SlideShare a Scribd company logo
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308
_______________________________________________________________________________________
Volume: 03 Issue: 07 | Jul-2014, Available @ http://www.ijret.org 327
SYSTEM OF QUASILINEAR EQUATIONS OF REACTION-DIFFUSION
TASKS OF KOLMOGOROV-FISHER TYPE BIOLOGICAL
POPULATION TASK IN TWO-DIMENSIONAL CASE
D.K.Muhamediyeva1
1
Junior researcher of the Centre for development of software products and hardware-software complexes, Tashkent,
Uzbekistan
Abstract
In this paper considered parabolic system of two quasilinear reaction-diffusion equations of Kolmogorov-Fisher type of
biological population task relation for the two-dimensional case and localization of the wave solutions of the reaction - diffusion
systems with double nonlinearity. Cross-diffusion means that spatial move of one object, described by one of the variables is due
to the diffusion of another object, described by another variable.Considered spatial analogue of the Volterra-Lotka competition
system with nonlinear power dependence of the diffusion coefficient from the population density.
Keywords: Population, system, differential equation, cross-diffusion, double nonlinearity, wave solution.
--------------------------------------------------------------------***------------------------------------------------------------------
1. INTRODUCTION
Let’s consider following system of two equations in partial
derivatives in two-dimensional case:
.),(),(),(
,),(),(),(
2
1
212
2
22
1
1
212
1
212
2
2
2
222
1
2
2
2121
2
2
2
211
2
12
1
2
211
1
112
2
1
2
122
1
1
2
1121
1


























































x
u
uuQ
x
h
x
u
uuQ
x
h
x
u
D
x
u
Duug
t
u
x
u
uuQ
x
h
x
u
uuQ
x
h
x
u
D
x
u
Duuf
t
u
(1)
At 022211211  hhhh the mathematical model (1)
is a system type reaction-diffusion with diffusion coefficient
0,0,0,0 22211211  DDDD (at least one
0ijD ). In the case when at least one of the coefficients
(mark can be any), the system (1) is a cross-diffusion. To the
linear cross-diffusion corresponds constvuQij ),( for
2,1, ji i=1,2; to the linear cross-diffusion-
constvuQij ),( at least one of i and j.
Cross-diffusion means that spatial move one object,
described one of the variables is due to the diffusion of
another object, described by another variable.At the
population level simplest example is a parasite (the first
object, located within the "host" (the second object) moves
through the diffusion of the owner). The term "self-
diffusion" (diffuse, direct diffusion, ordinary diffusion)
moves individuals at the expense of the diffusion flow from
areas of high concentration, particularly in the area of low
concentration. The term "cross-diffusion" means
moving/thread one species/ substances due to the presence
of the gradient other individuals/ substances. В The value of
a cross-diffusion coefficient can be positive, negative or
equal to zero. The positive coefficient of cross-diffuse
indicates that the movement of individuals takes place in the
direction of low concentrations of other species occurs in the
direction of the high concentration of other types of
individuals/ substances. In the nature system with cross-
diffusion quite common and play a significant role
especially in biophysical and biomedical systems.
Equation (1) is a generalization of the simple diffusion
model for the logistic model of population growth [1-16] of
Malthus type ( 1211 ),( uuuf  , 2211 ),( uuuf  ,
1212 ),( uuuf  , 2212 ),( uuuf  ), Ferhulst type (
)1(),( 21211 uuuuf  , )1(),( 12211 uuuuf  ,
)1(),( 21212 uuuuf  , )1(),( 12212 uuuuf  ), and Allee
type ( )1(),( 1
21211

uuuuf  ,
)1(),( 2
12211

uuuuf  , )1(),( 1
21212

uuuuf  ,
)1(),( 2
12212

uuuuf  , 1,1 21   ) for the case
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308
_______________________________________________________________________________________
Volume: 03 Issue: 07 | Jul-2014, Available @ http://www.ijret.org 328
of double nonlinear diffusion. In case, when
1,1 21   , it can be regarded as the equation of
nonlinear filtration, thermal conductivity at simultaneous
influence of the source and the absorption capacity of which
is equalrespectively to 1
21,

uu  , 2
12 ,

uu  .
Let’s consider the spatial analogue of Volterra-Lotka
competition system with nonlinear power dependence of the
diffusion coefficient from population density. In the case of
the simplest Volterra’s competitive interactions between
populations can be constructed numerically, and in some
cases analytically heterogeneous in space solutions[19].
2. LOCALIZATION OF WAVE SOLUTIONS OF
REACTION - DIFFUSION SYSTEMS WITH
DOUBLE NONLINEARITY
Let’s consider in the domain Q={(t,x): 0< t < ,xR2
}
parabolic system of two quasilinear equations of reaction-
diffusion of Kolmogorov-Fisher typebiological population
task
 
 






























































































,1)()()(
,1)()()(
222
111
122
2
2
2
1
2
1
2
2
2
2
21
12
21
2
2
1
21
121
1
2
211
2
1
2
1
1
1
2
1
2
2
11
212
21
1
2
1
11
211
1
1


uutk
x
u
tl
x
u
tl
x
u
x
u
uD
xx
u
x
u
uD
xt
u
uutk
x
u
tl
x
u
tl
x
u
x
u
uD
xx
u
x
u
uD
xt
u
p
m
p
m
p
m
p
m
(2)
)(1001 xuu t  , )(2002 xuu t  ,
which describes the process of biological populations in
nonlinear two-component environment, it’s diffusion
coefficient is equal
2
1
11
211
1




p
m
x
u
uD ,
2
2
11
212
1




p
m
x
u
uD ,
2
1
21
121
2




p
m
x
u
uD ,
2
2
21
122
2




p
m
x
u
uD andconvective
transfer with speed )(tli , where 2121 ,,,, pmm -
positive real numbers, 0),,( 2111  xxtuu ,
0),,( 2122  xxtuu -search solutions.
The Cauchy problem and boundary problems for the system
(1) in one-dimensional and multidimensional cases
investigated by many authors [15-21]
The aim of this work is the investigation of qualitative
properties of solutions of the task (2) on the basis of self-
similar analysis and numerical solutions by using the
methods of modern computer technologies, research of
methods of linearization to the convergence of iterative
process with subsequent visualization. Obtained the
estimates of solutions and emerging in this case free
boundary, that gives the chance to choose the appropriate
initial approximation [15] for each value of the numeric
parameters.
It is known that the nonlinear wave equations have solutions
in the form of diffusion waves. Under the wave is
understood self-similar solution of the equation (2)
( , ) ( ),u t x f ct x   
     2
2
2
121 ,,,),( xxxxxtuxtu  ,
,
Where constant с- is a wave speed
Let's build self-similar system of equations (2) - more
simple for research system of equations.
Self-similar system of equations will construct by the
method of nonlinear splitting [15].
Replacement in (2)
),),((),,( 211
)(
211
0
1


tvexxtu
t
dk


,
 dlx
t
)(1
0
11  ,
),),((),,( 212
)(
212
0
2


tvexxtu
t
dk


,
 dlx
t
)(2
0
22  ,
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308
_______________________________________________________________________________________
Volume: 03 Issue: 07 | Jul-2014, Available @ http://www.ijret.org 329
Lead (2) to the form:
 
 




















































































,)(
,)(
21
)2()1(
2
2
2
2
2
21
122
21
2
2
1
21
121
1
2
21
)1()2(
1
2
1
2
2
11
212
21
1
2
1
11
211
1
1
2212222
1211111
vvetk
vv
vD
vv
vD
v
vvetk
vv
vD
vv
vD
v
tkpkm
p
m
p
m
tkmkp
p
m
p
m




(3)
),( 211001 vv t  , ),( 212002 vv t  .
If ))1(())1(( 2211  mpkmpk , then by
choosing
212
])2()1[(
121
])2()1[(
)2()1()2()1(
)(
212121
kpkm
e
kpkm
e
t
tkpkmtkpkm






,we get the following system of equations:
 


















































































,
,)(
212
2
2
2
2
21
122
21
2
2
1
21
121
1
2
211
2
1
2
2
11
212
21
1
2
1
11
211
1
1
2222
1111
vvta
vv
vD
vv
vD
v
vvta
vv
vD
vv
vD
v
b
p
m
p
m
b
p
m
p
m






(4)
where  1
21111 )1()2(
b
kmkpka  , ,
)1()2(
)1()2(
211
2111
1
kmkp
kmkp
b




  2
21222 )2()1(
b
kpkmka  , .
)2()1(
)2()1(
212
2122
2
kpkm
kpkm
b




If 0ib , and consttai )( , 2,1i , then the system has the form:


















































































.
,
212
2
2
2
2
21
122
21
2
2
1
21
121
1
2
211
2
1
2
2
11
212
21
1
2
1
11
211
1
1
222
111
vva
vv
vD
vv
vD
v
vva
vv
vD
vv
vD
v
p
m
p
m
p
m
p
m




The Cauchy problem for system (4) in the case when
021  bb studied in [16,19] and prove the existence of
wave global solutions and blow-up solutions.
Below we will describe one way of obtaining self-similar
system for the system of equations (4). It consists in the
following. Firstly we find first the solution of a system of
ordinary differential equations








,
,
212
2
211
1
2
1








a
d
d
a
d
d
In the form
1
)()( 011

 
 Tc , 2
)()( 022

 
 Tc , 00 T
,
Where
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308
_______________________________________________________________________________________
Volume: 03 Issue: 07 | Jul-2014, Available @ http://www.ijret.org 330
11 с ,
2
1
1

  , 12 с ,
1
2
1

  .
And then the solution of system (3)-(4) is sought in the form
,),,()(),,(
),,,()(),,(
2122212
2111211


wtvtv
wtvtv


(5)
and   ( )t chosen as
1 2 1
1
1 [ ( 2) ( 1)]
1 2 1
1 2 1
( 1)( 2)
1 1 2 1 2 1
0
1
1
( ) , 1 [ ( 2) ( 1)] 0,
1 [ ( 2) ( 1)]
( ) ( ) ( ) ln( ), 1 [ ( 2) ( 1)] 0,
( ), 2 1,
p m
mp
T if p m
p m
v t v t dt T if p m
T if p и m
 

  
 
    

   


         

       
   



if )1()2()1()2( 212121  mpmp  . Then for 2,1),,( ixwi  we get the following
system of equations


















































































)(
)(
2122
2
2
2
2
21
122
21
2
2
1
21
121
1
2
1211
2
1
2
2
11
212
21
1
2
1
11
211
1
1
222
111
www
ww
wD
ww
wD
w
www
ww
wD
ww
wD
w
p
m
p
m
p
m
p
m






, (6)
Where
1 [ ( 2) ( 1)]1 2 1
1 2 1
1 2 11
( )
1 1 1 2 1
1
, 1 [ ( 2) ( 1) 0,
(1 [ ( 2) ( 1)])
, 1 [ ( 2) ( 1) 0,
p m
if p m
p m
с if p m
 
 
  
  
   


         
     
(7)
2 1 2
2 1 2
2 1 22
(1 [ ( 2) ( 1)])
2 1 2 1 2
1
, 1 [ ( 2) ( 1)] 0,
(1 [ ( 2) ( 1)])
, 1 [ ( 2) ( 1)] 0.p m
if p m
p m
с if p m 
 
  
      

         
     
Representation of system (2) in the form (5) suggests that, when  , 0i and
















































































2
2
2
2
21
122
21
2
2
1
21
121
1
2
2
1
2
2
11
212
21
1
2
1
11
211
1
1
22
11


ww
wD
ww
wD
w
ww
wD
ww
wD
w
p
m
p
m
p
m
p
m
(8)
Therefore, the solution of system (1) with condition (5) tends to the solution of the system (8).
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308
_______________________________________________________________________________________
Volume: 03 Issue: 07 | Jul-2014, Available @ http://www.ijret.org 331
If 0)1()2([1 121  mp  , wave solution of system (6) has the form
)(),),(( 21  ii ytw  ,   c ,    2
2
2
1   2,1i ,
where c- wave velocity, and taking into account that the equation for ),,( 21 iw without the younger members always has a
self-similar solution if 0)1()2([1 121  mp  we get the system













.0)()(
,0)()(
22
11
1222
22
2
21
1
2111
11
2
11
2






yyy
d
dy
c
d
dy
d
dy
y
d
d
yyy
d
dy
c
d
dy
d
dy
y
d
d
p
m
p
m
After integration (8) we get the system of nonlinear
differential equations of the first order













.0
,0
2
2
2
21
1
1
1
2
11
2
2
1
cy
d
dy
d
dy
y
cy
d
dy
d
dy
y
p
m
p
m


(9)
The system (9) has an approximate solution in the form
1
)(1

 aAy , 2
)(2

 aBy ,
Where
)1)(1()2(
))1()(1(
21
2
1
1



mmp
mpp
 ,
)1)(1()2(
))1()(1(
21
2
2
2



mmp
mpp
 .
and the coefficients A and B are determined from the
solution of a system of nonlinear algebraic equations
cBA mpp
 111
1
1
)( ,
cBA pmp
 111
2
2
)( .
Then by taking into account expressions
),),((),,( 211
)(
211
0
1


tvexxtu
t
dk


,
),),((),,( 212
)(
212
0
2


tvexxtu
t
dk


We have
10
1
))((),,(
)(
211


 



 tcAexxtu
t
dk
,
20
2
))((),,(
)(
212


 



 tcBexxtu
t
dk
, 0c .
Due to the fact that
 
t
ii xdltb
0
0])()([  ,
If
 
t
iii xdltbx
0
0])()([  , 0t ,
Then
0),(1 xtu , 0),(2 xtu ,
 
t
iii xdltbx
0
0])()([  , 2,1,0  it .
Therefore, localization condition of solutions of the system
(2) are conditions
 
å
i dyyl
0
0)( , )(t for 2,1,0  it . (10)
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308
_______________________________________________________________________________________
Volume: 03 Issue: 07 | Jul-2014, Available @ http://www.ijret.org 332
Condition (10) is the prerequisite for the emergence of a
new effect - localizationof wave solutions of (2). If
condition (10) unfulfilled, then there is the phenomenon of
the finite velocity of propagation of a perturbation, i.e.
0),( xtui at )(tbx  , 

det
t dyykpm




0
)()3(
0
11
)(
, and the front of arbitrarily far away, with increasing time,
since )(t at t .
The study of qualitative properties of the system (2) allowed
to perform numerical experiment based on the values
included in the system of numeric parameters. For this
purpose, as the initial approximation was used asymptotic
solutions. To numerical solving the task for the linearization
of system (2) has been used linearization methods of
Newton and Picard. To build self-similar system of
equationsof biological populations used the method of
nonlinear splitting [16, 19].
3. NUMERICAL EXPERIMENT
Let’s construct a uniform grid to the numericalsolvingof the
task (2)
 ,,,...,1,0,0, lhnnihihxih 
and the temporary grit
 Tmnjhjht jh   ,,...,1,0,0, 111
.
Replace task (2) by implicit difference scheme and receive
differential task with the error  1
2
hhO  .
As is known, the main problem for the numerical solving of
nonlinear tasks, is suitable choosing initial approximation
and the linearization method of the system (2). Let’s
consider the function:
  ,)(),,( 1
12110

  atxxtv
  ,)(),,( 2
22120

  atxxtv
Where )()( 11 tet kt
  and )()( 22 tet kt
  defined
above functions,
Notation )(a means ),0max()( aa  . These functions
have the property of finite speed of propagation of
perturbations[16,19]. Therefore, in the numerical solving of
the task (1) - (2) at 11   as an initial approximation
proposed the function ),,( 210 xxtvi , 2,1i .
Created on input language MathCad program allows you to
visually traced the evolution of the process for different
values of the parameters and data.
Numerical calculations show that in the case of arbitrary
values 0,0   qualitative properties of solutions do
not change. Below listed results of numerical experiments
for different values of parameters (Fig.1)
Parameter values
Results of numerical experiment
1.2,7.0,3.0 21  pmm
2,5 11  k
3,7 22  k
3
10
eps
time1 FRAME 1( ) time2 FRAME 4( ) time1 FRAME 8( ) time2 FRAME 10( )
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308
_______________________________________________________________________________________
Volume: 03 Issue: 07 | Jul-2014, Available @ http://www.ijret.org 333
5.2,2.2,2.2 21  pmm
7,1 11  k
2,1 22  k
3
10
eps
8.2,2.0,2.0 21  pmm
2,5.0 11  k
3,7.0 22  k
3
10
eps
Fig.1 Results of numerical experiment
4. CONCLUSIONS
It can be expected that further theoretical and experimental
studies of excitable systems with cross-diffusion will make a
significant contribution to the study of phenomena of self-
organization in all of nonlinear systems from the micro and
astrophysical systems to public social systems.
REFERENCES
[1] Ахромеева ТСи др. Нестационарные структуры
и диффузионный хаос (М.: Наука, 1992)
[2] de1-Cаsti11o-Negrete D, Cаrrerаs В А Phys. Plasmas
9 118 (2002)
[3] del-Cаstillo-Negrete D, Сагге В А, Lynch V Physica
D 168-169 45 (2002)
[4] Jorne J L Theor. Biol. 55 529 (1975)
[5] А1mirаntis Y, Pаpаgeorgiou S L Theor. Biol. 151
289 (1991)
[6] Иваницкий Г Р, Медвинский А Б, Цыганов М А
УФН161 (4) 13 (1991)
[7] Wu Y, Zhаo X Physica D 200 325 (2005)
[8] Kuznetsov Yu А et а1. L Math. Biol. 32 219 (1994)
[9] Кузнецов Ю А и др. "Кросс-диффузионная модель
динамики границы леса", в сб. Проблемы
экологического мониторинга и моделирования
экосистем Т. 26 (СПб.: Гидрометиздат, 1996) с.
213
[10] Burridge R, KnopoffL Bм//. Seismol. Soc. Am. 57
341 (1967)
[11] Cаrtwright J HE, Hernandez-Garcia E, Piro О Phys.
Pev. Lett. 79 527(1997)
[12] Stuаrt А М /MA L Math. Appl. Med. Biol. 10 149
(1993)
[13] Murray J.D. Mathematical Biology. I. An
Introduction (Third Edition). – N.Y., Berlin,
Heidelberg: Springer Verlag, 2001. – 551 p.,
[14] M. Aripov (1997). «ApproximateSelf-
similarApproachtuSolve Quasilinear Parabolic
Equation» Experimentation, Modeling and
Computation in Flow Turbulence and
Combustion vol. 2. p. 19- 26.
[15] Арипов М. Метод эталонных уравнений для
решения нелинейных краевых задач Ташкент,
Фан, 1988, 137 p.
[16] Белотелов Н.В., Лобанов A.И.Популяционные
модели с нелинейной диффузией. // Математическое
моделирование. –М.; 1997, №12, pp. 43-56.
[17] В. Вольтерра. Математическая теория борьбы за
существование -М.: Наука, 1976, 288 p.
time1 FRAME 1( ) time2 FRAME 4( ) time1 FRAME 10( ) time2 FRAME 17( )
time1 FRAME 20( ) time2 FRAME 20( )
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308
_______________________________________________________________________________________
Volume: 03 Issue: 07 | Jul-2014, Available @ http://www.ijret.org 334
[18] Гаузе Г.Ф. О процессах уничтожения одного вида
другим в популяциях инфузорий // Зоологический
журнал,1934, т.13, №1.
[19] Aripov M., Muhammadiev J. Asymptotic behaviour
of automodel solutions for one system of quasilinear
equations of parabolic type. Buletin Stiintific-
Universitatea din Pitesti, Seria Matematica si
Informatica. N 3. 1999. pg. 19-40
[20] Aripov M.M. Muhamediyeva D.K. To the numerical
modeling of self-similar solutions of reaction-
diffusion system of the one task of biological
population of Kolmogorov-Fisher type. International
Journal of Engineering and Technology. Vol-02, Iss-
11, Nov-2013. India. 2013.
[21] Арипов М.М. Мухамедиева Д.К. Подходы к
решению одной задачи биологической популяции.
Вопросы вычислительной и прикладной
математики. -Ташкент. 2013. Вып.129.-pp.22-31.

More Related Content

PDF
A stage-structured delayed advection reaction-diffusion model for single spec...
PDF
Real time reservoir operation (calibration phase) a case study
PDF
Chemread – a chemical informant
PDF
Synthesis of methyl, benzyl and pseudo halogeno co (iii) complexes of a dioxi...
PDF
Intelligent traffic regulation system for roads using car two way communication
PDF
Implementation of cyclic convolution based on fnt
PDF
Kinematic model of a car
PDF
Pca based support vector machine technique for volatility forecasting
A stage-structured delayed advection reaction-diffusion model for single spec...
Real time reservoir operation (calibration phase) a case study
Chemread – a chemical informant
Synthesis of methyl, benzyl and pseudo halogeno co (iii) complexes of a dioxi...
Intelligent traffic regulation system for roads using car two way communication
Implementation of cyclic convolution based on fnt
Kinematic model of a car
Pca based support vector machine technique for volatility forecasting

Viewers also liked (20)

PDF
Study on security and quality of service implementations in p2 p overlay netw...
PDF
Static analysis of portal axle output shaft using
PDF
Low power sram using atd circuit
PDF
Emergency preparedness plan in educational institution
PDF
A study on improvement activities for indian
PDF
A survey on congestion control mechanisms
PDF
Scrum an agile process
PDF
A review on implementation of algorithms for detection of diabetic retinopathy
PDF
Optimizing content based image retrieval in p2 p systems
PDF
Transient voltage distribution in transformer winding (experimental investiga...
PDF
Overall increase in efficiency in raw meals
PDF
Effect of sb si addition on necking behaviour of mg alloys
PDF
Comparative review study of security of aran and aodv routing protocols in ma...
PDF
Effect of fly ash on the rheological and filtration
PDF
A novel password based mutual authentication technique for 4 g mobile communi...
PDF
Variable step size of lms algorithem using partical swarm optimization
PDF
Treatment of distillery spent wash by anaerobic
PDF
Pe2 a public encryption with two ack approach to
PDF
An optimized approach to voice translation on mobile phones
PDF
Zero rotation aproach for droop improvement in
Study on security and quality of service implementations in p2 p overlay netw...
Static analysis of portal axle output shaft using
Low power sram using atd circuit
Emergency preparedness plan in educational institution
A study on improvement activities for indian
A survey on congestion control mechanisms
Scrum an agile process
A review on implementation of algorithms for detection of diabetic retinopathy
Optimizing content based image retrieval in p2 p systems
Transient voltage distribution in transformer winding (experimental investiga...
Overall increase in efficiency in raw meals
Effect of sb si addition on necking behaviour of mg alloys
Comparative review study of security of aran and aodv routing protocols in ma...
Effect of fly ash on the rheological and filtration
A novel password based mutual authentication technique for 4 g mobile communi...
Variable step size of lms algorithem using partical swarm optimization
Treatment of distillery spent wash by anaerobic
Pe2 a public encryption with two ack approach to
An optimized approach to voice translation on mobile phones
Zero rotation aproach for droop improvement in
Ad

Similar to System of quasilinear equations of reaction diffusion (20)

PDF
To the numerical modeling of self similar solutions of reaction-diffusion sys...
PDF
To the numerical modeling of self similar solutions of
PDF
Numerical Solution of Oscillatory Reaction-Diffusion System of $\lambda-omega...
PDF
Transition for regular to mach reflection hysteresis
PDF
The numerical solution of helmholtz equation via multivariate padé approximation
PDF
Optimization of technological process to decrease dimensions of circuits xor ...
PDF
Finite volume solution of diffusion equation and application to model problems
PDF
Finite volume solution of diffusion equation and
PDF
ON APPROACH TO INCREASE DENSITY OF FIELDEFFECT HETEROTRANSISTORS IN THE FRAME...
PDF
ON APPROACH TO INCREASE DENSITY OF FIELDEFFECT HETEROTRANSISTORS IN THE FRAME...
PDF
On Increasing of an Integration Rate of Bipolar Heterotransistors in the Fram...
PDF
On Increasing of an Integration Rate of Bipolar Heterotransistors in the Fram...
PDF
Fractional calculus applied in solving instability phenomenon in fluid dynamics
PDF
FRACTIONAL CALCULUS APPLIED IN SOLVING INSTABILITY PHENOMENON IN FLUID DYNAMICS
PDF
Analysis of three dimensional couette flow and heat
PDF
On prognozisys of manufacturing doublebase
PDF
PDF
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...
PDF
Two Types of Novel Discrete Time Chaotic Systems
PDF
MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...
To the numerical modeling of self similar solutions of reaction-diffusion sys...
To the numerical modeling of self similar solutions of
Numerical Solution of Oscillatory Reaction-Diffusion System of $\lambda-omega...
Transition for regular to mach reflection hysteresis
The numerical solution of helmholtz equation via multivariate padé approximation
Optimization of technological process to decrease dimensions of circuits xor ...
Finite volume solution of diffusion equation and application to model problems
Finite volume solution of diffusion equation and
ON APPROACH TO INCREASE DENSITY OF FIELDEFFECT HETEROTRANSISTORS IN THE FRAME...
ON APPROACH TO INCREASE DENSITY OF FIELDEFFECT HETEROTRANSISTORS IN THE FRAME...
On Increasing of an Integration Rate of Bipolar Heterotransistors in the Fram...
On Increasing of an Integration Rate of Bipolar Heterotransistors in the Fram...
Fractional calculus applied in solving instability phenomenon in fluid dynamics
FRACTIONAL CALCULUS APPLIED IN SOLVING INSTABILITY PHENOMENON IN FLUID DYNAMICS
Analysis of three dimensional couette flow and heat
On prognozisys of manufacturing doublebase
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...
Two Types of Novel Discrete Time Chaotic Systems
MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...
Ad

More from eSAT Publishing House (20)

PDF
Likely impacts of hudhud on the environment of visakhapatnam
PDF
Impact of flood disaster in a drought prone area – case study of alampur vill...
PDF
Hudhud cyclone – a severe disaster in visakhapatnam
PDF
Groundwater investigation using geophysical methods a case study of pydibhim...
PDF
Flood related disasters concerned to urban flooding in bangalore, india
PDF
Enhancing post disaster recovery by optimal infrastructure capacity building
PDF
Effect of lintel and lintel band on the global performance of reinforced conc...
PDF
Wind damage to trees in the gitam university campus at visakhapatnam by cyclo...
PDF
Wind damage to buildings, infrastrucuture and landscape elements along the be...
PDF
Shear strength of rc deep beam panels – a review
PDF
Role of voluntary teams of professional engineers in dissater management – ex...
PDF
Risk analysis and environmental hazard management
PDF
Review study on performance of seismically tested repaired shear walls
PDF
Monitoring and assessment of air quality with reference to dust particles (pm...
PDF
Low cost wireless sensor networks and smartphone applications for disaster ma...
PDF
Coastal zones – seismic vulnerability an analysis from east coast of india
PDF
Can fracture mechanics predict damage due disaster of structures
PDF
Assessment of seismic susceptibility of rc buildings
PDF
A geophysical insight of earthquake occurred on 21 st may 2014 off paradip, b...
PDF
Effect of hudhud cyclone on the development of visakhapatnam as smart and gre...
Likely impacts of hudhud on the environment of visakhapatnam
Impact of flood disaster in a drought prone area – case study of alampur vill...
Hudhud cyclone – a severe disaster in visakhapatnam
Groundwater investigation using geophysical methods a case study of pydibhim...
Flood related disasters concerned to urban flooding in bangalore, india
Enhancing post disaster recovery by optimal infrastructure capacity building
Effect of lintel and lintel band on the global performance of reinforced conc...
Wind damage to trees in the gitam university campus at visakhapatnam by cyclo...
Wind damage to buildings, infrastrucuture and landscape elements along the be...
Shear strength of rc deep beam panels – a review
Role of voluntary teams of professional engineers in dissater management – ex...
Risk analysis and environmental hazard management
Review study on performance of seismically tested repaired shear walls
Monitoring and assessment of air quality with reference to dust particles (pm...
Low cost wireless sensor networks and smartphone applications for disaster ma...
Coastal zones – seismic vulnerability an analysis from east coast of india
Can fracture mechanics predict damage due disaster of structures
Assessment of seismic susceptibility of rc buildings
A geophysical insight of earthquake occurred on 21 st may 2014 off paradip, b...
Effect of hudhud cyclone on the development of visakhapatnam as smart and gre...

Recently uploaded (20)

PPTX
CH1 Production IntroductoryConcepts.pptx
PDF
Digital Logic Computer Design lecture notes
PDF
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
PPTX
MCN 401 KTU-2019-PPE KITS-MODULE 2.pptx
PPTX
UNIT 4 Total Quality Management .pptx
PPTX
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
PPTX
Construction Project Organization Group 2.pptx
PPTX
Foundation to blockchain - A guide to Blockchain Tech
PPTX
web development for engineering and engineering
PDF
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
PPTX
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
PPT
CRASH COURSE IN ALTERNATIVE PLUMBING CLASS
DOCX
573137875-Attendance-Management-System-original
DOCX
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
PPTX
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
PPTX
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
PPTX
Sustainable Sites - Green Building Construction
PDF
PPT on Performance Review to get promotions
PDF
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
PPTX
OOP with Java - Java Introduction (Basics)
CH1 Production IntroductoryConcepts.pptx
Digital Logic Computer Design lecture notes
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
MCN 401 KTU-2019-PPE KITS-MODULE 2.pptx
UNIT 4 Total Quality Management .pptx
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
Construction Project Organization Group 2.pptx
Foundation to blockchain - A guide to Blockchain Tech
web development for engineering and engineering
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
CRASH COURSE IN ALTERNATIVE PLUMBING CLASS
573137875-Attendance-Management-System-original
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
Sustainable Sites - Green Building Construction
PPT on Performance Review to get promotions
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
OOP with Java - Java Introduction (Basics)

System of quasilinear equations of reaction diffusion

  • 1. IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 _______________________________________________________________________________________ Volume: 03 Issue: 07 | Jul-2014, Available @ http://www.ijret.org 327 SYSTEM OF QUASILINEAR EQUATIONS OF REACTION-DIFFUSION TASKS OF KOLMOGOROV-FISHER TYPE BIOLOGICAL POPULATION TASK IN TWO-DIMENSIONAL CASE D.K.Muhamediyeva1 1 Junior researcher of the Centre for development of software products and hardware-software complexes, Tashkent, Uzbekistan Abstract In this paper considered parabolic system of two quasilinear reaction-diffusion equations of Kolmogorov-Fisher type of biological population task relation for the two-dimensional case and localization of the wave solutions of the reaction - diffusion systems with double nonlinearity. Cross-diffusion means that spatial move of one object, described by one of the variables is due to the diffusion of another object, described by another variable.Considered spatial analogue of the Volterra-Lotka competition system with nonlinear power dependence of the diffusion coefficient from the population density. Keywords: Population, system, differential equation, cross-diffusion, double nonlinearity, wave solution. --------------------------------------------------------------------***------------------------------------------------------------------ 1. INTRODUCTION Let’s consider following system of two equations in partial derivatives in two-dimensional case: .),(),(),( ,),(),(),( 2 1 212 2 22 1 1 212 1 212 2 2 2 222 1 2 2 2121 2 2 2 211 2 12 1 2 211 1 112 2 1 2 122 1 1 2 1121 1                                                           x u uuQ x h x u uuQ x h x u D x u Duug t u x u uuQ x h x u uuQ x h x u D x u Duuf t u (1) At 022211211  hhhh the mathematical model (1) is a system type reaction-diffusion with diffusion coefficient 0,0,0,0 22211211  DDDD (at least one 0ijD ). In the case when at least one of the coefficients (mark can be any), the system (1) is a cross-diffusion. To the linear cross-diffusion corresponds constvuQij ),( for 2,1, ji i=1,2; to the linear cross-diffusion- constvuQij ),( at least one of i and j. Cross-diffusion means that spatial move one object, described one of the variables is due to the diffusion of another object, described by another variable.At the population level simplest example is a parasite (the first object, located within the "host" (the second object) moves through the diffusion of the owner). The term "self- diffusion" (diffuse, direct diffusion, ordinary diffusion) moves individuals at the expense of the diffusion flow from areas of high concentration, particularly in the area of low concentration. The term "cross-diffusion" means moving/thread one species/ substances due to the presence of the gradient other individuals/ substances. В The value of a cross-diffusion coefficient can be positive, negative or equal to zero. The positive coefficient of cross-diffuse indicates that the movement of individuals takes place in the direction of low concentrations of other species occurs in the direction of the high concentration of other types of individuals/ substances. In the nature system with cross- diffusion quite common and play a significant role especially in biophysical and biomedical systems. Equation (1) is a generalization of the simple diffusion model for the logistic model of population growth [1-16] of Malthus type ( 1211 ),( uuuf  , 2211 ),( uuuf  , 1212 ),( uuuf  , 2212 ),( uuuf  ), Ferhulst type ( )1(),( 21211 uuuuf  , )1(),( 12211 uuuuf  , )1(),( 21212 uuuuf  , )1(),( 12212 uuuuf  ), and Allee type ( )1(),( 1 21211  uuuuf  , )1(),( 2 12211  uuuuf  , )1(),( 1 21212  uuuuf  , )1(),( 2 12212  uuuuf  , 1,1 21   ) for the case
  • 2. IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 _______________________________________________________________________________________ Volume: 03 Issue: 07 | Jul-2014, Available @ http://www.ijret.org 328 of double nonlinear diffusion. In case, when 1,1 21   , it can be regarded as the equation of nonlinear filtration, thermal conductivity at simultaneous influence of the source and the absorption capacity of which is equalrespectively to 1 21,  uu  , 2 12 ,  uu  . Let’s consider the spatial analogue of Volterra-Lotka competition system with nonlinear power dependence of the diffusion coefficient from population density. In the case of the simplest Volterra’s competitive interactions between populations can be constructed numerically, and in some cases analytically heterogeneous in space solutions[19]. 2. LOCALIZATION OF WAVE SOLUTIONS OF REACTION - DIFFUSION SYSTEMS WITH DOUBLE NONLINEARITY Let’s consider in the domain Q={(t,x): 0< t < ,xR2 } parabolic system of two quasilinear equations of reaction- diffusion of Kolmogorov-Fisher typebiological population task                                                                                                   ,1)()()( ,1)()()( 222 111 122 2 2 2 1 2 1 2 2 2 2 21 12 21 2 2 1 21 121 1 2 211 2 1 2 1 1 1 2 1 2 2 11 212 21 1 2 1 11 211 1 1   uutk x u tl x u tl x u x u uD xx u x u uD xt u uutk x u tl x u tl x u x u uD xx u x u uD xt u p m p m p m p m (2) )(1001 xuu t  , )(2002 xuu t  , which describes the process of biological populations in nonlinear two-component environment, it’s diffusion coefficient is equal 2 1 11 211 1     p m x u uD , 2 2 11 212 1     p m x u uD , 2 1 21 121 2     p m x u uD , 2 2 21 122 2     p m x u uD andconvective transfer with speed )(tli , where 2121 ,,,, pmm - positive real numbers, 0),,( 2111  xxtuu , 0),,( 2122  xxtuu -search solutions. The Cauchy problem and boundary problems for the system (1) in one-dimensional and multidimensional cases investigated by many authors [15-21] The aim of this work is the investigation of qualitative properties of solutions of the task (2) on the basis of self- similar analysis and numerical solutions by using the methods of modern computer technologies, research of methods of linearization to the convergence of iterative process with subsequent visualization. Obtained the estimates of solutions and emerging in this case free boundary, that gives the chance to choose the appropriate initial approximation [15] for each value of the numeric parameters. It is known that the nonlinear wave equations have solutions in the form of diffusion waves. Under the wave is understood self-similar solution of the equation (2) ( , ) ( ),u t x f ct x         2 2 2 121 ,,,),( xxxxxtuxtu  , , Where constant с- is a wave speed Let's build self-similar system of equations (2) - more simple for research system of equations. Self-similar system of equations will construct by the method of nonlinear splitting [15]. Replacement in (2) ),),((),,( 211 )( 211 0 1   tvexxtu t dk   ,  dlx t )(1 0 11  , ),),((),,( 212 )( 212 0 2   tvexxtu t dk   ,  dlx t )(2 0 22  ,
  • 3. IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 _______________________________________________________________________________________ Volume: 03 Issue: 07 | Jul-2014, Available @ http://www.ijret.org 329 Lead (2) to the form:                                                                                         ,)( ,)( 21 )2()1( 2 2 2 2 2 21 122 21 2 2 1 21 121 1 2 21 )1()2( 1 2 1 2 2 11 212 21 1 2 1 11 211 1 1 2212222 1211111 vvetk vv vD vv vD v vvetk vv vD vv vD v tkpkm p m p m tkmkp p m p m     (3) ),( 211001 vv t  , ),( 212002 vv t  . If ))1(())1(( 2211  mpkmpk , then by choosing 212 ])2()1[( 121 ])2()1[( )2()1()2()1( )( 212121 kpkm e kpkm e t tkpkmtkpkm       ,we get the following system of equations:                                                                                     , ,)( 212 2 2 2 2 21 122 21 2 2 1 21 121 1 2 211 2 1 2 2 11 212 21 1 2 1 11 211 1 1 2222 1111 vvta vv vD vv vD v vvta vv vD vv vD v b p m p m b p m p m       (4) where  1 21111 )1()2( b kmkpka  , , )1()2( )1()2( 211 2111 1 kmkp kmkp b       2 21222 )2()1( b kpkmka  , . )2()1( )2()1( 212 2122 2 kpkm kpkm b     If 0ib , and consttai )( , 2,1i , then the system has the form:                                                                                   . , 212 2 2 2 2 21 122 21 2 2 1 21 121 1 2 211 2 1 2 2 11 212 21 1 2 1 11 211 1 1 222 111 vva vv vD vv vD v vva vv vD vv vD v p m p m p m p m     The Cauchy problem for system (4) in the case when 021  bb studied in [16,19] and prove the existence of wave global solutions and blow-up solutions. Below we will describe one way of obtaining self-similar system for the system of equations (4). It consists in the following. Firstly we find first the solution of a system of ordinary differential equations         , , 212 2 211 1 2 1         a d d a d d In the form 1 )()( 011     Tc , 2 )()( 022     Tc , 00 T , Where
  • 4. IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 _______________________________________________________________________________________ Volume: 03 Issue: 07 | Jul-2014, Available @ http://www.ijret.org 330 11 с , 2 1 1    , 12 с , 1 2 1    . And then the solution of system (3)-(4) is sought in the form ,),,()(),,( ),,,()(),,( 2122212 2111211   wtvtv wtvtv   (5) and   ( )t chosen as 1 2 1 1 1 [ ( 2) ( 1)] 1 2 1 1 2 1 ( 1)( 2) 1 1 2 1 2 1 0 1 1 ( ) , 1 [ ( 2) ( 1)] 0, 1 [ ( 2) ( 1)] ( ) ( ) ( ) ln( ), 1 [ ( 2) ( 1)] 0, ( ), 2 1, p m mp T if p m p m v t v t dt T if p m T if p и m                                               if )1()2()1()2( 212121  mpmp  . Then for 2,1),,( ixwi  we get the following system of equations                                                                                   )( )( 2122 2 2 2 2 21 122 21 2 2 1 21 121 1 2 1211 2 1 2 2 11 212 21 1 2 1 11 211 1 1 222 111 www ww wD ww wD w www ww wD ww wD w p m p m p m p m       , (6) Where 1 [ ( 2) ( 1)]1 2 1 1 2 1 1 2 11 ( ) 1 1 1 2 1 1 , 1 [ ( 2) ( 1) 0, (1 [ ( 2) ( 1)]) , 1 [ ( 2) ( 1) 0, p m if p m p m с if p m                                 (7) 2 1 2 2 1 2 2 1 22 (1 [ ( 2) ( 1)]) 2 1 2 1 2 1 , 1 [ ( 2) ( 1)] 0, (1 [ ( 2) ( 1)]) , 1 [ ( 2) ( 1)] 0.p m if p m p m с if p m                               Representation of system (2) in the form (5) suggests that, when  , 0i and                                                                                 2 2 2 2 21 122 21 2 2 1 21 121 1 2 2 1 2 2 11 212 21 1 2 1 11 211 1 1 22 11   ww wD ww wD w ww wD ww wD w p m p m p m p m (8) Therefore, the solution of system (1) with condition (5) tends to the solution of the system (8).
  • 5. IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 _______________________________________________________________________________________ Volume: 03 Issue: 07 | Jul-2014, Available @ http://www.ijret.org 331 If 0)1()2([1 121  mp  , wave solution of system (6) has the form )(),),(( 21  ii ytw  ,   c ,    2 2 2 1   2,1i , where c- wave velocity, and taking into account that the equation for ),,( 21 iw without the younger members always has a self-similar solution if 0)1()2([1 121  mp  we get the system              .0)()( ,0)()( 22 11 1222 22 2 21 1 2111 11 2 11 2       yyy d dy c d dy d dy y d d yyy d dy c d dy d dy y d d p m p m After integration (8) we get the system of nonlinear differential equations of the first order              .0 ,0 2 2 2 21 1 1 1 2 11 2 2 1 cy d dy d dy y cy d dy d dy y p m p m   (9) The system (9) has an approximate solution in the form 1 )(1   aAy , 2 )(2   aBy , Where )1)(1()2( ))1()(1( 21 2 1 1    mmp mpp  , )1)(1()2( ))1()(1( 21 2 2 2    mmp mpp  . and the coefficients A and B are determined from the solution of a system of nonlinear algebraic equations cBA mpp  111 1 1 )( , cBA pmp  111 2 2 )( . Then by taking into account expressions ),),((),,( 211 )( 211 0 1   tvexxtu t dk   , ),),((),,( 212 )( 212 0 2   tvexxtu t dk   We have 10 1 ))((),,( )( 211         tcAexxtu t dk , 20 2 ))((),,( )( 212         tcBexxtu t dk , 0c . Due to the fact that   t ii xdltb 0 0])()([  , If   t iii xdltbx 0 0])()([  , 0t , Then 0),(1 xtu , 0),(2 xtu ,   t iii xdltbx 0 0])()([  , 2,1,0  it . Therefore, localization condition of solutions of the system (2) are conditions   å i dyyl 0 0)( , )(t for 2,1,0  it . (10)
  • 6. IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 _______________________________________________________________________________________ Volume: 03 Issue: 07 | Jul-2014, Available @ http://www.ijret.org 332 Condition (10) is the prerequisite for the emergence of a new effect - localizationof wave solutions of (2). If condition (10) unfulfilled, then there is the phenomenon of the finite velocity of propagation of a perturbation, i.e. 0),( xtui at )(tbx  ,   det t dyykpm     0 )()3( 0 11 )( , and the front of arbitrarily far away, with increasing time, since )(t at t . The study of qualitative properties of the system (2) allowed to perform numerical experiment based on the values included in the system of numeric parameters. For this purpose, as the initial approximation was used asymptotic solutions. To numerical solving the task for the linearization of system (2) has been used linearization methods of Newton and Picard. To build self-similar system of equationsof biological populations used the method of nonlinear splitting [16, 19]. 3. NUMERICAL EXPERIMENT Let’s construct a uniform grid to the numericalsolvingof the task (2)  ,,,...,1,0,0, lhnnihihxih  and the temporary grit  Tmnjhjht jh   ,,...,1,0,0, 111 . Replace task (2) by implicit difference scheme and receive differential task with the error  1 2 hhO  . As is known, the main problem for the numerical solving of nonlinear tasks, is suitable choosing initial approximation and the linearization method of the system (2). Let’s consider the function:   ,)(),,( 1 12110    atxxtv   ,)(),,( 2 22120    atxxtv Where )()( 11 tet kt   and )()( 22 tet kt   defined above functions, Notation )(a means ),0max()( aa  . These functions have the property of finite speed of propagation of perturbations[16,19]. Therefore, in the numerical solving of the task (1) - (2) at 11   as an initial approximation proposed the function ),,( 210 xxtvi , 2,1i . Created on input language MathCad program allows you to visually traced the evolution of the process for different values of the parameters and data. Numerical calculations show that in the case of arbitrary values 0,0   qualitative properties of solutions do not change. Below listed results of numerical experiments for different values of parameters (Fig.1) Parameter values Results of numerical experiment 1.2,7.0,3.0 21  pmm 2,5 11  k 3,7 22  k 3 10 eps time1 FRAME 1( ) time2 FRAME 4( ) time1 FRAME 8( ) time2 FRAME 10( )
  • 7. IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 _______________________________________________________________________________________ Volume: 03 Issue: 07 | Jul-2014, Available @ http://www.ijret.org 333 5.2,2.2,2.2 21  pmm 7,1 11  k 2,1 22  k 3 10 eps 8.2,2.0,2.0 21  pmm 2,5.0 11  k 3,7.0 22  k 3 10 eps Fig.1 Results of numerical experiment 4. CONCLUSIONS It can be expected that further theoretical and experimental studies of excitable systems with cross-diffusion will make a significant contribution to the study of phenomena of self- organization in all of nonlinear systems from the micro and astrophysical systems to public social systems. REFERENCES [1] Ахромеева ТСи др. Нестационарные структуры и диффузионный хаос (М.: Наука, 1992) [2] de1-Cаsti11o-Negrete D, Cаrrerаs В А Phys. Plasmas 9 118 (2002) [3] del-Cаstillo-Negrete D, Сагге В А, Lynch V Physica D 168-169 45 (2002) [4] Jorne J L Theor. Biol. 55 529 (1975) [5] А1mirаntis Y, Pаpаgeorgiou S L Theor. Biol. 151 289 (1991) [6] Иваницкий Г Р, Медвинский А Б, Цыганов М А УФН161 (4) 13 (1991) [7] Wu Y, Zhаo X Physica D 200 325 (2005) [8] Kuznetsov Yu А et а1. L Math. Biol. 32 219 (1994) [9] Кузнецов Ю А и др. "Кросс-диффузионная модель динамики границы леса", в сб. Проблемы экологического мониторинга и моделирования экосистем Т. 26 (СПб.: Гидрометиздат, 1996) с. 213 [10] Burridge R, KnopoffL Bм//. Seismol. Soc. Am. 57 341 (1967) [11] Cаrtwright J HE, Hernandez-Garcia E, Piro О Phys. Pev. Lett. 79 527(1997) [12] Stuаrt А М /MA L Math. Appl. Med. Biol. 10 149 (1993) [13] Murray J.D. Mathematical Biology. I. An Introduction (Third Edition). – N.Y., Berlin, Heidelberg: Springer Verlag, 2001. – 551 p., [14] M. Aripov (1997). «ApproximateSelf- similarApproachtuSolve Quasilinear Parabolic Equation» Experimentation, Modeling and Computation in Flow Turbulence and Combustion vol. 2. p. 19- 26. [15] Арипов М. Метод эталонных уравнений для решения нелинейных краевых задач Ташкент, Фан, 1988, 137 p. [16] Белотелов Н.В., Лобанов A.И.Популяционные модели с нелинейной диффузией. // Математическое моделирование. –М.; 1997, №12, pp. 43-56. [17] В. Вольтерра. Математическая теория борьбы за существование -М.: Наука, 1976, 288 p. time1 FRAME 1( ) time2 FRAME 4( ) time1 FRAME 10( ) time2 FRAME 17( ) time1 FRAME 20( ) time2 FRAME 20( )
  • 8. IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 _______________________________________________________________________________________ Volume: 03 Issue: 07 | Jul-2014, Available @ http://www.ijret.org 334 [18] Гаузе Г.Ф. О процессах уничтожения одного вида другим в популяциях инфузорий // Зоологический журнал,1934, т.13, №1. [19] Aripov M., Muhammadiev J. Asymptotic behaviour of automodel solutions for one system of quasilinear equations of parabolic type. Buletin Stiintific- Universitatea din Pitesti, Seria Matematica si Informatica. N 3. 1999. pg. 19-40 [20] Aripov M.M. Muhamediyeva D.K. To the numerical modeling of self-similar solutions of reaction- diffusion system of the one task of biological population of Kolmogorov-Fisher type. International Journal of Engineering and Technology. Vol-02, Iss- 11, Nov-2013. India. 2013. [21] Арипов М.М. Мухамедиева Д.К. Подходы к решению одной задачи биологической популяции. Вопросы вычислительной и прикладной математики. -Ташкент. 2013. Вып.129.-pp.22-31.