SlideShare a Scribd company logo
Arthur Charpentier, Master Statistique & Économétrie - Université Rennes 1 - 2017
Simplex Method
The beer problem: we want to produce beer, either blonde, or brown



barley : 14kg
corn : 2kg
price : 30e



barley : 10kg
corn : 5kg
price : 40e



barley : 280kg
corn : 100kg
Admissible sets :
10qbrown + 14qblond ≤ 280 (10x1 + 14x2 ≤ 280)
2qbrown +5qblond ≤ 100 (2x1 +5x2 ≤ 100)
What should we produce to maximize the profit ?
max 40qbrown + 30qblond (max 40x1 + 30x2 )
@freakonometrics freakonometrics freakonometrics.hypotheses.org 1
0 5 10 15 20 25 30
01020304050
Brown Beer Barrel
BlondBeerBarrel
Arthur Charpentier, Master Statistique & Économétrie - Université Rennes 1 - 2017
Simplex Method
First step: enlarge the space, 10x1 + 14x2 ≤ 280 becomes 10x1 + 14x2 − u1 = 280
(so called slack variables)
max 40x1 + 30x2
s.t. 10x1 + 14x2 + u1 = 280
s.t. 2x1 + 5x2 + u2 = 100
s.t. x1, x2, u1, u2 ≥ 0
summarized in the following table, see wikibook
x1 x2 u1 u2
(1) 10 14 1 0 280
(2) 2 5 0 1 100
max 40 30 0 0
@freakonometrics freakonometrics freakonometrics.hypotheses.org 2
Arthur Charpentier, Master Statistique & Économétrie - Université Rennes 1 - 2017
Simplex Method
Consider a linear programming problem written in a standard form.
min cT
x (1a)
subject to
Ax = b , (1b)
x ≥ 0 . (1c)
Where x ∈ Rn
, A is am × n matrix, b ∈ Rm
and c ∈ Rn
.
Assume that rank(A) = m (rows of A are linearly independent)
Introduce slack variables to turn inequality constraints into equality constraints
with positive unknowns : any inequality a1 x1 + · · · + an xn ≤ c can be replaced
by a1 x1 + · · · + an xn + u = c with u ≥ 0.
Replace variables which are not sign-constrained by differences : any real number
x can be written as the difference of positive numbers x = u − v with u, v ≥ 0.
@freakonometrics freakonometrics freakonometrics.hypotheses.org 3
Arthur Charpentier, Master Statistique & Économétrie - Université Rennes 1 - 2017
Simplex Method
Example :
maximize {x1 + 2 x2 + 3 x3}
subject to
x1 + x2 − x3 = 1 ,
−2 x1 + x2 + 2 x3 ≥ −5 ,
x1 − x2 ≤ 4 ,
x2 + x3 ≤ 5 ,
x1 ≥ 0 ,
x2 ≥ 0 .
minimize {−x1 − 2 x2 − 3 u + 3 v}
subject to
x1 + x2 − u + v = 1 ,
2 x1 − x2 − 2 u + 2 v + s1 = 5 ,
x1 − x2 + s2 = 4 ,
x2 + u − v + s3 = 5 ,
x1, x2, u, v, s1, s2, s3 ≥ 0 .
@freakonometrics freakonometrics freakonometrics.hypotheses.org 4
Arthur Charpentier, Master Statistique & Économétrie - Université Rennes 1 - 2017
Simplex Method
Write the coefficients of the problem into a tableau
x1 x2 u v s1 s2 s3
1 1 −1 1 0 0 0 1
2 −1 −2 2 1 0 0 5
1 −1 0 0 0 1 0 4
0 1 1 −1 0 0 1 5
−1 −2 −3 3 0 0 0 0
with constraints on top and coefficients of the objective function are written in a
separate bottom row (with a 0 in the right hand column)
we need to choose an initial set of basic variables which corresponds to a point in
the feasible region of the linear program-ming problem.
E.g. x1 and s1, s2, s3
@freakonometrics freakonometrics freakonometrics.hypotheses.org 5
Arthur Charpentier, Master Statistique & Économétrie - Université Rennes 1 - 2017
Simplex Method
Use Gaussian elimination to (1) reduce the selected columns to a permutation of
the identity matrix (2) eliminate the coefficients of the objective function
x1 x2 u v s1 s2 s3
1 1 −1 1 0 0 0 1
0 −3 0 0 1 0 0 3
0 −2 1 −1 0 1 0 3
0 1 1 −1 0 0 1 5
0 −1 −4 4 0 0 0 1
the objective function row has at least one negative entry
@freakonometrics freakonometrics freakonometrics.hypotheses.org 6
Arthur Charpentier, Master Statistique & Économétrie - Université Rennes 1 - 2017
Simplex Method
x1 x2 u v s1 s2 s3
1 1 −1 1 0 0 0 1
0 −3 0 0 1 0 0 3
0 −2 1 −1 0 1 0 3
0 1 1 −1 0 0 1 5
0 −1 −4 4 0 0 0 1
This new basic variable is called the entering variable. Correspondingly, one
formerly basic variable has then to become nonbasic, this variable is called the
leaving variable.
@freakonometrics freakonometrics freakonometrics.hypotheses.org 7
Arthur Charpentier, Master Statistique & Économétrie - Université Rennes 1 - 2017
Simplex Method
The entering variable shall correspond to the column which has the most
negative entry in the cost function row
the most negative cost function coefficient in column 3, thus u shall be the
entering variable
The leaving variable shall be chosen as follows : Compute for each row the ratio
of its right hand coefficient to the corresponding coefficient in the entering
variable column. Select the row with the smallest finite positive ratio. The
leaving variable is then determined by the column which currently owns the pivot
in this row.
The smallest positive ratio of right hand column to entering variable column is in
row 3, as
3
1
<
5
1
. The pivot in this row points to s2 as the leaving variable.
@freakonometrics freakonometrics freakonometrics.hypotheses.org 8
Arthur Charpentier, Master Statistique & Économétrie - Université Rennes 1 - 2017
Simplex Method
x1 x2 u v s1 s2 s3
1 1 −1 1 0 0 0 1
0 −3 0 0 1 0 0 3
0 −2 1 −1 0 1 0 3
0 1 1 −1 0 0 1 5
0 −1 −4 4 0 0 0 1
@freakonometrics freakonometrics freakonometrics.hypotheses.org 9
Arthur Charpentier, Master Statistique & Économétrie - Université Rennes 1 - 2017
Simplex Method
After going through the Gaussian elimination once more, we arrive at
x1 x2 u v s1 s2 s3
1 −1 0 0 0 1 0 4
0 −3 0 0 1 0 0 3
0 −2 1 −1 0 1 0 3
0 3 0 0 0 −1 1 2
0 −9 0 0 0 4 0 13
Here x2 will enter and s3 will leave
@freakonometrics freakonometrics freakonometrics.hypotheses.org 10
Arthur Charpentier, Master Statistique & Économétrie - Université Rennes 1 - 2017
Simplex Method
After Gaussian elimination, we find
x1 x2 u v s1 s2 s3
1 0 0 0 0 2
3
1
3
14
3
0 0 0 0 1 −1 1 5
0 0 1 −1 0 1
3
2
3
13
3
0 1 0 0 0 −1
3
1
3
2
3
0 0 0 0 0 1 3 19
There is no more negative entry in the last row, the cost cannot be lowered
@freakonometrics freakonometrics freakonometrics.hypotheses.org 11
Arthur Charpentier, Master Statistique & Économétrie - Université Rennes 1 - 2017
Simplex Method
The algorithm is over, we now have to read off the solution (in the last column)
x1 =
14
3
, x2 =
2
3
, x3 = u =
13
3
, s1 = 5, v = s2 = s3 = 0
and the minimal value is −19
@freakonometrics freakonometrics freakonometrics.hypotheses.org 12
Arthur Charpentier, Master Statistique & Économétrie - Université Rennes 1 - 2017
Duality
Consider a transportation problem.
Some good is available at location A (at no cost) and may be transported to
locations B, C, and D according to the following directed graph
B
4
!!
3

A
2
**
1
44
D
C
5
==
On each of the edges, the unit cost of transportation is cj for j = 1, . . . , 5.
At each of the vertices, bi units of the good are sold, where i = B, C, D.
How can the transport be done most efficiently?
@freakonometrics freakonometrics freakonometrics.hypotheses.org 13
Arthur Charpentier, Master Statistique  Économétrie - Université Rennes 1 - 2017
Duality
Let xj denotes the amount of good transported through edge j
We have to solve
minimize {c1 x1 + · · · + c5 x5} (2)
subject to
x1 − x3 − x4 = bB , (3)
x2 + x3 − x5 = bC , (4)
x4 + x5 = bD . (5)
Constraints mean here that nothing gets lost at nodes B, C, and D, except what
is sold.
@freakonometrics freakonometrics freakonometrics.hypotheses.org 14
Arthur Charpentier, Master Statistique  Économétrie - Université Rennes 1 - 2017
Duality
Alternatively, instead of looking at minimizing the cost of transportation, we seek
to maximize the income from selling the good.
maximize {yB bB + yC bC + yD bD} (6)
subject to
yB − yA ≤ c1 , (7)
yC − yA ≤ c2 , (8)
yC − yB ≤ c3 , (9)
yD − yB ≤ c4 , (10)
yD − yC ≤ c5 . (11)
Constraints mean here that the price difference cannot not exceed the cost of
transportation.
@freakonometrics freakonometrics freakonometrics.hypotheses.org 15
Arthur Charpentier, Master Statistique  Économétrie - Université Rennes 1 - 2017
Duality
Set
x =





x1
...
x5





, y =





yB
yC
yD





, and A =





1 0 −1 −1 0
0 1 1 0 −1
0 0 0 1 1





,
The first problem - primal problem - is here
minimize {cT
x}
subject to Ax = b, x ≥ 0 .
and the second problem - dual problem - is here
maximize {yT
b}
subject to yT
A ≤ cT
.
@freakonometrics freakonometrics freakonometrics.hypotheses.org 16
Arthur Charpentier, Master Statistique  Économétrie - Université Rennes 1 - 2017
Duality
The minimal cost and the maximal income coincide, i.e., the two problems are
equivalent. More precisely, there is a strong duality theorem
Theorem The primal problem has a nondegenerate solution x if and only if the
dual problem has a nondegenerate solution y. And in this case yT
b = cT
x.
See Dantzig  Thapa (1997) Linear Programming
@freakonometrics freakonometrics freakonometrics.hypotheses.org 17

More Related Content

PDF
Slides econ-lm
PDF
Slides lln-risques
PDF
Slides ensae 8
PDF
Slides networks-2017-2
PDF
Sildes buenos aires
PDF
Slides barcelona Machine Learning
PDF
Slides univ-van-amsterdam
PDF
Slides ensae 9
Slides econ-lm
Slides lln-risques
Slides ensae 8
Slides networks-2017-2
Sildes buenos aires
Slides barcelona Machine Learning
Slides univ-van-amsterdam
Slides ensae 9

What's hot (20)

PDF
Proba stats-r1-2017
PDF
Slides toulouse
PDF
Slides sales-forecasting-session2-web
PDF
Slides econometrics-2018-graduate-2
PDF
Classification
PDF
Slides ineq-4
PDF
Quantile and Expectile Regression
PDF
Slides econometrics-2018-graduate-3
PDF
Slides econometrics-2017-graduate-2
PDF
Slides risk-rennes
PDF
Slides amsterdam-2013
PDF
Inequality, slides #2
PDF
Predictive Modeling in Insurance in the context of (possibly) big data
PDF
Side 2019 #5
PDF
Side 2019, part 1
PDF
Side 2019, part 2
PDF
Side 2019 #7
PDF
Slides ensae-2016-8
PDF
Econometrics, PhD Course, #1 Nonlinearities
PDF
Slides guanauato
Proba stats-r1-2017
Slides toulouse
Slides sales-forecasting-session2-web
Slides econometrics-2018-graduate-2
Classification
Slides ineq-4
Quantile and Expectile Regression
Slides econometrics-2018-graduate-3
Slides econometrics-2017-graduate-2
Slides risk-rennes
Slides amsterdam-2013
Inequality, slides #2
Predictive Modeling in Insurance in the context of (possibly) big data
Side 2019 #5
Side 2019, part 1
Side 2019, part 2
Side 2019 #7
Slides ensae-2016-8
Econometrics, PhD Course, #1 Nonlinearities
Slides guanauato
Ad

Viewers also liked (6)

PDF
Slides ensae-2016-5
PDF
Slides ensae-2016-6
PDF
Slides ensae-2016-7
PDF
Slides ensae-2016-9
PDF
Slides ensae-2016-10
PDF
Slides ensae-2016-11
Slides ensae-2016-5
Slides ensae-2016-6
Slides ensae-2016-7
Slides ensae-2016-9
Slides ensae-2016-10
Slides ensae-2016-11
Ad

Similar to Slides simplexe (20)

PPT
Simplex Method for Linear Programming - Operations Research
 
PDF
Lp (2)
PPTX
Group No 05, calculus.pptx
PPT
Input analysis
PPTX
PPT
Karnaugh
PDF
Linearprog, Reading Materials for Operational Research
PDF
2012 mdsp pr13 support vector machine
PDF
Econometrics 2017-graduate-3
PDF
ISI MSQE Entrance Question Paper (2011)
PDF
smtlecture.6
PDF
MVPA with SpaceNet: sparse structured priors
PPT
Bresenham circlesandpolygons
PPT
Bresenham circles and polygons derication
PPTX
Optimization tutorial
PPTX
Matlab polynimials and curve fitting
PPT
Raices de ecuaciones
PPT
Raices de ecuaciones
PPT
Maths Topic on spline interpolation methods
PDF
ISI MSQE Entrance Question Paper (2008)
Simplex Method for Linear Programming - Operations Research
 
Lp (2)
Group No 05, calculus.pptx
Input analysis
Karnaugh
Linearprog, Reading Materials for Operational Research
2012 mdsp pr13 support vector machine
Econometrics 2017-graduate-3
ISI MSQE Entrance Question Paper (2011)
smtlecture.6
MVPA with SpaceNet: sparse structured priors
Bresenham circlesandpolygons
Bresenham circles and polygons derication
Optimization tutorial
Matlab polynimials and curve fitting
Raices de ecuaciones
Raices de ecuaciones
Maths Topic on spline interpolation methods
ISI MSQE Entrance Question Paper (2008)

More from Arthur Charpentier (20)

PDF
Family History and Life Insurance
PDF
ACT6100 introduction
PDF
Family History and Life Insurance (UConn actuarial seminar)
PDF
Control epidemics
PDF
STT5100 Automne 2020, introduction
PDF
Family History and Life Insurance
PDF
Machine Learning in Actuarial Science & Insurance
PDF
Reinforcement Learning in Economics and Finance
PDF
Optimal Control and COVID-19
PDF
Slides OICA 2020
PDF
Lausanne 2019 #3
PDF
Lausanne 2019 #4
PDF
Lausanne 2019 #2
PDF
Lausanne 2019 #1
PDF
Side 2019 #10
PDF
Side 2019 #11
PDF
Side 2019 #12
PDF
Side 2019 #9
PDF
Side 2019 #8
PDF
Side 2019 #6
Family History and Life Insurance
ACT6100 introduction
Family History and Life Insurance (UConn actuarial seminar)
Control epidemics
STT5100 Automne 2020, introduction
Family History and Life Insurance
Machine Learning in Actuarial Science & Insurance
Reinforcement Learning in Economics and Finance
Optimal Control and COVID-19
Slides OICA 2020
Lausanne 2019 #3
Lausanne 2019 #4
Lausanne 2019 #2
Lausanne 2019 #1
Side 2019 #10
Side 2019 #11
Side 2019 #12
Side 2019 #9
Side 2019 #8
Side 2019 #6

Recently uploaded (20)

PDF
102 student loan defaulters named and shamed – Is someone you know on the list?
PPTX
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
PDF
RMMM.pdf make it easy to upload and study
PDF
STATICS OF THE RIGID BODIES Hibbelers.pdf
PPTX
PPH.pptx obstetrics and gynecology in nursing
PDF
Microbial disease of the cardiovascular and lymphatic systems
PPTX
Renaissance Architecture: A Journey from Faith to Humanism
PDF
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
PPTX
master seminar digital applications in india
PDF
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
PDF
Computing-Curriculum for Schools in Ghana
PPTX
human mycosis Human fungal infections are called human mycosis..pptx
PDF
Sports Quiz easy sports quiz sports quiz
PPTX
Cell Structure & Organelles in detailed.
PPTX
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
PPTX
Institutional Correction lecture only . . .
PDF
FourierSeries-QuestionsWithAnswers(Part-A).pdf
PPTX
GDM (1) (1).pptx small presentation for students
PDF
2.FourierTransform-ShortQuestionswithAnswers.pdf
PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
102 student loan defaulters named and shamed – Is someone you know on the list?
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
RMMM.pdf make it easy to upload and study
STATICS OF THE RIGID BODIES Hibbelers.pdf
PPH.pptx obstetrics and gynecology in nursing
Microbial disease of the cardiovascular and lymphatic systems
Renaissance Architecture: A Journey from Faith to Humanism
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
master seminar digital applications in india
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
Computing-Curriculum for Schools in Ghana
human mycosis Human fungal infections are called human mycosis..pptx
Sports Quiz easy sports quiz sports quiz
Cell Structure & Organelles in detailed.
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
Institutional Correction lecture only . . .
FourierSeries-QuestionsWithAnswers(Part-A).pdf
GDM (1) (1).pptx small presentation for students
2.FourierTransform-ShortQuestionswithAnswers.pdf
Chapter 2 Heredity, Prenatal Development, and Birth.pdf

Slides simplexe

  • 1. Arthur Charpentier, Master Statistique & Économétrie - Université Rennes 1 - 2017 Simplex Method The beer problem: we want to produce beer, either blonde, or brown    barley : 14kg corn : 2kg price : 30e    barley : 10kg corn : 5kg price : 40e    barley : 280kg corn : 100kg Admissible sets : 10qbrown + 14qblond ≤ 280 (10x1 + 14x2 ≤ 280) 2qbrown +5qblond ≤ 100 (2x1 +5x2 ≤ 100) What should we produce to maximize the profit ? max 40qbrown + 30qblond (max 40x1 + 30x2 ) @freakonometrics freakonometrics freakonometrics.hypotheses.org 1 0 5 10 15 20 25 30 01020304050 Brown Beer Barrel BlondBeerBarrel
  • 2. Arthur Charpentier, Master Statistique & Économétrie - Université Rennes 1 - 2017 Simplex Method First step: enlarge the space, 10x1 + 14x2 ≤ 280 becomes 10x1 + 14x2 − u1 = 280 (so called slack variables) max 40x1 + 30x2 s.t. 10x1 + 14x2 + u1 = 280 s.t. 2x1 + 5x2 + u2 = 100 s.t. x1, x2, u1, u2 ≥ 0 summarized in the following table, see wikibook x1 x2 u1 u2 (1) 10 14 1 0 280 (2) 2 5 0 1 100 max 40 30 0 0 @freakonometrics freakonometrics freakonometrics.hypotheses.org 2
  • 3. Arthur Charpentier, Master Statistique & Économétrie - Université Rennes 1 - 2017 Simplex Method Consider a linear programming problem written in a standard form. min cT x (1a) subject to Ax = b , (1b) x ≥ 0 . (1c) Where x ∈ Rn , A is am × n matrix, b ∈ Rm and c ∈ Rn . Assume that rank(A) = m (rows of A are linearly independent) Introduce slack variables to turn inequality constraints into equality constraints with positive unknowns : any inequality a1 x1 + · · · + an xn ≤ c can be replaced by a1 x1 + · · · + an xn + u = c with u ≥ 0. Replace variables which are not sign-constrained by differences : any real number x can be written as the difference of positive numbers x = u − v with u, v ≥ 0. @freakonometrics freakonometrics freakonometrics.hypotheses.org 3
  • 4. Arthur Charpentier, Master Statistique & Économétrie - Université Rennes 1 - 2017 Simplex Method Example : maximize {x1 + 2 x2 + 3 x3} subject to x1 + x2 − x3 = 1 , −2 x1 + x2 + 2 x3 ≥ −5 , x1 − x2 ≤ 4 , x2 + x3 ≤ 5 , x1 ≥ 0 , x2 ≥ 0 . minimize {−x1 − 2 x2 − 3 u + 3 v} subject to x1 + x2 − u + v = 1 , 2 x1 − x2 − 2 u + 2 v + s1 = 5 , x1 − x2 + s2 = 4 , x2 + u − v + s3 = 5 , x1, x2, u, v, s1, s2, s3 ≥ 0 . @freakonometrics freakonometrics freakonometrics.hypotheses.org 4
  • 5. Arthur Charpentier, Master Statistique & Économétrie - Université Rennes 1 - 2017 Simplex Method Write the coefficients of the problem into a tableau x1 x2 u v s1 s2 s3 1 1 −1 1 0 0 0 1 2 −1 −2 2 1 0 0 5 1 −1 0 0 0 1 0 4 0 1 1 −1 0 0 1 5 −1 −2 −3 3 0 0 0 0 with constraints on top and coefficients of the objective function are written in a separate bottom row (with a 0 in the right hand column) we need to choose an initial set of basic variables which corresponds to a point in the feasible region of the linear program-ming problem. E.g. x1 and s1, s2, s3 @freakonometrics freakonometrics freakonometrics.hypotheses.org 5
  • 6. Arthur Charpentier, Master Statistique & Économétrie - Université Rennes 1 - 2017 Simplex Method Use Gaussian elimination to (1) reduce the selected columns to a permutation of the identity matrix (2) eliminate the coefficients of the objective function x1 x2 u v s1 s2 s3 1 1 −1 1 0 0 0 1 0 −3 0 0 1 0 0 3 0 −2 1 −1 0 1 0 3 0 1 1 −1 0 0 1 5 0 −1 −4 4 0 0 0 1 the objective function row has at least one negative entry @freakonometrics freakonometrics freakonometrics.hypotheses.org 6
  • 7. Arthur Charpentier, Master Statistique & Économétrie - Université Rennes 1 - 2017 Simplex Method x1 x2 u v s1 s2 s3 1 1 −1 1 0 0 0 1 0 −3 0 0 1 0 0 3 0 −2 1 −1 0 1 0 3 0 1 1 −1 0 0 1 5 0 −1 −4 4 0 0 0 1 This new basic variable is called the entering variable. Correspondingly, one formerly basic variable has then to become nonbasic, this variable is called the leaving variable. @freakonometrics freakonometrics freakonometrics.hypotheses.org 7
  • 8. Arthur Charpentier, Master Statistique & Économétrie - Université Rennes 1 - 2017 Simplex Method The entering variable shall correspond to the column which has the most negative entry in the cost function row the most negative cost function coefficient in column 3, thus u shall be the entering variable The leaving variable shall be chosen as follows : Compute for each row the ratio of its right hand coefficient to the corresponding coefficient in the entering variable column. Select the row with the smallest finite positive ratio. The leaving variable is then determined by the column which currently owns the pivot in this row. The smallest positive ratio of right hand column to entering variable column is in row 3, as 3 1 < 5 1 . The pivot in this row points to s2 as the leaving variable. @freakonometrics freakonometrics freakonometrics.hypotheses.org 8
  • 9. Arthur Charpentier, Master Statistique & Économétrie - Université Rennes 1 - 2017 Simplex Method x1 x2 u v s1 s2 s3 1 1 −1 1 0 0 0 1 0 −3 0 0 1 0 0 3 0 −2 1 −1 0 1 0 3 0 1 1 −1 0 0 1 5 0 −1 −4 4 0 0 0 1 @freakonometrics freakonometrics freakonometrics.hypotheses.org 9
  • 10. Arthur Charpentier, Master Statistique & Économétrie - Université Rennes 1 - 2017 Simplex Method After going through the Gaussian elimination once more, we arrive at x1 x2 u v s1 s2 s3 1 −1 0 0 0 1 0 4 0 −3 0 0 1 0 0 3 0 −2 1 −1 0 1 0 3 0 3 0 0 0 −1 1 2 0 −9 0 0 0 4 0 13 Here x2 will enter and s3 will leave @freakonometrics freakonometrics freakonometrics.hypotheses.org 10
  • 11. Arthur Charpentier, Master Statistique & Économétrie - Université Rennes 1 - 2017 Simplex Method After Gaussian elimination, we find x1 x2 u v s1 s2 s3 1 0 0 0 0 2 3 1 3 14 3 0 0 0 0 1 −1 1 5 0 0 1 −1 0 1 3 2 3 13 3 0 1 0 0 0 −1 3 1 3 2 3 0 0 0 0 0 1 3 19 There is no more negative entry in the last row, the cost cannot be lowered @freakonometrics freakonometrics freakonometrics.hypotheses.org 11
  • 12. Arthur Charpentier, Master Statistique & Économétrie - Université Rennes 1 - 2017 Simplex Method The algorithm is over, we now have to read off the solution (in the last column) x1 = 14 3 , x2 = 2 3 , x3 = u = 13 3 , s1 = 5, v = s2 = s3 = 0 and the minimal value is −19 @freakonometrics freakonometrics freakonometrics.hypotheses.org 12
  • 13. Arthur Charpentier, Master Statistique & Économétrie - Université Rennes 1 - 2017 Duality Consider a transportation problem. Some good is available at location A (at no cost) and may be transported to locations B, C, and D according to the following directed graph B 4 !! 3 A 2 ** 1 44 D C 5 == On each of the edges, the unit cost of transportation is cj for j = 1, . . . , 5. At each of the vertices, bi units of the good are sold, where i = B, C, D. How can the transport be done most efficiently? @freakonometrics freakonometrics freakonometrics.hypotheses.org 13
  • 14. Arthur Charpentier, Master Statistique Économétrie - Université Rennes 1 - 2017 Duality Let xj denotes the amount of good transported through edge j We have to solve minimize {c1 x1 + · · · + c5 x5} (2) subject to x1 − x3 − x4 = bB , (3) x2 + x3 − x5 = bC , (4) x4 + x5 = bD . (5) Constraints mean here that nothing gets lost at nodes B, C, and D, except what is sold. @freakonometrics freakonometrics freakonometrics.hypotheses.org 14
  • 15. Arthur Charpentier, Master Statistique Économétrie - Université Rennes 1 - 2017 Duality Alternatively, instead of looking at minimizing the cost of transportation, we seek to maximize the income from selling the good. maximize {yB bB + yC bC + yD bD} (6) subject to yB − yA ≤ c1 , (7) yC − yA ≤ c2 , (8) yC − yB ≤ c3 , (9) yD − yB ≤ c4 , (10) yD − yC ≤ c5 . (11) Constraints mean here that the price difference cannot not exceed the cost of transportation. @freakonometrics freakonometrics freakonometrics.hypotheses.org 15
  • 16. Arthur Charpentier, Master Statistique Économétrie - Université Rennes 1 - 2017 Duality Set x =      x1 ... x5      , y =      yB yC yD      , and A =      1 0 −1 −1 0 0 1 1 0 −1 0 0 0 1 1      , The first problem - primal problem - is here minimize {cT x} subject to Ax = b, x ≥ 0 . and the second problem - dual problem - is here maximize {yT b} subject to yT A ≤ cT . @freakonometrics freakonometrics freakonometrics.hypotheses.org 16
  • 17. Arthur Charpentier, Master Statistique Économétrie - Université Rennes 1 - 2017 Duality The minimal cost and the maximal income coincide, i.e., the two problems are equivalent. More precisely, there is a strong duality theorem Theorem The primal problem has a nondegenerate solution x if and only if the dual problem has a nondegenerate solution y. And in this case yT b = cT x. See Dantzig Thapa (1997) Linear Programming @freakonometrics freakonometrics freakonometrics.hypotheses.org 17