SlideShare a Scribd company logo
3
Most read
14
Most read
15
Most read
Solutions Manual for Digital Logic and Microprocessor Design with
Interfacing 2nd Edition by Hwang IBSN 9781305859456
Full clear download (no formatting errors) at:
http://downloadlink.org/p/solutions-manual-for-digital-logic-and-
microprocessor-design-with-interfacing-2nd-edition-by-hwang-ibsn-
9781305859456/
Chapter 2 Solutions
2.1.
a) 1000010
b) 110001
c) 1000000001
d) 1101100000
e) 11101101001
f) 11111011111
2.2.
a)
b)
c)
d)
e)
f)
3010, 368, 1E16
26, 32, 1A
291, 443, 123
91, 133, 5B
87810, 15568, 36E16
1514, 2752, 5EA
2.3.
a) 01100110
b) 11100011
c) 0010111111101000
d) 011111000010
e) 0101101000101101
f) 1110000010001011
2.4.
a) 000011101010
b) 111100010110
c) 000010011100
d) 101111000100
e) 111000101000
2.5.
Decimal Octal Hexadecimal
a) –53 713 CB
b) 30 36 1E
c) –19 55 ED
d) –167 7531 F59
e) 428 654 1AC
2.6.
a
)
1
1100101; 229 b)
10110001; 177 c)
111010110; 214 d)
101011101; 93
2.7.
a) 11100101; –27
b) 10110001; –79
x y z xy'z x'yz' xyz xyz' F
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 1 0 0 1
0 1 1 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 1 1 0 0 0 1
1 1 0 0 0 0 1 1
1 1 1 0 0 1 0 1
c) 111010110; –42
d) 101011101; 93
2.8.
a) 01101111; 111
b) 11001001; 201
c) 11110000; 240
d) 10110001; 177
2.9.
a) 01101111; 111
b) 11001001; –55
c) 11110000; –16
d) 10110001; –79
2.10.
Binary calculations Unsigned decimal calculations Signed decimal calculations
1001 + 0011 = 1100
No overflow
9 + 3 = 12
No overflow error
–7 + 3 = –4
No overflow error
0110 + 1011 = 10001
Overflow
6 + 11 = 1
Overflow error
6 + (–5) = 1
No overflow error
0101 + 0110 = 1011
No overflow
5 + 6 = 11
No overflow error
5 + 6 = –5
Overflow error
0101 – 0110 = 1111
No overflow
5 – 6 = 15
Overflow error
5 – 6 = –1
No overflow error
1011 – 0101 = 0110
No overflow
11 – 5 = 6
No overflow error
–5 – 5 = 6
Overflow error
2.11.
x y z x'y'z' x'yz xy'z' xyz F
0 0 0 1 0 0 0 1
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 1 0 1 0 0 1
1 0 0 0 0 1 0 1
1 0 1 0 0 0 0 0
1 1 0 0 0 0 0 0
1 1 1 0 0 0 1 1
(a) (b)
w x y z wxy'z w'yz' wxz xyz' F
0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 1 0 0 1 0 0 1
0 0 1 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0
0 1 1 0 0 1 0 1 1
0 1 1 1 0 0 0 0 0
1 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0
1 0 1 0 0 0 0 0 0
1 0 1 1 0 0 0 0 0
1 1 0 0 0 0 0 0 0
1 1 0 1 1 0 1 0 1
1 1 1 0 0 0 0 1 1
1 1 1 1 0 0 1 0 1
w x y z w'z' w'xy wx'z wxyz F
0 0 0 0 1 0 0 0 1
0 0 0 1 0 0 0 0 0
0 0 1 0 1 0 0 0 1
0 0 1 1 0 0 0 0 0
0 1 0 0 1 0 0 0 1
0 1 0 1 0 0 0 0 0
0 1 1 0 1 1 0 0 1
0 1 1 1 0 1 0 0 1
1 0 0 0 0 0 0 0 0
1 0 0 1 0 0 1 0 1
1 0 1 0 0 0 0 0 0
1 0 1 1 0 0 1 0 1
1 1 0 0 0 0 0 0 0
1 1 0 1 0 0 0 0 0
1 1 1 0 0 0 0 0 0
1 1 1 1 0 0 0 1 1
w x y z w'xy'z w'xyz wxy'z wxyz F
0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 1 0 1 1 0 0 0 1
0 1 1 0 0 0 0 0 0
0 1 1 1 0 1 0 0 1
1 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0
1 0 1 0 0 0 0 0 0
1 0 1 1 0 0 0 0 0
1 1 0 0 0 0 0 0 0
1 1 0 1 0 0 1 0 1
1 1 1 0 0 0 0 0 0
1 1 1 1 0 0 0 1 1
(c) (d)
x y z xy' x'y'z xyz' F
0 0 0 0 0 0 0
0 0 1 0 1 0 1
0 1 0 0 0 0 0
0 1 1 0 0 0 0
1 0 0 1 0 0 1
1 0 1 1 0 0 1
1 1 0 0 0 1 1
1 1 1 0 0 0 0
(e) (f)
x y z x' y' x+y' yz (yz)' [(x+y' ) (yz)' ] xy' x'y (xy' + x'y) F
0 0 0 1 1 1 0 1 1 0 0 0 0
0 0 1 1 1 1 0 1 1 0 0 0 0
0 1 0 1 0 0 0 1 0 0 1 1 0
0 1 1 1 0 0 1 0 0 0 1 1 0
1 0 0 0 1 1 0 1 1 1 0 1 1
1 0 1 0 1 1 0 1 1 1 0 1 1
1 1 0 0 0 1 0 1 1 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 0 0
(g)
(a)
w x y z w'z' w'xy wx'z wxyz
Left
Side w'z' xyz wx'y'z wyz
Rig
Sid
0 0 0 0 1 0 0 0 1 1 0 0 0 1
0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 1 1 0 0 0 1
0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0 1 1 0 0 0 1
0 1 0 1 0 0 0 0 0 0 0 0 0 0
0 1 1 0 1 1 0 0 1 1 0 0 0 1
0 1 1 1 0 1 0 0 1 0 1 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 1 0 1 0 0 1 0 1
1 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 0 0 1 0 1 0 0 0 1 1
1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 1 1 0 1 0 1 1
(b)
N3 N2 N1 N0 N3'N2'N1N0' N3'N2'N1N0 N3N2'N1N0' N3N2'N1N0 N3N2N1'N0' N3N2N1N0 F
0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 1
0 0 1 1 0 1 0 0 0 0 1
0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0
1 0 1 0 0 0 1 0 0 0 1
1 0 1 1 0 0 0 1 0 0 1
1 1 0 0 0 0 0 0 1 0 1
1 1 0 1 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 1 1
(h)
2.12.
(a) F = a'bc' + a'bc + abc'
(b) F = w'x'yz' + w'xy'z' + w'xy'z + w'xyz + wx'y'z + wx'yz' + wxy'z' + wxy'z + wxyz
(c) F1 = w'x'y'z' + w'x'yz + w'xy'z + w'xyz' + wx'y'z + wx'yz' + wxy'z' + wxyz
F2 = w'x'y'z' + w'x'y'z + w'x'yz' + w'x'yz + w'xy'z + wx'y'z' + wx'y'z + wxy'z' + wxy'z + wxyz' + wxyz
(d) F = N3'N2'N1N0' + N3'N2'N1N0 + N3'N2N1N0' + N3N2'N1N0' + N3N2'N1N0 + N3N2N1'N0' + N3N2N1N0
2.14.
ht
e
Right
Side
1
1
1
1
x' z'
Right
Side
1 1 1
1 0 1
1 1 1
1 0 1
0 1 1
0 0 0
0 1 1
0 0 0
xy x'z
Right
Side
0 0 0
0 1 1
0 0 0
0 1 1
0 0 0
0 0 0
1 0 1
1 0 1
(e)
w x y z w'x'yz' w'x'yz wx'yz' wx'yz wxyz
Left
Side x' wz (x' + wz)
Rig
Sid
0 0 0 0 0 0 0 0 0 0 1 0 1 0
0 0 0 1 0 0 0 0 0 0 1 0 1 0
0 0 1 0 1 0 0 0 0 1 1 0 1 1
0 0 1 1 0 1 0 0 0 1 1 0 1 1
0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 1 0 1 0
1 0 0 1 0 0 0 0 0 0 1 1 1 0
1 0 1 0 0 0 1 0 0 1 1 0 1 1
1 0 1 1 0 0 0 1 0 1 1 1 1 1
1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 0 0 0 0 0 0 1 1 0
1 1 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 1 1 0 1 1 1
(f)
y z z y' yz'
Left
Side
0 0 0 1 0 1
0 1 1 1 0 1
1 0 0 0 1 1
1 1 1 0 0 1
(c)
x y z xy'z' x' xyz'
Left
Side
0 0 0 0 1 0 1
0 0 1 0 1 0 1
0 1 0 0 1 0 1
0 1 1 0 1 0 1
1 0 0 1 0 0 1
1 0 1 0 0 0 0
1 1 0 0 0 1 1
1 1 1 0 0 0 0
(d)
x y z xy x'z yz
Left
Side
0 0 0 0 0 0 0
0 0 1 0 1 0 1
0 1 0 0 0 0 0
0 1 1 0 1 1 1
1 0 0 0 0 0 0
1 0 1 0 0 0 0
1 1 0 1 0 0 1
1 1 1 1 0 1 1
ht
e
Right
Side
0
0
0
0
0
1
0
1
0
0
0
0
0
1
0
1
(g)
xi yi ci xiyi xi + yi ci(xi + yi)
Left
Side xiyici xiyici' xiyi'ci xi'yici
Righ
Side
0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0 0 0 0 0
0 1 1 0 1 1 1 0 0 0 1 1
1 0 0 0 1 0 0 0 0 0 0 0
1 0 1 0 1 1 1 0 0 1 0 1
1 1 0 1 1 0 1 0 1 0 0 1
1 1 1 1 1 1 1 1 0 0 0 1
(h)
xi yi ci xiyi xi + yi ci(xi + yi)
Left
xiyi x ⊕y c (x ⊕y )
Right
Side i i i i i
Side
0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0 1 0 0
0 1 1 0 1 1 1 0 1 1 1
1 0 0 0 1 0 0 0 1 0 0
1 0 1 0 1 1 1 0 1 1 1
1 1 0 1 1 0 1 1 0 0 1
1 1 1 1 1 1 1 1 0 0 1
2.19.
w x y z w'xy'z w'xyz wxy'z wxyz
Left
Side
0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 1 0 1 1 0 0 0 1
0 1 1 0 0 0 0 0 0
0 1 1 1 0 1 0 0 1
1 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0
1 0 1 0 0 0 0 0 0
1 0 1 1 0 0 0 0 0
1 1 0 0 0 0 0 0 0
1 1 0 1 0 0 1 0 1
1 1 1 0 0 0 0 0 0
1 1 1 1 0 0 0 1 1
t
(a) w'z' + w'xy + wx'z + wxyz
= w'x'y'z' + w'x'yz' + w'xy'z' + w'xyz' + w'xyz' + w'xyz + wx'y'z + wx'yz + wxyz
= w'x'y'z' + w'x'yz' + w'xy'z' + w'xyz' + w'xyz + wx'y'z + wx'yz + wxyz
= w'z' + w'xyz + wx'y'z + wx'yz + wxyz
= w'z' + (w'+w)xyz + wx'y'z + w(x'+x)yz
= w'z' + xyz + wx'y'z + wyz
(b) z + y' + yz'
= z(y'+y) + (z'+z)y' + yz'
= zy' + zy + z'y' + zy' + yz'
= z(y'+y) + z'(y'+y)
= z + z'
= 1
(c) x y' z' + x' + x y z'
= x z' (y' + y) + x'
= x z' + x'
= x z' + 1 x'
= (x + 1)(x + x' )(z' + 1)(z' + x' )
= 1 • 1 • 1 (z' + x' )
= x' + z'
(d) xy + x'z + yz
= xy(z'+z) + x'(y'+y)z + (x'+x)yz
= xyz' + xyz + x'y'z + x'yz + x'yz + xyz
= xy(z'+z) + x'(y'+y)z
= xy(1) + x'(1)z
= xy + x'z
(e) w'x'yz' + w'x'yz + wx'yz' + wx'yz + wxyz
= [w'x'yz' + w'x'yz + wx'yz' + wx'yz] + [wx'yz + wxyz]
= x'y(w'z'+ w'z+ wz'+ wz) + w(x'+x)yz
= x'y + wyz
= y(x' + wz)
(f) w'xy'z + w'xyz + wxy'z + wxyz
= xy'z(w' + w) + xyz(w' + w)
= xy'z + xyz
= xz(y + y')
= xz
(g) xiyi + ci(xi + yi)
= xiyi + xici + yici
= xiyi(ci + ci' ) + xi(yi + yi' )ci + (xi + xi' )yici
= xiyici + xiyici' + xiyici + xiyi'ci + xiyici + xi'yici
= xiyici + xiyici' + xiyi'ci + xi'yici
(h) xiyi + ci(xi + yi)
= xiyi + xici + yici
= xiyi(ci + ci' ) + xi(yi + yi' )ci + (xi + xi' )yici
= xiyici + xiyici' + xiyici + xiyi'ci + xiyici + xi'yici
= xiyici + xiyici' + xiyi'ci + xi'yici
= xiyi(ci + ci' ) + ci(xiyi' + xi'yi)
= xiyi + ci(xi ⊕yi)
2.20.
(a) x'y'z' + x'yz + xy'z' + xyz
= (x + x')y'z' + (x + x')yz
= y'z' + yz
= y z
(b) xy'z + x'yz' + xyz + xyz'
= (x + x')yz' + x(y + y')z
= yz' + xz
v w x y z 5
XOR
5
XNOR
0 0 0 0 0 0 0
0 0 0 0 1 1 1
(c) w'xy'z + w'xyz + wxy'z + wxyz
= xz(w'y' + w'y + wy' + wy)
= xz
(d) wxy'z + w'yz' + wxz + xyz'
= wxz + yz'(x+w')
(e) xy' + x'y'z + xyz'
= xy'z + xy'z' + x'y'z + xyz'
= xy' + y'z + xz'
= y'(x + z) + xz'
(f) w'z' + w'xy + wx'z + wxyz
= w'z' + w'xyz + w'xyz' + wx'z + wxyz
= w'z' + xyz(w' + w) + w'xyz' + wx'z
= w'z' + xyz + wx'z
= w'z' + z(xy + wx')
(g) [(x+y' ) (yz)' ] (xy' + x'y)
= [(x+y' ) (y'+z')] (xy' + x'y)
= [xy' + xz' + y' + y'z'] (xy' + x'y)
= [xz' + y'] (xy' + x'y)
= xy'z' + xx'yz' + y'xy' + y'x'y
= xy'z' + xy'
= xy'
(h) N3'N2'N1N0' + N3'N2'N1N0 + N3N2'N1N0' + N3N2'N1N0 + N3N2N1'N0' + N3N2N1N0
=
2.21.
F = (x' + y' + x'y' + xy) (x' + yz)
= (x' • 1 + y' • 1 + x'y' + xy) (x' + yz) by Theorem 6a
= (x' (y + y' ) + y' (x + x' ) + x'y' + xy) (x' + yz) by Theorem 9b
= (x'y + x'y' + y'x + y'x' + x'y' + xy) (x' + yz) by Theorem 12a
= (x'y + x'y' + y'x + y'x' + x'y' + xy) (x' + yz) by Theorem 7b
= (x' (y + y') + x (y + y')) (x' + yz) by Theorem 12a
= (x' • 1 + x • 1) (x' + yz) by Theorem 9b
= (x' + x) (x' + yz) by Theorem 6a
= 1 (x' + yz) by Theorem 9b
= (x' + yz) by Theorem 6a
2.22.
For three variables (x, y, z), there is a total of eight (23
) minterms. The function has five minterms, therefore, the
inverted function will have three (8-5=3) minterms. Hence, implementing the inverted function and then adding
a NOT gate at the final output will result in a smaller circuit. The circuit requires 3 AND gates, 1 OR gate, and 1
NOT gate.
2.23.
w x y z 4
AND
4
NAND
4
NOR
4
XOR
4
XNOR
0 0 0 0 0 1 1 0 1
0 0 0 1 0 1 0 1 0
0 0 0 1 0 1 1
0 0 0 1 1 0 0
0 0 1 0 0 1 1
0 0 1 0 1 0 0
0 0 1 1 0 0 0
0 0 1 1 1 1 1
0 1 0 0 0 1 1
0 1 0 0 1 0 0
0 1 0 1 0 0 0
0 1 0 1 1 1 1
0 1 1 0 0 0 0
0 1 1 0 1 1 1
0 1 1 1 0 1 1
0 1 1 1 1 0 0
1 0 0 0 0 1 1
1 0 0 0 1 0 0
1 0 0 1 0 0 0
1 0 0 1 1 1 1
1 0 1 0 0 0 0
1 0 1 0 1 1 1
1 0 1 1 0 1 1
1 0 1 1 1 0 0
1 1 0 0 0 0 0
1 1 0 0 1 1 1
1 1 0 1 0 1 1
1 1 0 1 1 0 0
1 1 1 0 0 1 1
1 1 1 0 1 0 0
1 1 1 1 0 0 0
1 1 1 1 1 1 1
x y z F
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1
0 0 1 0 0 1 0 1 0
0 0 1 1 0 1 0 0 1
0 1 0 0 0 1 0 1 0
0 1 0 1 0 1 0 0 1
0 1 1 0 0 1 0 0 1
0 1 1 1 0 1 0 1 0
1 0 0 0 0 1 0 1 0
1 0 0 1 0 1 0 0 1
1 0 1 0 0 1 0 0 1
1 0 1 1 0 1 0 1 0
1 1 0 0 0 1 0 0 1
1 1 0 1 0 1 0 1 0
1 1 1 0 0 1 0 1 0
1 1 1 1 1 0 0 0 1
(a) (b) (c) (d) (e)
(f) (g)
2.24.
w x y z (x
y)'
(xyz)' (x y)' +
(xyz)'
(w' + x +
z)
F
0 0 0 0 0 1 1 1 1
0 0 0 1 0 1 1 1 1
0 0 1 0 1 1 1 1 1
0 0 1 1 1 1 1 1 1
0 1 0 0 1 1 1 1 1
0 1 0 1 1 1 1 1 1
0 1 1 0 0 1 1 1 1
0 1 1 1 0 0 0 1 0
1 0 0 0 0 1 1 0 0
1 0 0 1 0 1 1 1 1
1 0 1 0 1 1 1 0 0
1 0 1 1 1 1 1 1 1
1 1 0 0 1 1 1 1 1
1 1 0 1 1 1 1 1 1
1 1 1 0 0 1 1 1 1
1 1 1 1 0 0 0 1 0
(a) (b)
x y z F
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1
w x y z w'xy'z (x ⊕y) w'z (y ⊕x) [w'xy'z + w'z (y ⊕x)] F
0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 1
0 0 1 0 0 1 0 0 1
0 0 1 1 0 1 1 1 0
0 1 0 0 0 1 0 0 1
0 1 0 1 1 1 1 1 0
0 1 1 0 0 0 0 0 1
0 1 1 1 0 0 0 0 1
1 0 0 0 0 0 0 0 1
1 0 0 1 0 0 0 0 1
1 0 1 0 0 1 0 0 1
1 0 1 1 0 1 0 0 1
1 1 0 0 0 1 0 0 1
1 1 0 1 0 1 0 0 1
1 1 1 0 0 0 0 0 1
1 1 1 1 0 0 0 0 1
(c)
2.25.
a)
w x y z (x
y)'
(xyz)' (x y)' +
(xyz)'
(w' + x +
z)
F
0 0 0 0 0 1 1 1 1
0 0 0 1 0 1 1 1 1
0 0 1 0 1 1 1 1 1
0 0 1 1 1 1 1 1 1
0 1 0 0 1 1 1 1 1
0 1 0 1 1 1 1 1 1
0 1 1 0 0 1 1 1 1
0 1 1 1 0 0 0 1 0
1 0 0 0 0 1 1 0 0
1 0 0 1 0 1 1 1 1
1 0 1 0 1 1 1 0 0
1 0 1 1 1 1 1 1 1
1 1 0 0 1 1 1 1 1
1 1 0 1 1 1 1 1 1
1 1 1 0 0 1 1 1 1
1 1 1 1 0 0 0 1 0
(a) (b)
w x y z w'xy'z (x ⊕y) w'z (y ⊕x) [w'xy'z + w'z (y ⊕x)] F
0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 1
0 0 1 0 0 1 0 0 1
0 0 1 1 0 1 1 1 0
0 1 0 0 0 1 0 0 1
0 1 0 1 1 1 1 1 0
0 1 1 0 0 0 0 0 1
0 1 1 1 0 0 0 0 1
1 0 0 0 0 0 0 0 1
1 0 0 1 0 0 0 0 1
1 0 1 0 0 1 0 0 1
1 0 1 1 0 1 0 0 1
1 1 0 0 0 1 0 0 1
1 1 0 1 0 1 0 0 1
1 1 1 0 0 0 0 0 1
1 1 1 1 0 0 0 0 1
(c)
b)
F = [(x y)' + (xyz)'] (w' + x + z)
= [xy' + x'y + x' + y' + z')] (w' + x + z)
= (x' + y' + z') (w' + x + z)
= (ww' + x' + y' + z') (w' + x + yy' + z)
= (w + x' + y' + z') (w' + x' + y' + z') (w' + x + y + z) (w' + x + y' + z)
= Π(M7 + M8 + M10 + M15)
(a)
F = x ⊕y ⊕z
= (xy' + x'y)z' + (xy' + x'y)'z
= xy'z' + x'yz' + xy'z + x'y'z
= (x+y+z)(x+y'+z')(x'+y'+z)(x'+y'+z')
= Π(M0 + M3 + M6 + M7)
(b)
F = [w'xy'z + w'z (y ⊕x)]'
= [w'xy'z]' [w'z (y ⊕x)]'
= [w+x'+y+z'] [w+z'+ (y ⊕x)']
= [w+x'+y+z'] [w+z'+ xy + x'y']
= [w+x'+y+z'] [w+x+y'+z'] [w+x'+y+z']
= Π( M3 + M5)
(c)
2.26.
F = [(x y)' + (xyz)'] (w' + x + z)
= [xy' + x'y + x' + y' + z')] (w' + x + z)
= (x' + y' + z') (w' + x + z)
= x'w' + x'x + x'z + y'w' + y'x + y'z + z'w' + z'x + z'z
= w'x' + x'z + w'y' + xy' + y'z + w'z' + xz'
= (x ⊕z) + xy' + w'x'
or (x ⊕z) + xy' + w'z'
or (x ⊕z) + y'z + w'x'
or (x ⊕z) + y'z + w'z'
(a)
F = x ⊕y ⊕z
(b)
x y
Left Side
x ⊕y x y Right Side
(x y)'
0 0 0 1 0
0 1 1 0 1
1 0 1 0 1
1 1 0 1 0
F = [w'xy'z + w'z (y ⊕x)]'
= [w'xy'z]' [w'z (y ⊕x)]'
= [w+x'+y+z'] [w+z'+ (y ⊕x)']
= [w+x'+y+z'] [w+z'+ xy + x'y']
= w + wz' + wxy + wx'y' + wx' + x'z' + x'y' + wy + yz' + xy + wz' + z' + xyz' + x'y'z'
= w + z' + x'y' + xy
= w + z' + (x y)
(c)
2.27.
x y y'
Left Side
x ⊕y'
Right Side
x y
0 0 1 1 1
0 1 0 0 0
1 0 1 0 0
1 1 0 1 1
(a)
(b)
w x y z w⊕x y⊕z Left Side
(w⊕x) (y⊕z)
w x y z Right Side Right Side
(w x) (y z) (((w x) y) z)
0 0 0 0 0 0 1 1 1 1 1
0 0 0 1 0 1 0 1 0 0 0
0 0 1 0 0 1 0 1 0 0 0
0 0 1 1 0 0 1 1 1 1 1
0 1 0 0 1 0 0 0 1 0 0
0 1 0 1 1 1 1 0 0 1 1
0 1 1 0 1 1 1 0 0 1 1
0 1 1 1 1 0 0 0 1 0 0
1 0 0 0 1 0 0 0 1 0 0
1 0 0 1 1 1 1 0 0 1 1
1 0 1 0 1 1 1 0 0 1 1
1 0 1 1 1 0 0 0 1 0 0
1 1 0 0 0 0 1 1 1 1 1
1 1 0 1 0 1 0 1 0 0 0
1 1 1 0 0 1 0 1 0 0 0
1 1 1 1 0 0 1 1 1 1 1
(c)
x y z (xy)' ((xy)'x)' ((xy)'y)' [((xy)'x)'((xy)'y)']
Left Side
[((xy)'x)'((xy)'y)']'
Right Side
x ⊕y
0 0 0 1 1 1 1 0 0
0 0 1 1 1 1 1 0 0
0 1 0 1 1 0 0 1 1
0 1 1 1 1 0 0 1 1
1 0 0 1 0 1 0 1 1
1 0 1 1 0 1 0 1 1
1 1 0 0 1 1 1 0 0
1 1 1 0 1 1 1 0 0
(d)
2.28.
(x ⊕y) = xy' + x'y
= xx' + xy' + x'y + yy'
= (x + y) (x' + y')
= (x'y')' (xy)'
= [(x'y') + (xy)]'
= (x y)'
[((xy)'x)' ((xy)'y)' ]'
= ((xy)'x) + ((xy)'y)
(a)
x ⊕y' = xy +x'y'
= x y
(b)
= (x' + y' )x + (x' + y' )y
= xx' + xy' + x'y + y'y
= xy' + x'y
= x ⊕y
(d)
2.29.
x ⊕y ⊕z
= (x ⊕y) ⊕z
= (x'y + xy' ) ⊕z
= (x'y + xy' )z' + (x'y + xy' )'z
= x'yz' + xy'z' + (x'y)' (xy' )'z
= x'yz' + xy'z' + (x+y' ) (x'+y) z
= x'yz' + xy'z' + xx'z + xyz + x'y'z + y'yz
= x'y'z + x'yz' + xy'z' + xyz
2.30.
x ⊕y ⊕z = (x ⊕y) ⊕z
= (x'y + xy') ⊕z
= (x'y + xy')' z + (x'y + xy') z'
= (x'y)' · (xy')' z + x'yz' + xy'z'
= (x + y') · (x' + y) z + x'yz' + xy'z'
= xx'z + xyz + x'y'z + y'yz + x'yz' + xy'z'
= (xy + x'y') z + (x'y + xy') z'
= (xy + x'y') z + (xy + x'y')' z'
= (x y) z + (x y)' z'
= x y z
2.31.
(a) F(x,y,z) = Σ(m0, m3, m4, m7)
(a) F(x,y,z) = Π(M1, M2, M5, M6)
(b) F(x,y,z) = Π(M0, M1, M3, M4)
(c) F(w,x,y,z) = Π(M0, M1, M2, M3, M4, M6, M8, M9,
M10, M11, M12, M14)
(d) F(w,x,y,z) = Π(M0, M1, M3, M4, M5, M7, M8, M9,
(b) F(x,y,z) = Σ(m2, m5, m6, m7) M10, M11, M12)
(c)
(d)
(e)
F(w,x,y,z) = Σ(m5, m7, m13, m15)
F(w,x,y,z) = Σ(m2, m6, m13, m14, m15)
F(x,y,z) = Σ(m1, m4, m5, m6)
(e)
(f)
M14
F(x,y,z) = Π(M0, M2, M3, M7)
F(w,x,y,z) = Π(M1, M3, M5, M8, M10, M12, M13,
)
(f) F(w,x,y,z) = Σ(m0, m2, m4, m6, m7, m9, m11, m15) (g) F(x,y,z) = Π(M0, M1, M2, M3, M6, M7)
(g) F(x,y,z) = Σ(m4, m5)
(h) F(N3,N2,N1,N0) = Σ(m2, m3, m10, m11, m12, m15)
(a)
(h) F(N3,N2,N1,N0) = Π(M0, M1, M4, M5, M6, M7, M8,
M9, M13, M14)
(b)
2.32.
(a) F(x,y,z) = x'y'z + x'yz + xyz (b) F(w,x,y,z) = w'x'y'z + w'x'yz + w'xyz
(c) F(x,y,z) = (x+y+z') (x+y'+z') (x'+y'+z') (d) F(w,x,y,z) = (w+x+y+z') (w+x+y'+z')
(w+x'+y'+z')
(e) F'(x,y,z) = x'y'z' + x'yz' + xy'z' + xy'z + xyz'
(f) F(x,y,z) = (x+y+z) (x+y'+z) (x'+y+z) (x'+y+z') (x'+y'+z)
2.33.
F' is expressed as a sum of its 0-minterms. Therefore, F is the sum of its 1-minterms = Σ(0, 2, 4, 5, 6). Using
three variables, the truth table is as follows:
x y z Minterms F
0 0 0 m0=x' y' z' 1
0 0 1 m1=x' y' z 0
0 1 0 m2=x' y z' 1
0 1 1 m3=x' y z 0
1 0 0 m4=x y' z' 1
1 0 1 m5=x y' z 1
1 1 0 m6=x y z' 1
1 1 1 m7=x y z 0
2.34.
F = Σ(3, 4, 5) = m3 + m4 + m5
= x’yz + xy’z’ + xy’z
= (x’+x +x)(x’+x +y’)(x’+x +z)
(x’+y’+x)(x’ + y’ + y’)(x’ + y’ + z)
(x’+z’+x)(x’ + z’ + y’)(x’+z’+z) (y +
x + x)(y +x +y’)(y + x + z)
(y +y’+x)(y +y’+y’)(y +y’+z) (y +
z’ + x)(y +z’+y’)(y +z’+z) (z + x +
x)(z + x + y’)(z + x + z)
(z + y’ + x)(z + y’ + y’)(z + y’ + z)
(z +z’+x)(z +z’+y’)(z +z’+z)
= (x’ + y’ + z) (x’ + y’ + z’) (x + y + z) (x + y + z’) (x + y’ + z)
2.35.
a)
b)
Product-of-sums (AND-of-OR) format is obtained by using the duality principle or De Morgan’s Theorem:
F' = (x'+y+z) • (x'+y+z') • (x'+y'+z) • (x'+y'+z')
Sum-of-products (OR-of-AND) format is obtained by first constructing the truth table for F and then
inverting the 0’s and 1’s to get F '. Then we simply use the AND terms where F' = 1.
x y z F F '
0 0 0 0 1
0 0 1 0 1
0 1 0 0 1
0 1 1 0 1
1 0 0 1 0
1 0 1 1 0
1 1 0 1 0
1 1 1 1 0
F ' = x'y'z' + x'y'z + x'yz' + x'yz
2.36.
a)
F = w x y z
= (wx + w'x' ) y z
= [(wx + w'x' )y + (wx + w'x' )' y' ] z + [(wx + w'x' )y + (wx + w'x' )' y' ]' z'
= wxyz + w'x'yz + (wx)' (w'x' )'y'z + [(wx + w'x' )y + (wx + w'x' )' y' ]' z'
= m15 + m3 + (w'+x' )(w+x)y'z + [(wx + w'x' )y + (wx + w'x' )' y' ]' z'
= m15 + m3 + w'xy'z + wx'y'z + [(wx + w'x' )y + (wx + w'x' )' y' ]' z'
= m15 + m3 + m5 + m9 + [(wx + w'x' ) y]' [(wx + w'x' )' y' ]' z'
= m15 + m3 + m5 + m9 + [(wx + w'x' )' + y' ] [(wx + w'x' )+ y] z'
= m15 + m3 + m5 + m9 + [(wx)' (w'x' )' + y' ] [wxz' + w'x' z' + yz' ]
= m15 + m3 + m5 + m9 + [(w'+x' )(w+x) + y' ] [wxz' + w'x' z' + yz' ]
= m15 + m3 + m5 + m9 + [w'x + wx' + y' ] [wxz' + w'x' z' + yz' ]
= m15 + m3 + m5 + m9 + w'xyz' + wx'yz' + wxy'z' + w'x'y'z'
= m15 + m3 + m5 + m9 + m6 + m10 + m12 + m0
2.37.
a)
module P2_24a (
input w,x,y,z,
output F
);
assign F = (~(x^y) | ~(x&y&z)) & (~w|x|z);
endmodule
b)
module P2_24b (
input x,y,z,
output F
);
assign F = x^y^z;
endmodule
c)
module P2_24c (
input w,x,y,z,
output F
);
assign F = ~((~w&x&~y&z) | (~w&z&(y^x)));
endmodule
2.38.
a)
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.all;
ENTITY P2_24a IS PORT (
w,x,y,z: IN STD_LOGIC;
F: OUT STD_LOGIC);
END P2_24a;
ARCHITECTURE Dataflow OF P2_24a IS
BEGIN
F <= (NOT (x XOR y) OR NOT (x AND y AND z)) AND (NOT w OR x OR z);
END Dataflow;
b)
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.all;
ENTITY P2_24b IS PORT (
x,y,z: IN STD_LOGIC;
F: OUT STD_LOGIC);
END P2_24b;
ARCHITECTURE Dataflow OF P2_24b IS
BEGIN
F <= x XOR y XOR z;
END Dataflow;
c)
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.all;
ENTITY P2_24c IS PORT (
w,x,y,z: IN STD_LOGIC;
F: OUT STD_LOGIC);
END P2_24c;
ARCHITECTURE Dataflow OF P2_24c IS
BEGIN
F <= NOT((NOT w AND x AND NOT y AND z) OR (NOT w AND z AND (y XOR x)));
END Dataflow;
2.39.
// this is a Verilog behavioral model of the car security system
module Siren (
input M, D, V,
output S
);
wire term1, term2, term3;
always @ (M or D or V) begin
term1 = (M & ~D & V);
term2 = (M & D & ~V);
term3 = (M & D & V);
S = term1 | term2 | term3;
end
endmodule
2.40.
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
ENTITY Siren IS PORT (
M, D, V: IN STD_LOGIC;
S: OUT STD_LOGIC);
END Siren;
ARCHITECTURE Behavioral OF Siren IS
BEGIN
PROCESS(M, D, V)
BEGIN
S <= (M AND NOT D AND V) OR (M AND D AND NOT V) OR (M AND D AND V);
END PROCESS;
END Behavioral;
Solutions Manual for Digital Logic and Microprocessor Design with
Interfacing 2nd Edition by Hwang IBSN 9781305859456
Full clear download (no formatting errors) at:
http://downloadlink.org/p/solutions-manual-for-digital-logic-and-
microprocessor-design-with-interfacing-2nd-edition-by-hwang-ibsn-
9781305859456/

More Related Content

PDF
2. successive differentiation
PDF
Trig cheat sheet
PDF
Solution_Manual_Digital_Design_With_an_Introduction_to_the_Verilog_HDL_5th_Ed...
PDF
Solutions Manual for Thomas Calculus 12th Edition by Thomas
PPTX
Ellipse By Rectangle Method. Take Major Axis =120 Mm And Minor Axis =90 Mm
PDF
3Rd-Edition-Linear-Algebra-And-Its-Applications-Solutions-Manual.Pdf
PDF
Engg. math 1 question bank by mohammad imran
PPT
21 simpson's rule
2. successive differentiation
Trig cheat sheet
Solution_Manual_Digital_Design_With_an_Introduction_to_the_Verilog_HDL_5th_Ed...
Solutions Manual for Thomas Calculus 12th Edition by Thomas
Ellipse By Rectangle Method. Take Major Axis =120 Mm And Minor Axis =90 Mm
3Rd-Edition-Linear-Algebra-And-Its-Applications-Solutions-Manual.Pdf
Engg. math 1 question bank by mohammad imran
21 simpson's rule

What's hot (20)

PPT
Newton divided difference interpolation
PPTX
Vector spaces
PPTX
Complex variables
PPTX
3.3 graphs of exponential functions
PDF
Integral table
PPT
03 truncation errors
PDF
電路學第七章 交流穩態分析
PPTX
Function
PPTX
Jacobi method
PPTX
PDF
Module: drand - the Distributed Randomness Beacon
PPTX
Vector space
PDF
電子學103-Chapter5 BJT電晶體
PPTX
Number base conversion
PPTX
Laplace transform
PDF
cyclic_code.pdf
PDF
電子學I+課本習題解答
PPTX
Matrix Algebra seminar ppt
PPTX
Laplace Transform of Periodic Function
PPT
Sequences And Series
Newton divided difference interpolation
Vector spaces
Complex variables
3.3 graphs of exponential functions
Integral table
03 truncation errors
電路學第七章 交流穩態分析
Function
Jacobi method
Module: drand - the Distributed Randomness Beacon
Vector space
電子學103-Chapter5 BJT電晶體
Number base conversion
Laplace transform
cyclic_code.pdf
電子學I+課本習題解答
Matrix Algebra seminar ppt
Laplace Transform of Periodic Function
Sequences And Series
Ad

Similar to Solutions manual for digital logic and microprocessor design with interfacing 2nd edition by hwang ibsn 9781305859456 (20)

PDF
mathematical_notation
PPTX
15. Karnaugh Maps.pptx
PDF
SOAL RANGKAIAN LOGIKA
PDF
Chapter 16
PDF
Combinational logic 2
PPTX
Unit 2.pptx
DOCX
แบบฝึกทักษะฟังก์ชัน(เพิ่มเติม)ตัวจริง
PPT
Dateof birthdesignproblem 1_
PPT
fghdfh
PPT
Digital fiiter
PDF
PDF
Computational electromagnetics
PDF
M A T H E M A T I C A L M E T H O D S J N T U M O D E L P A P E R{Www
DOCX
เวกเตอร์ใน 3 มิติ
DOCX
เวกเตอร์ใน 3 มิติ
PDF
Palm ch1
PDF
Prelude to halide_public
mathematical_notation
15. Karnaugh Maps.pptx
SOAL RANGKAIAN LOGIKA
Chapter 16
Combinational logic 2
Unit 2.pptx
แบบฝึกทักษะฟังก์ชัน(เพิ่มเติม)ตัวจริง
Dateof birthdesignproblem 1_
fghdfh
Digital fiiter
Computational electromagnetics
M A T H E M A T I C A L M E T H O D S J N T U M O D E L P A P E R{Www
เวกเตอร์ใน 3 มิติ
เวกเตอร์ใน 3 มิติ
Palm ch1
Prelude to halide_public
Ad

Recently uploaded (20)

PDF
Insiders guide to clinical Medicine.pdf
PPTX
human mycosis Human fungal infections are called human mycosis..pptx
PPTX
Microbial diseases, their pathogenesis and prophylaxis
PDF
102 student loan defaulters named and shamed – Is someone you know on the list?
PPTX
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
PDF
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
PDF
FourierSeries-QuestionsWithAnswers(Part-A).pdf
PDF
Classroom Observation Tools for Teachers
PDF
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
PPTX
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PPTX
GDM (1) (1).pptx small presentation for students
PDF
STATICS OF THE RIGID BODIES Hibbelers.pdf
PPTX
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
PDF
2.FourierTransform-ShortQuestionswithAnswers.pdf
PDF
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
PPTX
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
PDF
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
PDF
Sports Quiz easy sports quiz sports quiz
PPTX
Pharma ospi slides which help in ospi learning
Insiders guide to clinical Medicine.pdf
human mycosis Human fungal infections are called human mycosis..pptx
Microbial diseases, their pathogenesis and prophylaxis
102 student loan defaulters named and shamed – Is someone you know on the list?
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
FourierSeries-QuestionsWithAnswers(Part-A).pdf
Classroom Observation Tools for Teachers
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
GDM (1) (1).pptx small presentation for students
STATICS OF THE RIGID BODIES Hibbelers.pdf
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
2.FourierTransform-ShortQuestionswithAnswers.pdf
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
Sports Quiz easy sports quiz sports quiz
Pharma ospi slides which help in ospi learning

Solutions manual for digital logic and microprocessor design with interfacing 2nd edition by hwang ibsn 9781305859456

  • 1. Solutions Manual for Digital Logic and Microprocessor Design with Interfacing 2nd Edition by Hwang IBSN 9781305859456 Full clear download (no formatting errors) at: http://downloadlink.org/p/solutions-manual-for-digital-logic-and- microprocessor-design-with-interfacing-2nd-edition-by-hwang-ibsn- 9781305859456/ Chapter 2 Solutions 2.1. a) 1000010 b) 110001 c) 1000000001 d) 1101100000 e) 11101101001 f) 11111011111 2.2. a) b) c) d) e) f) 3010, 368, 1E16 26, 32, 1A 291, 443, 123 91, 133, 5B 87810, 15568, 36E16 1514, 2752, 5EA 2.3. a) 01100110 b) 11100011 c) 0010111111101000 d) 011111000010 e) 0101101000101101 f) 1110000010001011 2.4. a) 000011101010 b) 111100010110 c) 000010011100 d) 101111000100 e) 111000101000 2.5. Decimal Octal Hexadecimal a) –53 713 CB b) 30 36 1E c) –19 55 ED d) –167 7531 F59 e) 428 654 1AC 2.6.
  • 2. a ) 1 1100101; 229 b) 10110001; 177 c) 111010110; 214 d) 101011101; 93 2.7. a) 11100101; –27 b) 10110001; –79
  • 3. x y z xy'z x'yz' xyz xyz' F 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 0 0 1 1 1 0 0 0 0 1 1 1 1 1 0 0 1 0 1 c) 111010110; –42 d) 101011101; 93 2.8. a) 01101111; 111 b) 11001001; 201 c) 11110000; 240 d) 10110001; 177 2.9. a) 01101111; 111 b) 11001001; –55 c) 11110000; –16 d) 10110001; –79 2.10. Binary calculations Unsigned decimal calculations Signed decimal calculations 1001 + 0011 = 1100 No overflow 9 + 3 = 12 No overflow error –7 + 3 = –4 No overflow error 0110 + 1011 = 10001 Overflow 6 + 11 = 1 Overflow error 6 + (–5) = 1 No overflow error 0101 + 0110 = 1011 No overflow 5 + 6 = 11 No overflow error 5 + 6 = –5 Overflow error 0101 – 0110 = 1111 No overflow 5 – 6 = 15 Overflow error 5 – 6 = –1 No overflow error 1011 – 0101 = 0110 No overflow 11 – 5 = 6 No overflow error –5 – 5 = 6 Overflow error 2.11. x y z x'y'z' x'yz xy'z' xyz F 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 0 1 1 0 0 0 0 1 0 1 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 1 0 0 0 1 1 (a) (b)
  • 4. w x y z wxy'z w'yz' wxz xyz' F 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 1 1 0 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 1 1 0 1 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 1 0 1 w x y z w'z' w'xy wx'z wxyz F 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1 0 0 1 0 1 1 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 1 1 0 1 0 0 0 0 0 0 1 0 1 1 0 0 1 0 1 1 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 1 1 w x y z w'xy'z w'xyz wxy'z wxyz F 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1 1 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 1 1 (c) (d) x y z xy' x'y'z xyz' F 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 1 0 0 1 1 0 1 1 0 0 1 1 1 0 0 0 1 1 1 1 1 0 0 0 0 (e) (f) x y z x' y' x+y' yz (yz)' [(x+y' ) (yz)' ] xy' x'y (xy' + x'y) F 0 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 1 1 1 0 1 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 1 1 0 0 1 1 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 1 0 1 1 1 0 1 1 1 0 1 0 1 1 0 1 1 1 0 1 1 1 1 0 0 0 1 0 1 1 0 0 0 0 1 1 1 0 0 1 1 0 0 0 0 0 0 (g)
  • 5. (a) w x y z w'z' w'xy wx'z wxyz Left Side w'z' xyz wx'y'z wyz Rig Sid 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 1 1 0 0 0 1 0 1 1 1 0 1 0 0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 0 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 1 0 1 0 1 1 (b) N3 N2 N1 N0 N3'N2'N1N0' N3'N2'N1N0 N3N2'N1N0' N3N2'N1N0 N3N2N1'N0' N3N2N1N0 F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 1 1 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 1 0 1 1 0 0 0 1 0 0 1 1 1 0 0 0 0 0 0 1 0 1 1 1 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 (h) 2.12. (a) F = a'bc' + a'bc + abc' (b) F = w'x'yz' + w'xy'z' + w'xy'z + w'xyz + wx'y'z + wx'yz' + wxy'z' + wxy'z + wxyz (c) F1 = w'x'y'z' + w'x'yz + w'xy'z + w'xyz' + wx'y'z + wx'yz' + wxy'z' + wxyz F2 = w'x'y'z' + w'x'y'z + w'x'yz' + w'x'yz + w'xy'z + wx'y'z' + wx'y'z + wxy'z' + wxy'z + wxyz' + wxyz (d) F = N3'N2'N1N0' + N3'N2'N1N0 + N3'N2N1N0' + N3N2'N1N0' + N3N2'N1N0 + N3N2N1'N0' + N3N2N1N0 2.14. ht e
  • 6. Right Side 1 1 1 1 x' z' Right Side 1 1 1 1 0 1 1 1 1 1 0 1 0 1 1 0 0 0 0 1 1 0 0 0 xy x'z Right Side 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 1 0 1 1 0 1 (e) w x y z w'x'yz' w'x'yz wx'yz' wx'yz wxyz Left Side x' wz (x' + wz) Rig Sid 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 0 1 1 0 1 1 0 0 1 1 0 1 0 0 0 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 0 0 0 0 0 0 1 1 1 0 1 0 1 0 0 0 1 0 0 1 1 0 1 1 1 0 1 1 0 0 0 1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 1 1 1 (f) y z z y' yz' Left Side 0 0 0 1 0 1 0 1 1 1 0 1 1 0 0 0 1 1 1 1 1 0 0 1 (c) x y z xy'z' x' xyz' Left Side 0 0 0 0 1 0 1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 1 0 1 0 1 1 0 0 1 0 0 1 1 0 1 0 0 0 0 1 1 0 0 0 1 1 1 1 1 0 0 0 0 (d) x y z xy x'z yz Left Side 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1 1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 1 0 0 1 1 1 1 1 0 1 1 ht e
  • 7. Right Side 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 (g) xi yi ci xiyi xi + yi ci(xi + yi) Left Side xiyici xiyici' xiyi'ci xi'yici Righ Side 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 1 0 1 1 1 0 1 1 0 1 0 1 0 0 1 1 1 1 1 1 1 1 1 0 0 0 1 (h) xi yi ci xiyi xi + yi ci(xi + yi) Left xiyi x ⊕y c (x ⊕y ) Right Side i i i i i Side 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 1 0 1 1 1 0 1 1 1 1 0 0 0 1 0 0 0 1 0 0 1 0 1 0 1 1 1 0 1 1 1 1 1 0 1 1 0 1 1 0 0 1 1 1 1 1 1 1 1 1 0 0 1 2.19. w x y z w'xy'z w'xyz wxy'z wxyz Left Side 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1 1 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 1 1 t (a) w'z' + w'xy + wx'z + wxyz = w'x'y'z' + w'x'yz' + w'xy'z' + w'xyz' + w'xyz' + w'xyz + wx'y'z + wx'yz + wxyz = w'x'y'z' + w'x'yz' + w'xy'z' + w'xyz' + w'xyz + wx'y'z + wx'yz + wxyz = w'z' + w'xyz + wx'y'z + wx'yz + wxyz = w'z' + (w'+w)xyz + wx'y'z + w(x'+x)yz = w'z' + xyz + wx'y'z + wyz (b) z + y' + yz' = z(y'+y) + (z'+z)y' + yz'
  • 8. = zy' + zy + z'y' + zy' + yz' = z(y'+y) + z'(y'+y) = z + z' = 1 (c) x y' z' + x' + x y z' = x z' (y' + y) + x' = x z' + x' = x z' + 1 x' = (x + 1)(x + x' )(z' + 1)(z' + x' ) = 1 • 1 • 1 (z' + x' ) = x' + z' (d) xy + x'z + yz = xy(z'+z) + x'(y'+y)z + (x'+x)yz = xyz' + xyz + x'y'z + x'yz + x'yz + xyz = xy(z'+z) + x'(y'+y)z = xy(1) + x'(1)z = xy + x'z (e) w'x'yz' + w'x'yz + wx'yz' + wx'yz + wxyz = [w'x'yz' + w'x'yz + wx'yz' + wx'yz] + [wx'yz + wxyz] = x'y(w'z'+ w'z+ wz'+ wz) + w(x'+x)yz = x'y + wyz = y(x' + wz) (f) w'xy'z + w'xyz + wxy'z + wxyz = xy'z(w' + w) + xyz(w' + w) = xy'z + xyz = xz(y + y') = xz (g) xiyi + ci(xi + yi) = xiyi + xici + yici = xiyi(ci + ci' ) + xi(yi + yi' )ci + (xi + xi' )yici = xiyici + xiyici' + xiyici + xiyi'ci + xiyici + xi'yici = xiyici + xiyici' + xiyi'ci + xi'yici (h) xiyi + ci(xi + yi) = xiyi + xici + yici = xiyi(ci + ci' ) + xi(yi + yi' )ci + (xi + xi' )yici = xiyici + xiyici' + xiyici + xiyi'ci + xiyici + xi'yici = xiyici + xiyici' + xiyi'ci + xi'yici = xiyi(ci + ci' ) + ci(xiyi' + xi'yi) = xiyi + ci(xi ⊕yi) 2.20. (a) x'y'z' + x'yz + xy'z' + xyz = (x + x')y'z' + (x + x')yz = y'z' + yz = y z (b) xy'z + x'yz' + xyz + xyz' = (x + x')yz' + x(y + y')z = yz' + xz
  • 9. v w x y z 5 XOR 5 XNOR 0 0 0 0 0 0 0 0 0 0 0 1 1 1 (c) w'xy'z + w'xyz + wxy'z + wxyz = xz(w'y' + w'y + wy' + wy) = xz (d) wxy'z + w'yz' + wxz + xyz' = wxz + yz'(x+w') (e) xy' + x'y'z + xyz' = xy'z + xy'z' + x'y'z + xyz' = xy' + y'z + xz' = y'(x + z) + xz' (f) w'z' + w'xy + wx'z + wxyz = w'z' + w'xyz + w'xyz' + wx'z + wxyz = w'z' + xyz(w' + w) + w'xyz' + wx'z = w'z' + xyz + wx'z = w'z' + z(xy + wx') (g) [(x+y' ) (yz)' ] (xy' + x'y) = [(x+y' ) (y'+z')] (xy' + x'y) = [xy' + xz' + y' + y'z'] (xy' + x'y) = [xz' + y'] (xy' + x'y) = xy'z' + xx'yz' + y'xy' + y'x'y = xy'z' + xy' = xy' (h) N3'N2'N1N0' + N3'N2'N1N0 + N3N2'N1N0' + N3N2'N1N0 + N3N2N1'N0' + N3N2N1N0 = 2.21. F = (x' + y' + x'y' + xy) (x' + yz) = (x' • 1 + y' • 1 + x'y' + xy) (x' + yz) by Theorem 6a = (x' (y + y' ) + y' (x + x' ) + x'y' + xy) (x' + yz) by Theorem 9b = (x'y + x'y' + y'x + y'x' + x'y' + xy) (x' + yz) by Theorem 12a = (x'y + x'y' + y'x + y'x' + x'y' + xy) (x' + yz) by Theorem 7b = (x' (y + y') + x (y + y')) (x' + yz) by Theorem 12a = (x' • 1 + x • 1) (x' + yz) by Theorem 9b = (x' + x) (x' + yz) by Theorem 6a = 1 (x' + yz) by Theorem 9b = (x' + yz) by Theorem 6a 2.22. For three variables (x, y, z), there is a total of eight (23 ) minterms. The function has five minterms, therefore, the inverted function will have three (8-5=3) minterms. Hence, implementing the inverted function and then adding a NOT gate at the final output will result in a smaller circuit. The circuit requires 3 AND gates, 1 OR gate, and 1 NOT gate. 2.23. w x y z 4 AND 4 NAND 4 NOR 4 XOR 4 XNOR 0 0 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 0
  • 10. 0 0 0 1 0 1 1 0 0 0 1 1 0 0 0 0 1 0 0 1 1 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 1 0 1 0 0 0 1 1 0 1 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 1 1 1 1 0 1 1 0 0 0 0 0 1 1 0 1 1 1 0 1 1 1 0 1 1 0 1 1 1 1 0 0 1 0 0 0 0 1 1 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 1 1 1 1 0 1 0 0 0 0 1 0 1 0 1 1 1 1 0 1 1 0 1 1 1 0 1 1 1 0 0 1 1 0 0 0 0 0 1 1 0 0 1 1 1 1 1 0 1 0 1 1 1 1 0 1 1 0 0 1 1 1 0 0 1 1 1 1 1 0 1 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 x y z F 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 1 1 0 0 1 0 0 1 0 1 0 0 0 1 1 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 1 0 1 0 0 1 0 1 1 0 0 1 0 0 1 0 1 1 1 0 1 0 1 0 1 0 0 0 0 1 0 1 0 1 0 0 1 0 1 0 0 1 1 0 1 0 0 1 0 0 1 1 0 1 1 0 1 0 1 0 1 1 0 0 0 1 0 0 1 1 1 0 1 0 1 0 1 0 1 1 1 0 0 1 0 1 0 1 1 1 1 1 0 0 0 1 (a) (b) (c) (d) (e) (f) (g) 2.24. w x y z (x y)' (xyz)' (x y)' + (xyz)' (w' + x + z) F 0 0 0 0 0 1 1 1 1 0 0 0 1 0 1 1 1 1 0 0 1 0 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 0 1 0 1 1 1 1 1 1 0 1 1 0 0 1 1 1 1 0 1 1 1 0 0 0 1 0 1 0 0 0 0 1 1 0 0 1 0 0 1 0 1 1 1 1 1 0 1 0 1 1 1 0 0 1 0 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 0 0 1 0 (a) (b)
  • 11. x y z F 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 1 1 w x y z w'xy'z (x ⊕y) w'z (y ⊕x) [w'xy'z + w'z (y ⊕x)] F 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1 0 1 1 1 0 0 1 0 0 0 1 0 0 1 0 1 0 1 1 1 1 1 0 0 1 1 0 0 0 0 0 1 0 1 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 1 1 0 1 0 0 1 0 0 1 1 0 1 1 0 1 0 0 1 1 1 0 0 0 1 0 0 1 1 1 0 1 0 1 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 1 (c) 2.25. a) w x y z (x y)' (xyz)' (x y)' + (xyz)' (w' + x + z) F 0 0 0 0 0 1 1 1 1 0 0 0 1 0 1 1 1 1 0 0 1 0 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 0 1 0 1 1 1 1 1 1 0 1 1 0 0 1 1 1 1 0 1 1 1 0 0 0 1 0 1 0 0 0 0 1 1 0 0 1 0 0 1 0 1 1 1 1 1 0 1 0 1 1 1 0 0 1 0 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 0 0 1 0 (a) (b)
  • 12. w x y z w'xy'z (x ⊕y) w'z (y ⊕x) [w'xy'z + w'z (y ⊕x)] F 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1 0 1 1 1 0 0 1 0 0 0 1 0 0 1 0 1 0 1 1 1 1 1 0 0 1 1 0 0 0 0 0 1 0 1 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 1 1 0 1 0 0 1 0 0 1 1 0 1 1 0 1 0 0 1 1 1 0 0 0 1 0 0 1 1 1 0 1 0 1 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 1 (c) b) F = [(x y)' + (xyz)'] (w' + x + z) = [xy' + x'y + x' + y' + z')] (w' + x + z) = (x' + y' + z') (w' + x + z) = (ww' + x' + y' + z') (w' + x + yy' + z) = (w + x' + y' + z') (w' + x' + y' + z') (w' + x + y + z) (w' + x + y' + z) = Π(M7 + M8 + M10 + M15) (a) F = x ⊕y ⊕z = (xy' + x'y)z' + (xy' + x'y)'z = xy'z' + x'yz' + xy'z + x'y'z = (x+y+z)(x+y'+z')(x'+y'+z)(x'+y'+z') = Π(M0 + M3 + M6 + M7) (b) F = [w'xy'z + w'z (y ⊕x)]' = [w'xy'z]' [w'z (y ⊕x)]' = [w+x'+y+z'] [w+z'+ (y ⊕x)'] = [w+x'+y+z'] [w+z'+ xy + x'y'] = [w+x'+y+z'] [w+x+y'+z'] [w+x'+y+z'] = Π( M3 + M5) (c) 2.26. F = [(x y)' + (xyz)'] (w' + x + z) = [xy' + x'y + x' + y' + z')] (w' + x + z) = (x' + y' + z') (w' + x + z) = x'w' + x'x + x'z + y'w' + y'x + y'z + z'w' + z'x + z'z = w'x' + x'z + w'y' + xy' + y'z + w'z' + xz' = (x ⊕z) + xy' + w'x' or (x ⊕z) + xy' + w'z' or (x ⊕z) + y'z + w'x' or (x ⊕z) + y'z + w'z' (a) F = x ⊕y ⊕z (b)
  • 13. x y Left Side x ⊕y x y Right Side (x y)' 0 0 0 1 0 0 1 1 0 1 1 0 1 0 1 1 1 0 1 0 F = [w'xy'z + w'z (y ⊕x)]' = [w'xy'z]' [w'z (y ⊕x)]' = [w+x'+y+z'] [w+z'+ (y ⊕x)'] = [w+x'+y+z'] [w+z'+ xy + x'y'] = w + wz' + wxy + wx'y' + wx' + x'z' + x'y' + wy + yz' + xy + wz' + z' + xyz' + x'y'z' = w + z' + x'y' + xy = w + z' + (x y) (c) 2.27. x y y' Left Side x ⊕y' Right Side x y 0 0 1 1 1 0 1 0 0 0 1 0 1 0 0 1 1 0 1 1 (a) (b) w x y z w⊕x y⊕z Left Side (w⊕x) (y⊕z) w x y z Right Side Right Side (w x) (y z) (((w x) y) z) 0 0 0 0 0 0 1 1 1 1 1 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 1 1 0 0 1 1 1 1 1 0 1 0 0 1 0 0 0 1 0 0 0 1 0 1 1 1 1 0 0 1 1 0 1 1 0 1 1 1 0 0 1 1 0 1 1 1 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 1 1 1 1 0 0 1 1 1 0 1 0 1 1 1 0 0 1 1 1 0 1 1 1 0 0 0 1 0 0 1 1 0 0 0 0 1 1 1 1 1 1 1 0 1 0 1 0 1 0 0 0 1 1 1 0 0 1 0 1 0 0 0 1 1 1 1 0 0 1 1 1 1 1 (c) x y z (xy)' ((xy)'x)' ((xy)'y)' [((xy)'x)'((xy)'y)'] Left Side [((xy)'x)'((xy)'y)']' Right Side x ⊕y 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 0 0 0 1 0 1 1 0 0 1 1 0 1 1 1 1 0 0 1 1 1 0 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 1 1 1 0 0 1 1 1 0 0 1 1 1 0 1 1 1 0 0 (d)
  • 14. 2.28. (x ⊕y) = xy' + x'y = xx' + xy' + x'y + yy' = (x + y) (x' + y') = (x'y')' (xy)' = [(x'y') + (xy)]' = (x y)' [((xy)'x)' ((xy)'y)' ]' = ((xy)'x) + ((xy)'y) (a) x ⊕y' = xy +x'y' = x y (b) = (x' + y' )x + (x' + y' )y = xx' + xy' + x'y + y'y = xy' + x'y = x ⊕y (d) 2.29. x ⊕y ⊕z = (x ⊕y) ⊕z = (x'y + xy' ) ⊕z = (x'y + xy' )z' + (x'y + xy' )'z = x'yz' + xy'z' + (x'y)' (xy' )'z = x'yz' + xy'z' + (x+y' ) (x'+y) z = x'yz' + xy'z' + xx'z + xyz + x'y'z + y'yz = x'y'z + x'yz' + xy'z' + xyz 2.30. x ⊕y ⊕z = (x ⊕y) ⊕z = (x'y + xy') ⊕z = (x'y + xy')' z + (x'y + xy') z' = (x'y)' · (xy')' z + x'yz' + xy'z' = (x + y') · (x' + y) z + x'yz' + xy'z' = xx'z + xyz + x'y'z + y'yz + x'yz' + xy'z' = (xy + x'y') z + (x'y + xy') z' = (xy + x'y') z + (xy + x'y')' z' = (x y) z + (x y)' z' = x y z 2.31. (a) F(x,y,z) = Σ(m0, m3, m4, m7) (a) F(x,y,z) = Π(M1, M2, M5, M6) (b) F(x,y,z) = Π(M0, M1, M3, M4) (c) F(w,x,y,z) = Π(M0, M1, M2, M3, M4, M6, M8, M9, M10, M11, M12, M14) (d) F(w,x,y,z) = Π(M0, M1, M3, M4, M5, M7, M8, M9, (b) F(x,y,z) = Σ(m2, m5, m6, m7) M10, M11, M12) (c) (d) (e) F(w,x,y,z) = Σ(m5, m7, m13, m15) F(w,x,y,z) = Σ(m2, m6, m13, m14, m15) F(x,y,z) = Σ(m1, m4, m5, m6) (e) (f) M14 F(x,y,z) = Π(M0, M2, M3, M7) F(w,x,y,z) = Π(M1, M3, M5, M8, M10, M12, M13, ) (f) F(w,x,y,z) = Σ(m0, m2, m4, m6, m7, m9, m11, m15) (g) F(x,y,z) = Π(M0, M1, M2, M3, M6, M7) (g) F(x,y,z) = Σ(m4, m5) (h) F(N3,N2,N1,N0) = Σ(m2, m3, m10, m11, m12, m15) (a) (h) F(N3,N2,N1,N0) = Π(M0, M1, M4, M5, M6, M7, M8, M9, M13, M14) (b)
  • 15. 2.32. (a) F(x,y,z) = x'y'z + x'yz + xyz (b) F(w,x,y,z) = w'x'y'z + w'x'yz + w'xyz (c) F(x,y,z) = (x+y+z') (x+y'+z') (x'+y'+z') (d) F(w,x,y,z) = (w+x+y+z') (w+x+y'+z') (w+x'+y'+z') (e) F'(x,y,z) = x'y'z' + x'yz' + xy'z' + xy'z + xyz' (f) F(x,y,z) = (x+y+z) (x+y'+z) (x'+y+z) (x'+y+z') (x'+y'+z) 2.33. F' is expressed as a sum of its 0-minterms. Therefore, F is the sum of its 1-minterms = Σ(0, 2, 4, 5, 6). Using three variables, the truth table is as follows: x y z Minterms F 0 0 0 m0=x' y' z' 1 0 0 1 m1=x' y' z 0 0 1 0 m2=x' y z' 1 0 1 1 m3=x' y z 0 1 0 0 m4=x y' z' 1 1 0 1 m5=x y' z 1 1 1 0 m6=x y z' 1 1 1 1 m7=x y z 0 2.34. F = Σ(3, 4, 5) = m3 + m4 + m5 = x’yz + xy’z’ + xy’z = (x’+x +x)(x’+x +y’)(x’+x +z) (x’+y’+x)(x’ + y’ + y’)(x’ + y’ + z) (x’+z’+x)(x’ + z’ + y’)(x’+z’+z) (y + x + x)(y +x +y’)(y + x + z) (y +y’+x)(y +y’+y’)(y +y’+z) (y + z’ + x)(y +z’+y’)(y +z’+z) (z + x + x)(z + x + y’)(z + x + z) (z + y’ + x)(z + y’ + y’)(z + y’ + z) (z +z’+x)(z +z’+y’)(z +z’+z) = (x’ + y’ + z) (x’ + y’ + z’) (x + y + z) (x + y + z’) (x + y’ + z) 2.35. a) b) Product-of-sums (AND-of-OR) format is obtained by using the duality principle or De Morgan’s Theorem: F' = (x'+y+z) • (x'+y+z') • (x'+y'+z) • (x'+y'+z') Sum-of-products (OR-of-AND) format is obtained by first constructing the truth table for F and then inverting the 0’s and 1’s to get F '. Then we simply use the AND terms where F' = 1. x y z F F ' 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 1 0 1 1 0 0 1 0 1 0 1 1 0 1 1 0 1 0 1 1 1 1 0
  • 16. F ' = x'y'z' + x'y'z + x'yz' + x'yz 2.36. a) F = w x y z = (wx + w'x' ) y z = [(wx + w'x' )y + (wx + w'x' )' y' ] z + [(wx + w'x' )y + (wx + w'x' )' y' ]' z' = wxyz + w'x'yz + (wx)' (w'x' )'y'z + [(wx + w'x' )y + (wx + w'x' )' y' ]' z' = m15 + m3 + (w'+x' )(w+x)y'z + [(wx + w'x' )y + (wx + w'x' )' y' ]' z' = m15 + m3 + w'xy'z + wx'y'z + [(wx + w'x' )y + (wx + w'x' )' y' ]' z' = m15 + m3 + m5 + m9 + [(wx + w'x' ) y]' [(wx + w'x' )' y' ]' z' = m15 + m3 + m5 + m9 + [(wx + w'x' )' + y' ] [(wx + w'x' )+ y] z' = m15 + m3 + m5 + m9 + [(wx)' (w'x' )' + y' ] [wxz' + w'x' z' + yz' ] = m15 + m3 + m5 + m9 + [(w'+x' )(w+x) + y' ] [wxz' + w'x' z' + yz' ] = m15 + m3 + m5 + m9 + [w'x + wx' + y' ] [wxz' + w'x' z' + yz' ] = m15 + m3 + m5 + m9 + w'xyz' + wx'yz' + wxy'z' + w'x'y'z' = m15 + m3 + m5 + m9 + m6 + m10 + m12 + m0 2.37. a) module P2_24a ( input w,x,y,z, output F ); assign F = (~(x^y) | ~(x&y&z)) & (~w|x|z); endmodule b) module P2_24b ( input x,y,z, output F ); assign F = x^y^z; endmodule c) module P2_24c ( input w,x,y,z, output F ); assign F = ~((~w&x&~y&z) | (~w&z&(y^x))); endmodule
  • 17. 2.38. a) LIBRARY IEEE; USE IEEE.STD_LOGIC_1164.all; ENTITY P2_24a IS PORT ( w,x,y,z: IN STD_LOGIC; F: OUT STD_LOGIC); END P2_24a; ARCHITECTURE Dataflow OF P2_24a IS BEGIN F <= (NOT (x XOR y) OR NOT (x AND y AND z)) AND (NOT w OR x OR z); END Dataflow; b) LIBRARY IEEE; USE IEEE.STD_LOGIC_1164.all; ENTITY P2_24b IS PORT ( x,y,z: IN STD_LOGIC; F: OUT STD_LOGIC); END P2_24b; ARCHITECTURE Dataflow OF P2_24b IS BEGIN F <= x XOR y XOR z; END Dataflow; c) LIBRARY IEEE; USE IEEE.STD_LOGIC_1164.all; ENTITY P2_24c IS PORT ( w,x,y,z: IN STD_LOGIC; F: OUT STD_LOGIC); END P2_24c; ARCHITECTURE Dataflow OF P2_24c IS BEGIN F <= NOT((NOT w AND x AND NOT y AND z) OR (NOT w AND z AND (y XOR x))); END Dataflow;
  • 18. 2.39. // this is a Verilog behavioral model of the car security system module Siren ( input M, D, V, output S ); wire term1, term2, term3; always @ (M or D or V) begin term1 = (M & ~D & V); term2 = (M & D & ~V); term3 = (M & D & V); S = term1 | term2 | term3; end endmodule 2.40. LIBRARY IEEE; USE IEEE.STD_LOGIC_1164.ALL; ENTITY Siren IS PORT ( M, D, V: IN STD_LOGIC; S: OUT STD_LOGIC); END Siren; ARCHITECTURE Behavioral OF Siren IS BEGIN PROCESS(M, D, V) BEGIN S <= (M AND NOT D AND V) OR (M AND D AND NOT V) OR (M AND D AND V); END PROCESS; END Behavioral;
  • 19. Solutions Manual for Digital Logic and Microprocessor Design with Interfacing 2nd Edition by Hwang IBSN 9781305859456 Full clear download (no formatting errors) at: http://downloadlink.org/p/solutions-manual-for-digital-logic-and- microprocessor-design-with-interfacing-2nd-edition-by-hwang-ibsn- 9781305859456/