2_.pdf
PDF
Chapter 9 IFRS Ed-Ed4_2020 Intermediate Accounting
PPTX
OAT_ORI_Fed Independence_August 2025.pptx
PPTX
kyc aml guideline a detailed pt onthat.pptx
PDF
ECONOMICS AND ENTREPRENEURS LESSONSS AND
PPTX
FL INTRODUCTION TO AGRIBUSINESS CHAPTER 1
PDF
Unkipdf.pdf of work in the economy we are
DOCX
BUSINESS PERFORMANCE SITUATION AND PERFORMANCE EVALUATION OF FELIX HOTEL IN H...
PDF
ABriefOverviewComparisonUCP600_ISP8_URDG_758.pdf
PDF
HCWM AND HAI FOR BHCM STUDENTS(1).Pdf and ptts
PDF
6a Transition Through Old Age in a Dynamic Retirement Distribution Model JFP ...
PPTX
EABDM Slides for Indifference curve.pptx
PDF
Corporate Finance Fundamentals - Course Presentation.pdf
PPT
E commerce busin and some important issues
PDF
Lecture1.pdf buss1040 uses economics introduction
PPTX
Maths science sst hindi english cucumber
ECONOMICS AND ENTREPRENEURS LESSONSS AND
1a In Search of the Numbers ssrn 1488130 Oct 2009.pdf
Session 11-13. Working Capital Management and Cash Budget.pptx
social-studies-subject-for-high-school-globalization.pptx
NAPF_RESPONSE_TO_THE_PENSIONS_COMMISSION_8 _2_.pdf
Chapter 9 IFRS Ed-Ed4_2020 Intermediate Accounting
OAT_ORI_Fed Independence_August 2025.pptx
kyc aml guideline a detailed pt onthat.pptx
ECONOMICS AND ENTREPRENEURS LESSONSS AND
FL INTRODUCTION TO AGRIBUSINESS CHAPTER 1
Unkipdf.pdf of work in the economy we are
BUSINESS PERFORMANCE SITUATION AND PERFORMANCE EVALUATION OF FELIX HOTEL IN H...
ABriefOverviewComparisonUCP600_ISP8_URDG_758.pdf
HCWM AND HAI FOR BHCM STUDENTS(1).Pdf and ptts
6a Transition Through Old Age in a Dynamic Retirement Distribution Model JFP ...
EABDM Slides for Indifference curve.pptx
Corporate Finance Fundamentals - Course Presentation.pdf
E commerce busin and some important issues
Lecture1.pdf buss1040 uses economics introduction
Maths science sst hindi english cucumber

Slides irisa

  • 1. Arthur CHARPENTIER - Optimal reinsurance with ruin probability target Optimal reinsurance with ruin probability target Arthur Charpentier 7th International Workshop on Rare Event Simulation, Sept. 2008 http ://blogperso.univ-rennes1.fr/arthur.charpentier/ 1
  • 2. Arthur CHARPENTIER - Optimal reinsurance with ruin probability target Ruin, solvency and reinsurance “reinsurance plays an important role in reducing the risk in an insurance portfolio.” Goovaerts & Vyncke (2004). Reinsurance Forms in Encyclopedia of Actuarial Science. “reinsurance is able to offer additional underwriting capacity for cedants, but also to reduce the probability of a direct insurer’s ruin .” Engelmann & Kipp (1995). Reinsurance. in Encyclopaedia of Financial Engineering and Risk Management. 2
  • 3. Arthur CHARPENTIER - Optimal reinsurance with ruin probability target Proportional Reinsurance (Quota-Share) • claim loss X : αX paid by the cedant, (1 − α)X paid by the reinsurer, • premium P : αP kept by the cedant, (1 − α)P transfered to the reinsurer, Nonproportional Reinsurance (Excess-of-Loss) • claim loss X : min{X, u} paid by the cedant, max{0, X − u} paid by the reinsurer, • premium P : Pu kept by the cedant, P − Pu transfered to the reinsurer, 3
  • 4. Arthur CHARPENTIER - Optimal reinsurance with ruin probability target Proportional versus nonproportional reinsurance claim 1 claim 2 claim 3 claim 4 claim 5 reinsurer cedent 02468101214 Proportional reinsurance (QS) claim 1 claim 2 claim 3 claim 4 claim 5 reinsurer cedent 02468101214 Nonproportional reinsurance (XL) Fig. 1 – Reinsurance mechanism for claims indemnity, proportional versus non- proportional treaties. 4
  • 5. Arthur CHARPENTIER - Optimal reinsurance with ruin probability target Mathematical framework Classical Cram´er-Lundberg framework : • claims arrival is driven by an homogeneous Poisson process, Nt ∼ P(λt), • durations between consecutive arrivals Ti+1 − Ti are independent E(λ), • claims size X1, · · · , Xn, · · · are i.i.d. non-negative random variables, independent of claims arrival. Let Yt = Nt i=1 Xi denote the aggregate amount of claims during period [0, t]. 5
  • 6. Arthur CHARPENTIER - Optimal reinsurance with ruin probability target Premium The pure premium required over period [0, t] is πt = E(Yt) = E(Nt)E(X) = λE(X) π t. Note that more general premiums can be considered, e.g. • safety loading proportional to the pure premium, πt = [1 + λ] · E(Yt), • safety loading proportional to the variance, πt = E(Yt) + λ · V ar(Yt), • safety loading proportional to the standard deviation, πt = E(Yt) + λ · V ar(Yt), • entropic premium (exponential expected utility) πt = 1 α log E(eαYt ) , • Esscher premium πt = E(X · eαYt ) E(eαYt ) , • Wang distorted premium πt = ∞ 0 Φ Φ−1 (P(Yt > x)) + λ dx, 6
  • 7. Arthur CHARPENTIER - Optimal reinsurance with ruin probability target A classical solvency problem Given a ruin probability target, e.g. 0.1%, on a give, time horizon T, find capital u such that, ψ(T, u) = 1 − P(u + πt ≥ Yt, ∀t ∈ [0, T]) = 1 − P(St ≥ 0∀t ∈ [0, T]) = P(inf{St} < 0) = 0.1%, where St = u + πt − Yt denotes the insurance company surplus. 7
  • 8. Arthur CHARPENTIER - Optimal reinsurance with ruin probability target A classical solvency problem After reinsurance, the net surplus is then S (θ) t = u + π(θ) t − Nt i=1 X (θ) i , where π(θ) = E N1 i=1 X (θ) i and    X (θ) i = θXi, θ ∈ [0, 1], for quota share treaties, X (θ) i = min{θ, Xi}, θ > 0, for excess-of-loss treaties. 8
  • 9. Arthur CHARPENTIER - Optimal reinsurance with ruin probability target Classical answers : using upper bounds Instead of targeting a ruin probability level, Centeno (1986) and Chapter 9 in Dickson (2005) target an upper bound of the ruin probability. In the case of light tailed claims, let γ denote the “adjustment coefficient”, defined as the unique positive root of λ + πγ = λMX(γ), where MX(t) = E(exp(tX)). The Lundberg inequality states that 0 ≤ ψ(T, u) ≤ ψ(∞, u) ≤ exp[−γu] = ψCL(u). Gerber (1976) proposed an improvement in the case of finite horizon (T < ∞). 9
  • 10. Arthur CHARPENTIER - Optimal reinsurance with ruin probability target Classical answers : using approximations u → ∞ de Vylder (1996) proposed the following approximation, assuming that E(|X|3 ) < ∞, ψdV (u) ∼ 1 1 + γ exp − β γ µ 1 + γ quand u → ∞ where γ = 2µm3 3m2 2 γ et β = 3m2 m3 . Beekman (1969) considered ψB (u) 1 1 + γ [1 − Γ (u)] quand u → ∞ where Γ is the c.d.f. of the Γ(α, β) distribution α = 1 1 + γ 1 + 4µm3 3m2 2 − 1 γ et β = 2µγ m2 + 4µm3 3m2 2 − m2 γ −1 10
  • 11. Arthur CHARPENTIER - Optimal reinsurance with ruin probability target Classical answers : using approximations u → ∞ R´enyi - see Grandell (2000) - proposed an exponential approximation of the convoluted distribution function ψR (u) ∼ 1 1 + γ exp − 2µγu m2 (1 + γ) quand u → ∞ In the case of subexponential claims ψSE (u) ∼ 1 γµ µ − u 0 F (x) dx 11
  • 12. Arthur CHARPENTIER - Optimal reinsurance with ruin probability target Classical answers : using approximations u → ∞ CL dV B R SE Exponential yes yes yes yes no Gamma yes yes yes yes no Weibull no yes yes yes β ∈]0, 1[ Lognormal no yes yes yes yes Pareto no α > 3 α > 3 α > 2 yes Burr no αγ > 3 αγ > 3 αγ > 2 yes 12
  • 13. Arthur CHARPENTIER - Optimal reinsurance with ruin probability target Proportional reinsurance (QS) With proportional reinsurance, if 1 − α is the ceding ratio, S (α) t = u + απt − Nt i=1 αXi = (1 − α)u + αSt Reinsurance can always decrease ruin probability. Assuming that there was ruin (without reinsurance) before time T, if the insurance had ceded a proportion 1 − α∗ of its business, where α∗ = u u − inf{St, t ∈ [0, T]} , there would have been no ruin (at least on the period [0, T]). α∗ = u u − min{St, t ∈ [0, T]} 1(min{St, t ∈ [0, T]} < 0) + 1(min{St, t ∈ [0, T]} ≥ 0), then ψ(T, u, α) = ψ(T, u) · P(α∗ ≤ α). 13
  • 14. Arthur CHARPENTIER - Optimal reinsurance with ruin probability target Proportional reinsurance (QS) q q 0.0 0.2 0.4 0.6 0.8 1.0 −4−2024 Time (one year) Impact of proportional reinsurance in case of ruin Fig. 2 – Proportional reinsurance used to decrease ruin probability, the plain line is the brut surplus, and the dotted line the cedant surplus with a reinsurance treaty. 14
  • 15. Arthur CHARPENTIER - Optimal reinsurance with ruin probability target Proportional reinsurance (QS) In that case, the algorithm to plot the ruin probability as a function of the reinsurance share is simply the following RUIN <- 0; ALPHA <- NA for(i in 1:Nb.Simul){ T <- rexp(N,lambda); T <- T[cumsum(T)<1]; n <- length(T) X <- r.claims(n); S <- u+premium*cumsum(T)-cumsum(X) if(min(S)<0) { RUIN <- RUIN +1 ALPHA <- c(ALPHA,u/(u-min(S))) } } rate <- seq(0,1,by=.01); proportion <- rep(NA,length(rate)) for(i in 1:length(rate)){ proportion[i]=sum(ALPHA<rate[i])/length(ALPHA) } plot(rate,proportion*RUIN/Nb.Simul) 15
  • 16. Arthur CHARPENTIER - Optimal reinsurance with ruin probability target Proportional reinsurance (QS) 0.0 0.2 0.4 0.6 0.8 1.0 0123456 Cedent's quota share Ruinprobability(in%) Pareto claims Exponential claims Fig. 3 – Ruin probability as a function of the cedant’s share. 16
  • 17. Arthur CHARPENTIER - Optimal reinsurance with ruin probability target Proportional reinsurance (QS) 0.0 0.2 0.4 0.6 0.8 1.0 020406080100 rate Ruinprobability(w.r.t.nonproportionalcase,in%) 1.05 (tail index of Pareto individual claims) 1.25 1.75 3 Fig. 4 – Ruin probability as a function of the cedant’s share. 17
  • 18. Arthur CHARPENTIER - Optimal reinsurance with ruin probability target Nonproportional reinsurance (QS) With nonproportional reinsurance, if d ≥ 0 is the priority of the reinsurance contract, the surplus process for the company is S (d) t = u + π(d) t − Nt i=1 min{Xi, d} where π(d) = E(S (d) 1 ) = E(N1) · E(min{Xi, d}). Here the problem is that it is possible to have a lot of small claims (smaller than d), and to have ruin with the reinsurance cover (since p(d) < p and min{Xi, d} = Xi for all i if claims are no very large), while there was no ruin without the reinsurance cover (see Figure 5). 18
  • 19. Arthur CHARPENTIER - Optimal reinsurance with ruin probability target Proportional reinsurance (QS) q q 0.0 0.2 0.4 0.6 0.8 1.0 −2−1012345 Time (one year) Impact of nonproportional reinsurance in case of nonruin Fig. 5 – Case where nonproportional reinsurance can cause ruin, the plain line is the brut surplus, and the dotted line the cedant surplus with a reinsurance treaty. 19
  • 20. Arthur CHARPENTIER - Optimal reinsurance with ruin probability target Proportional reinsurance (QS), homogeneous Poisson 0 5 10 15 20 0510152025 Deductible of the reinsurance treaty Ruinprobability(in%) Fig. 6 – Monte Carlo computation of ruin probabilities, where n = 100, 000 tra- jectories are generated for each deductible. 20
  • 21. Arthur CHARPENTIER - Optimal reinsurance with ruin probability target Proportional reinsurance (QS), nonhomogeneous Poisson 0 5 10 15 20 0510152025 Deductible of the reinsurance treaty Ruinprobability(in%) +10% −10% Fig. 7 – Monte Carlo computation of ruin probabilities, where n = 100, 000 tra- jectories are generated for each deductible. 21
  • 22. Arthur CHARPENTIER - Optimal reinsurance with ruin probability target Proportional reinsurance (QS), nonhomogeneous Poisson 0 5 10 15 20 0510152025 Deductible of the reinsurance treaty Ruinprobability(in%) Fig. 8 – Monte Carlo computation of ruin probabilities, where n = 100, 000 tra- jectories are generated for each deductible. 22
  • 23. Arthur CHARPENTIER - Optimal reinsurance with ruin probability target Proportional reinsurance (QS), nonhomogeneous Poisson 0 5 10 15 20 0510152025 Deductible of the reinsurance treaty Ruinprobability(in%) +20% −20% Fig. 9 – Monte Carlo computation of ruin probabilities, where n = 100, 000 tra- jectories are generated for each deductible. 23
  • 24. Arthur CHARPENTIER - Optimal reinsurance with ruin probability target R´ef´erences [1] Asmussen, S. (2000). Ruin Probability. World Scientific Publishing Company. [2] Beekmann, J.A. (1969). A ruin function approximation. Transactions of the Society of Actuaries,21, 41-48. [3] B¨uhlmann, H. (1970). Mathematical Methods in Risk Theory. Springer-Verlag. [4] Burnecki, K. Mista, P. & Weron, A. (2005). Ruin Probabilities in Finite and Infinite Time. in Statistical Tools for Finance and Insurance, C´ızek,P., H¨ardle, W. & Weron, R. Eds., 341-380. Springer Verlag. [5] Centeno, L. (1986). Measuring the Effects of Reinsurance by the Adjustment Coefficient. Insurance : Mathematics and Economics 5, 169-182. [6] Dickson, D.C.M. & Waters, H.R. (1996). Reinsurance and ruin. Insurance : Mathematics and Economics, 19, 1, 61-80. [7] Dickson, D.C.M. (2005). Reinsurance risk and ruin. Cambridge University Press. 24
  • 25. Arthur CHARPENTIER - Optimal reinsurance with ruin probability target [8] Engelmann, B. & Kipp, S. (1995). Reinsurance. in Peter Moles (ed.) : Encyclopaedia of Financial Engineering and Risk Management, New York & London : Routledge. [9] Gerber, H.U. (1979). An Introduction to Mathematical Risk Theory. Huebner. [10] Grandell, J. (1991). Aspects of Risk Theory. Springer Verlag. [11] Goovaerts, M. & Vyncke, D. (2004). Reinsurance forms. in Encyclopedia of Actuarial Science, Wiley, Vol. III , 1403-1404. [12] Kravych, Y. (2001). On existence of insurer’s optimal excess of loss reinsurance strategy. Proceedings of 32nd ASTIN Colloquium. [13] de Longueville, P. (1995). Optimal reinsurance from the point of view of the excess of loss reinsurer under the finite-time ruin criterion. [14] de Vylder, F.E. (1996). Advanced Risk Theory. A Self-Contained Introduction. Editions de l’Universit de Bruxelles and Swiss Association of Actuaries. 25