SlideShare a Scribd company logo
2
Most read
4
Most read
Suppressorand distort variablesWANG ChengjunCity University of HONG KONG20110304
Suppressor and SuppressionA suppressor is one which weakens a relationship, which conceals its true strength.Context: zero order correlation.
This is the relationship between two variables, while ignoring the influence of other variablesThe general idea:there is some kind of noise (error) in X1 that is not correlated with Y, but is correlated with X2.
By including X2 we suppress this noise, and leave X1 as an improved predictor of Y.Suppressor Variable
Normal situationBecause the variables share variance and influence .each semi-partial correlation, and the corresponding beta, will be less than the simple correlation between Xi and Y. YX1
Classical suppression:  rY2 = 0The presence of X2 will increase the multiple correlation, even though it is not correlated with Y. X2 suppresses some of error variance in X1.
Suicide rate and religionDurkheim argues that if we control the variable of education, the suicide rate of Jews people will be even smaller.Jews are assumed to be  a more integrated group.
Distort variablesYY-Distort variable converts a positive relationship into a negative relationship.+               X2X1X1-
Distort variable
Distort variablesZero order correlation between marriage and suicide rates indicates that marriage make people tend to suicide.Marriage make people more integrated, so the married people should have less suicide rate.
Keep model completeFor regression: y=b1*x1+b2*x2,  if |ry1|<|b1|For regression: y=b1*x1+b2*x2,  if ry1*b1<0Suppressor and distort variables remind us to keep the model complete.
 Appendix 1 A simulation of suppression################Jonathan'sexample############################# see http://zjz06.spaces.live.com/blog/cns!3F49BBFB6C5A1D86!341.entryy<-c(1,2,3,4,5)x1<-c(2,3,4,5,1)x2<-c(3,2,1,4,5)cor(y,x1);cor(y,x2);cor(x1,x2)################## partialcorrelations######################library(ggm) data<-cbind(y,x1,x2)# partial correlation between y and x1controlling for x2pcor(c('y','x1','x2'),var(data))pcor(c('y','x2','x1'),var(data))# regression partials the effect ofsupressionfit12<-lm(y~x1+x2)summary(fit1);summary(fit2);summary(fit12)library(QuantPsyc)lm.beta(fit12)#########visualize the data in correlationmatrices###########library(corrgram)#install.packages('corrgram')corrgram(data, order=TRUE,lower.panel=panel.shade,  upper.panel=panel.pie,text.panel=panel.txt,  main="Suppression in zero ordercorrelation")

More Related Content

PPTX
IMPROPER INTEGRAL
PPTX
PPTX
Ethical Issues in Assessment
PPTX
Mental Abilities level 1 by Jensen .pptx
PPT
Amos Learning
PPTX
Dr Amita Marwha -correlation coeeficient and partial.pptx
DOCX
Two-Variable (Bivariate) RegressionIn the last unit, we covered
DOCX
For this assignment, use the aschooltest.sav dataset.The d
IMPROPER INTEGRAL
Ethical Issues in Assessment
Mental Abilities level 1 by Jensen .pptx
Amos Learning
Dr Amita Marwha -correlation coeeficient and partial.pptx
Two-Variable (Bivariate) RegressionIn the last unit, we covered
For this assignment, use the aschooltest.sav dataset.The d

More from Chengjun Wang (14)

PDF
计算传播学导论
PPTX
数据可视化 概念案例方法 王成军 20140104
PPT
Randomly sampling YouTube users
PDF
An introduction to computational communication
PPTX
Pajek chapter2 Attributes and Relations
PPTX
Calculate Thresholds of Diffusion with Pajek
PPT
Chapter 2. Multivariate Analysis of Stationary Time Series
PPTX
人类行为与最大熵原理
PPTX
Impact of human value, consumer perceived value
PPTX
Introduction to News diffusion On News Sharing Website
PPTX
The Emergence of Spiral of Silence from Individual behaviors: Agent-based Mod...
PPTX
Pajek chapter1
PPTX
Stata Learning From Treiman
PPT
A M O S L E A R N I N G
计算传播学导论
数据可视化 概念案例方法 王成军 20140104
Randomly sampling YouTube users
An introduction to computational communication
Pajek chapter2 Attributes and Relations
Calculate Thresholds of Diffusion with Pajek
Chapter 2. Multivariate Analysis of Stationary Time Series
人类行为与最大熵原理
Impact of human value, consumer perceived value
Introduction to News diffusion On News Sharing Website
The Emergence of Spiral of Silence from Individual behaviors: Agent-based Mod...
Pajek chapter1
Stata Learning From Treiman
A M O S L E A R N I N G
Ad

Suppressor and distort variables

  • 1. Suppressorand distort variablesWANG ChengjunCity University of HONG KONG20110304
  • 2. Suppressor and SuppressionA suppressor is one which weakens a relationship, which conceals its true strength.Context: zero order correlation.
  • 3. This is the relationship between two variables, while ignoring the influence of other variablesThe general idea:there is some kind of noise (error) in X1 that is not correlated with Y, but is correlated with X2.
  • 4. By including X2 we suppress this noise, and leave X1 as an improved predictor of Y.Suppressor Variable
  • 5. Normal situationBecause the variables share variance and influence .each semi-partial correlation, and the corresponding beta, will be less than the simple correlation between Xi and Y. YX1
  • 6. Classical suppression:  rY2 = 0The presence of X2 will increase the multiple correlation, even though it is not correlated with Y. X2 suppresses some of error variance in X1.
  • 7. Suicide rate and religionDurkheim argues that if we control the variable of education, the suicide rate of Jews people will be even smaller.Jews are assumed to be a more integrated group.
  • 8. Distort variablesYY-Distort variable converts a positive relationship into a negative relationship.+ X2X1X1-
  • 10. Distort variablesZero order correlation between marriage and suicide rates indicates that marriage make people tend to suicide.Marriage make people more integrated, so the married people should have less suicide rate.
  • 11. Keep model completeFor regression: y=b1*x1+b2*x2, if |ry1|<|b1|For regression: y=b1*x1+b2*x2, if ry1*b1<0Suppressor and distort variables remind us to keep the model complete.
  • 12.  Appendix 1 A simulation of suppression################Jonathan'sexample############################# see http://zjz06.spaces.live.com/blog/cns!3F49BBFB6C5A1D86!341.entryy<-c(1,2,3,4,5)x1<-c(2,3,4,5,1)x2<-c(3,2,1,4,5)cor(y,x1);cor(y,x2);cor(x1,x2)################## partialcorrelations######################library(ggm) data<-cbind(y,x1,x2)# partial correlation between y and x1controlling for x2pcor(c('y','x1','x2'),var(data))pcor(c('y','x2','x1'),var(data))# regression partials the effect ofsupressionfit12<-lm(y~x1+x2)summary(fit1);summary(fit2);summary(fit12)library(QuantPsyc)lm.beta(fit12)#########visualize the data in correlationmatrices###########library(corrgram)#install.packages('corrgram')corrgram(data, order=TRUE,lower.panel=panel.shade,  upper.panel=panel.pie,text.panel=panel.txt,  main="Suppression in zero ordercorrelation")
  • 13.  Appendix 11 A simulation of distortionset.seed(20110303)y<-rnorm(10000) x2<--0.1*y+0.01*rnorm(10000)x1<-0.8*x2+0.01*rnorm(10000)cor(x1,x2);cor(x1,y);cor(x2,y);plot(data.frame(cbind(y,x1,x2)),col='3')f1<-lm(y~x1)f2<-lm(y~x2)f3<-lm(y~x1+x2)f4<-lm(x1~x2)summary(f1);summary(f2);summary(f3);summary(f4)