The document describes research on enhancing recommender systems through the use of user profiles and tagging systems. It discusses how user profiles can be used to provide personalized recommendations by describing a user's interests. It presents two research papers that studied how profile similarity and rating overlap between users can improve recommendation accuracy and user confidence. It also discusses how tagging systems can be leveraged by integrating user, tag, and resource dimensions. One paper proposes a personalized recommender model for folksonomies that extends the folksonomy by combining shared tags/resources and recommends tags and resources based on a user's profile and tagging history.