SlideShare a Scribd company logo
SURFACE INTEGRAL SUMMARY
PORAMATE (TOM) PRANAYANUNTANA
Key For Surface Integrals
dAS = (rs × rt)
|J| = rs × rt
hidden here
dsdt
dAT
,
s t
x y
r θ
z θ
φ θ
u v
...
...
There are only 2 ways to find
S
F dAS :
(1) By parameterization:
F dAS
S:r(s,t),(s,t)∈T in st-plane
=
T
F (rs × rt) dsdt
dAT
.
(2) By Geometry (for simple surfaces):
S
F dAS
ˆnSdAS
=
S
F ˆnS dAS
|J|dAT
.
Observe that
dAS =
ˆnS|J|
(rs × rt) dsdt
dAT
= ˆnS
dAS
|J| dsdt
dAT
.
Coordinates used rs × rt (orientation of S)
S : r(x, y) =


x
y
f(x, y)

 rx × ry =


−fx
−fy
1

 (up)
S : r(z, θ) =


R cos θ
R sin θ
z

 where r = R is a constant
radius from z-axis
rθ × rz =


x
y
0

 (away from z-axis)
S : r(φ, θ) =


R sin φ cos θ
R sin φ sin θ
R cos φ

 where ρ = R is a constant
radius from origin (0, 0, 0)
rφ × rθ =


x
y
z


R
R2
sin φ (away from (0, 0, 0))
Date: June 28, 2015.
Surface Integral Summary Poramate (Tom) Pranayanuntana
To find AS,
AS =
S
dAS = dAS
S:r(s,t),(s,t)∈T
=
T
dAS
rs × rt
|J|
dsdt
dAT
.
The flux through a graph of z = f(x, y) above a region R in the xy-plane, oriented upward, is
S
F dAS =
R










F1(x, y, f(x, y))
F2(x, y, f(x, y))
F3(x, y, f(x, y))




−fx
−fy
1


nSR








dxdy
dAR
=
R










F1(x, y, f(x, y))
F2(x, y, f(x, y))
F3(x, y, f(x, y))

 1
1 + f2
x + f2
y


−fx
−fy
1


ˆnS








1 + f2
x + f2
y
|J|
dxdy
dAR
dAS
.
The flux through a cylindrical surface S of radius r = R and oriented away from the z-axis is
S
F dAS =
T















F1(R, θ, z)
F2(R, θ, z)
F3(R, θ, z)

 1
R


x
y
0


nST
ˆnS













R
|J|
dzdθ
dAT
=
T









F1
F2
F3




cos θ
sin θ
0


ˆnS







R
|J|
dzdθ
dAT
,
where T is the θz-region corresponding to S.
The flux through a spherical surface S of radius ρ = R and oriented away from the origin is
S
F dAS =
T









F1(R, φ, θ)
F2(R, φ, θ)
F3(R, φ, θ)

 1
R


x
y
z


ˆnS







R2
sin φ dφdθ
=
T









F1
F2
F3




sin φ cos θ
sin φ sin θ
cos φ


ˆnS







R2
sin φ
|J|
dφdθ
dAT
,
where T is the θφ-region corresponding to S.
June 28, 2015 Page 2 of 2

More Related Content

DOC
Partial Derivative
PPTX
1-6 the coordinate plane part 2
PPT
7.1 area between curves
PDF
PPT
Quadratics Final
PPTX
Cartesian or the rectangular plane
PPT
TIU CET Review Math Session 4 Coordinate Geometry
PPT
CLASS X MATHS
Partial Derivative
1-6 the coordinate plane part 2
7.1 area between curves
Quadratics Final
Cartesian or the rectangular plane
TIU CET Review Math Session 4 Coordinate Geometry
CLASS X MATHS

What's hot (11)

PPTX
Derivatives and slope 2.1 update day1
PPTX
Graph of rational function
PPT
14 6 equations of-circles
DOCX
Ecat math
PDF
Plano numerico.
PDF
PPT
Coordinategeometry1 1
PPTX
Método shoenfeld
PPT
Conic Sections
PPTX
Maths ar. of triangles shubham n group
PPTX
Alg1 lesson 4-3
Derivatives and slope 2.1 update day1
Graph of rational function
14 6 equations of-circles
Ecat math
Plano numerico.
Coordinategeometry1 1
Método shoenfeld
Conic Sections
Maths ar. of triangles shubham n group
Alg1 lesson 4-3
Ad

Similar to Surface_Integral_Summary (20)

PDF
Parameterized Surfaces and Surface Area
PPT
1523 double integrals
PDF
ابلايد كامل .pdfgxhjdjdhdhdjdjjxhddjdndjjd
PDF
University of manchester mathematical formula tables
PPT
24 double integral over polar coordinate
PDF
Mathematical formula tables
PPTX
multiple intrigral lit
PDF
Tcu12 crc multi
DOCX
Analisis matematico
PDF
maths basics
PDF
Dif int
PDF
I managed to do this in terms of polar coordinates. How would one so.pdf
PDF
I managed to do this in terms of polar coordinates. How would one so.pdf
PDF
ゲーム理論BASIC 第45回 -シャープレイ値に関する定理 補足 証明5-
DOCX
Statistics formulaee
PPTX
35 tangent and arc length in polar coordinates
PPTX
Advanced Complex Analysis
PDF
Introduccio al calculo vectorial
PPTX
Distributionworkshop 2.pptx
PDF
A new Perron-Frobenius theorem for nonnegative tensors
Parameterized Surfaces and Surface Area
1523 double integrals
ابلايد كامل .pdfgxhjdjdhdhdjdjjxhddjdndjjd
University of manchester mathematical formula tables
24 double integral over polar coordinate
Mathematical formula tables
multiple intrigral lit
Tcu12 crc multi
Analisis matematico
maths basics
Dif int
I managed to do this in terms of polar coordinates. How would one so.pdf
I managed to do this in terms of polar coordinates. How would one so.pdf
ゲーム理論BASIC 第45回 -シャープレイ値に関する定理 補足 証明5-
Statistics formulaee
35 tangent and arc length in polar coordinates
Advanced Complex Analysis
Introduccio al calculo vectorial
Distributionworkshop 2.pptx
A new Perron-Frobenius theorem for nonnegative tensors
Ad

Surface_Integral_Summary

  • 1. SURFACE INTEGRAL SUMMARY PORAMATE (TOM) PRANAYANUNTANA Key For Surface Integrals dAS = (rs × rt) |J| = rs × rt hidden here dsdt dAT , s t x y r θ z θ φ θ u v ... ... There are only 2 ways to find S F dAS : (1) By parameterization: F dAS S:r(s,t),(s,t)∈T in st-plane = T F (rs × rt) dsdt dAT . (2) By Geometry (for simple surfaces): S F dAS ˆnSdAS = S F ˆnS dAS |J|dAT . Observe that dAS = ˆnS|J| (rs × rt) dsdt dAT = ˆnS dAS |J| dsdt dAT . Coordinates used rs × rt (orientation of S) S : r(x, y) =   x y f(x, y)   rx × ry =   −fx −fy 1   (up) S : r(z, θ) =   R cos θ R sin θ z   where r = R is a constant radius from z-axis rθ × rz =   x y 0   (away from z-axis) S : r(φ, θ) =   R sin φ cos θ R sin φ sin θ R cos φ   where ρ = R is a constant radius from origin (0, 0, 0) rφ × rθ =   x y z   R R2 sin φ (away from (0, 0, 0)) Date: June 28, 2015.
  • 2. Surface Integral Summary Poramate (Tom) Pranayanuntana To find AS, AS = S dAS = dAS S:r(s,t),(s,t)∈T = T dAS rs × rt |J| dsdt dAT . The flux through a graph of z = f(x, y) above a region R in the xy-plane, oriented upward, is S F dAS = R           F1(x, y, f(x, y)) F2(x, y, f(x, y)) F3(x, y, f(x, y))     −fx −fy 1   nSR         dxdy dAR = R           F1(x, y, f(x, y)) F2(x, y, f(x, y)) F3(x, y, f(x, y))   1 1 + f2 x + f2 y   −fx −fy 1   ˆnS         1 + f2 x + f2 y |J| dxdy dAR dAS . The flux through a cylindrical surface S of radius r = R and oriented away from the z-axis is S F dAS = T                F1(R, θ, z) F2(R, θ, z) F3(R, θ, z)   1 R   x y 0   nST ˆnS              R |J| dzdθ dAT = T          F1 F2 F3     cos θ sin θ 0   ˆnS        R |J| dzdθ dAT , where T is the θz-region corresponding to S. The flux through a spherical surface S of radius ρ = R and oriented away from the origin is S F dAS = T          F1(R, φ, θ) F2(R, φ, θ) F3(R, φ, θ)   1 R   x y z   ˆnS        R2 sin φ dφdθ = T          F1 F2 F3     sin φ cos θ sin φ sin θ cos φ   ˆnS        R2 sin φ |J| dφdθ dAT , where T is the θφ-region corresponding to S. June 28, 2015 Page 2 of 2