Rakuten Category
Vol.01 Oct/26/2013
Yuhei Nishioka / Suguru Suzuki
Rakuten Inc.
http://www.rakuten.co.jp/
Agenda

1.Rakuten Category
- Introduction -

2.Measurement/Modification
- Approach for Category design -

3.Release
- Standardization -

2
Self-Introduction

Suguru Suzuki
Japan Ichiba Section
Japan Mall Group
Rakuten Ichiba Development Department

Yuhei Nishioka
Rakuten Institute of Technology

• Chief Technologist
• Application Engineer
• Joined Rakuten in 2007 • Joined Rakuten in 2008
• Semantic
• Ichiba TOP/ Rakuten
Web, Recommender
Search(All devices)
System
3
Rakuten Category

Rakuten Category
- Introduction -
Rakuten Category

What’s
Category??
Category??

5
Rakuten Category

カテゴリーは、事柄の性質を区分する上でのもっとも基本的な分
類のことである。
In metaphysics (in particular, ontology), the different kinds or ways of
being are called categories of being or simply categories.
Source of Quote : wikipedia

http://ja.wikipedia.org/wiki/%E3%82%AB%E3%83%86%E3%82%B4%E3%83%AA

Rakuten’s Category is…

Sales area =
“売り場”
6
Rakuten Category

Rakuten Search

Review

Category

Category

Ranking
Racoupon/coupon search
Category TOP
TOP/Genre
Category
Books

Category
Category
Category
Auction
Category
And more and more….
7
Rakuten Category
Data

Number

Category in Rakuten Ichiba

50,896 genres

Using Category Service

50 service

Using Category Application 100 application
Effective Service of using Category(Genre/Tag)
RMS

GMS
Report

TOP page

Search
Engine
Rakuten Search

Web Service

Advertisement

Auction

Review

Books

Racoupon

kobo

A lot of
service use
Category
data!

Auto
Browsing
History

Super DB
Affiliate

Ranking
Basket

Mail

Item Page
8
Rakuten Category

 Catch up the trend
Good
Categorize  Easy to navigate User

Big factor to increase
sales in each items.
9
Rakuten Category

Benefit!!
User

Come across items

Shop

Sell items

Rakuten

Sell items
Data analysis
10
Rakuten Category

Cycle of Category Strategy
Measurements

Modification

Need to
High Speed!!

Release

11
Measurement/Modification

Measurement/Modification
- Approach for Category design -
Measurement/Modification

POINT

Measurements

POINT

Modification

Release

13
Measurement/Modification

Measurement on WEB-tool
 Tree view
 Item count
 Sales volume
 Ranking data

Show more detail!!
14
Data-Driven Optimization
Modify Category by Analyzing User’s Queries

Past Example of data-driven optimization
List of high frequency queries
….

ホットプレート
(Hot Plate)
…

タジン鍋
(Tagines)

Already existing in Rakuten Category
Tree

No responding genre
Create new category
(a couple of years ago)

You can find “タジン鍋”
without using search
15
Types of queries
Needs browsing function for not only category tree but also other attributes
Ratio of Query Types

Podcut Category
Brand
Merchant

Spec
Character
Others
Source: User Queries tat Rakuten Ichiba in 2013
16
Master Database
Create new master database for brand, color and so on

Data Structure behind Navigation
Data Source

Master Data
Already Exist

Brand
Master. a

Category Tree

Navigation
Category
…..
…..
…..

Brand
Brand
Master. b

Brand
Master. c

Integration

Unified
Brand Master
New

Color Master

…

…..
…..
…..

Color
…..
…..
…..

New
17
The difficulty identifying brand
Brand name matching is very effective. But must solve 2 major problems

2 major technical problems in brand name matching
• Different Things with the Same Name
• カリタ
http://www.kalita.co.jp/

• The Same Thing with Different Names
• Samsung
• サムスン
http://www.carita.jp/
18
Check by hand
Brand name matching is very effective. But must solve 2 major problems

Data Process
Original Matching Algorithm
- Title match
- Synonym check
- Ambiguous word check
- Use other attribute
- …

Result

check

19
Check by hand with few costs

OpenRefine is very helpful
Server
side
Original Matching Algorithm
API for Open Refine

Web
Interface

ID

Name

Useful
Open Source Tool

Other Master Data

xxx

SONY

SONY [ Matched ]

yyy

カリタ

Karita [ Candidate1 ]
CARITA [ Candidate 2]

….

….

http://openrefine.org

20

source http://www.carita.jp/
Color Master
Building color dictionary automatically as much as possible

Color Dictionary

16 color groups

1,871 color names
黒

Black

黒色

.
.

blac
k

Blue

.
.
.

• Image Processing
• Natural Language
Processing

blue
navy

21
Tagging Data for each item

Structured Data

Category

Brand

Color

….
Merchant Input

Item ID

Category

Brand

Color

…

Extract Automatically
From item description
(in research)

xxxx

22
Attribute value extraction
• Generate extraction rules using attribute value
database constructed from table data
Table data

Chateau d’Issan 1994

Database
:
<Region, Margaux>
<Color, White>
:

This is a wine
from Margaux.
...

Rule
wine from x
=> x is a Region
Values not included in
the database can be
captured.

Annotation
Item page including
a dictionary entry
23
Measurement/Modification

Modification on WEB-tool

Drag and Drop
Easy to modify!!
24
Extra

Measurement/Modification

Old modification style

Hand-made…!
25
Extra

Measurement/Modification

Old modification style
Problem
Achieved limit
counts by excel

orz

…

26
Measurement/Modification

Good Categorize =
A huge benefit
 Very Important phase
 Need to survey trend and data
optimization

27
Release

Release
- Standardization -
Release

Measurements

POINT

Modification

Release

29
Release

Need it more rapidly!!
Measurements

Modification

Release

30
Extra - Before

Release

Hard to release Category data
Category data has over 15 DB…
Deliver its data to all 50 service.
Have over 15 DB....

RMS

GMS
Report

TOP page

Search
Engine
Rakuten Search

Web Service

Deliver data to all service
Add new service
sometime

Advertisement

Auction

Review

Books

Racoupon

kobo

Auto
Browsing
History

Super DB
Affiliate

Ranking
Basket

Mail

Item Page
31
Extra - Before

Release

Show the Maintenance time table
When Category Restructuring
maintenance.
Related Category Restructuring task

Complicated!!!
is almost

300

!!

32
Release

Easy to release by all service
more speedy
Already Automation

In Progress for Automation

ServiceA

Category
Data

API

Now improving!

ServiceB
ServiceC
ServiceD
ServiceE
・・
・・

33
Release

■System Reconstruction used by API
Before

6month

Making data by handmade

Share data by dump or excel

In Progress

Making data by management tool

Reflect new Data used by API

API

Test and operate by each service
ServiceA

serviceB

serviceD

serviceE

serviceC

・・
・・

Every week

Category
Data
serviceB

serviceD

Release in Regular Maintenance

ServiceA

serviceE

serviceC

・・
・・

Release in week

34
Release

More easily more Speedy!!
For operation free
Get rid of dependency in each service
GMS
Report

RMS

TOP page

Search
Engine
Rakuten Search

Web Service

Advertisement

Category
API

Auction
Books

Review
Racoupon

Category
Data

kobo

Auto
Browsing
History

Super DB
Affiliate

Ranking
Basket

Mail

Item Page
35
Release

■Real Time reflection
Can be released Category Data
and
search it by “Real Time” on
Real Time reference
iPhone5s
Rakuten Search.
Register

Real Time released
when needed.

36
Release

■Real Time reflection
Can be released Category

Data

and
summarize it on Ranking.
Register

iPhone5s

Released
as a daily/weekly
Ranking data.

37
Release

■Real Time reflection
Can be released Category

Data

and
Create Landing-page.
Register

iPhone5s
Can be created
Landing-page
used by
new Categorydata
38
Finally

Standardization for
cycle of Improvement
Measurements

Modification

Release
39
Finally

Benefit!!
Category
User

Come across items

optimization is
Shop
Sell items
made everyone
Rakuten
Sell items
Data analysis
happy!!

40
Finally

Thank you for your Listening!!
If you have any idea or question, Please contact us.
Let’s talk about Category with us!!

Suguru Suzuki

Yuhei Nishioka

@sugsuzuki

@nishiokamegane

sugru.suzuki
@mail.rakuten.com

yuhei.nishioka
@mail.rakuten.com
41

More Related Content

PDF
[RakutenTechConf2013] [B-0] UX Analytics - Measure your ROI!
PPTX
[RakutenTechConf2013] [C-1] Rakuten new infrastructure
PPTX
[Rakuten TechConf2014] [A-4] Rakuten Ichiba
PPTX
[RakutenTechConf2013] [A-2] Ichiba Architecture
PDF
Rakuten's Private Cloud
PPTX
Get more Visual Power
PPTX
Product management in office 365 vancouver
PPTX
Power automate and power BI January 22 Baku
[RakutenTechConf2013] [B-0] UX Analytics - Measure your ROI!
[RakutenTechConf2013] [C-1] Rakuten new infrastructure
[Rakuten TechConf2014] [A-4] Rakuten Ichiba
[RakutenTechConf2013] [A-2] Ichiba Architecture
Rakuten's Private Cloud
Get more Visual Power
Product management in office 365 vancouver
Power automate and power BI January 22 Baku

What's hot (20)

PPTX
Power BI in Office 365
PPTX
Whats new and exciting jan 22
PPTX
Power BI vs Tableau: Which One is Best For Business Intelligence
PPTX
Power BI vs Tableau
PPTX
Microsoft Business Applications Summit 2020: parhaat palat
PPTX
Visual guidance for power bi toronto pbi tour (1)
PDF
[PowerAppAtWork] Customer Visit Management with Microsoft Power Platform
PDF
04 power apps-platform-boonthawee
PPTX
Power bi software
PPTX
SQL Saturday Redmond The Power Platform
PPTX
Power BI Create lightning fast dashboard with power bi & Its Components
PDF
03 power platform power automate in a day-2
PPTX
Integrating power apps with power bi
PDF
FDUG October 2019 Virtual Launch Event Highlights
PPTX
Create Powerful Reports Using Data Visualization With Quick BI
PPTX
Microsoft PowerApps
PDF
Choctaw Nation - Power bi dashboard, report server report in Day
PDF
Power Platform Architecture Corrections
PDF
Jira 7
PPTX
bi tutorial - Right bi tool for the business
Power BI in Office 365
Whats new and exciting jan 22
Power BI vs Tableau: Which One is Best For Business Intelligence
Power BI vs Tableau
Microsoft Business Applications Summit 2020: parhaat palat
Visual guidance for power bi toronto pbi tour (1)
[PowerAppAtWork] Customer Visit Management with Microsoft Power Platform
04 power apps-platform-boonthawee
Power bi software
SQL Saturday Redmond The Power Platform
Power BI Create lightning fast dashboard with power bi & Its Components
03 power platform power automate in a day-2
Integrating power apps with power bi
FDUG October 2019 Virtual Launch Event Highlights
Create Powerful Reports Using Data Visualization With Quick BI
Microsoft PowerApps
Choctaw Nation - Power bi dashboard, report server report in Day
Power Platform Architecture Corrections
Jira 7
bi tutorial - Right bi tool for the business
Ad

Viewers also liked (19)

PDF
楽天のプライベートクラウドを支えるフラッシュストレージ
PDF
On what’s attractive in Rakuten Technology Conference 2015, English version
PDF
1. Rakuten Developing Intro
PPTX
Rakuten Proposal
PPTX
Challenges due to globalization
PPTX
[Rakuten TechConf2014] [E-6] Rakuten Ichiba Globalization - Challenges and So...
KEY
12 Months of Learning about eBooks in 40 minutes
PDF
E-commerce企業におけるビッグデータへの挑戦と課題‐機械学習への期待について‐
PPTX
[RakutenTechConf2013][C-4_3] Our Goals and Activities at Rakuten Institute o...
PPTX
Kobo Executive Team
PDF
Recommendations @ Rakuten Group
PDF
Rakuten Business Model 2009
PPTX
Reaching 100 Million Japanese Shoppers on Rakuten Ichiba
PDF
What’s attractive in Rakuten Technology Conference 2016. (English Version)
PPTX
[Rakuten TechConf2014] [B-1] Performance at scale
PPTX
[Rakuten TechConf2014] [D-6] Rakuten BaaS in ROOM & Rakuten Kobo
PPTX
Bare Metal Provisioning for Big Data - OpenStack最新情報セミナー(2016年12月)
PDF
Intro to GraphQL
PDF
楽天トラベルの開発プロセスに関して
楽天のプライベートクラウドを支えるフラッシュストレージ
On what’s attractive in Rakuten Technology Conference 2015, English version
1. Rakuten Developing Intro
Rakuten Proposal
Challenges due to globalization
[Rakuten TechConf2014] [E-6] Rakuten Ichiba Globalization - Challenges and So...
12 Months of Learning about eBooks in 40 minutes
E-commerce企業におけるビッグデータへの挑戦と課題‐機械学習への期待について‐
[RakutenTechConf2013][C-4_3] Our Goals and Activities at Rakuten Institute o...
Kobo Executive Team
Recommendations @ Rakuten Group
Rakuten Business Model 2009
Reaching 100 Million Japanese Shoppers on Rakuten Ichiba
What’s attractive in Rakuten Technology Conference 2016. (English Version)
[Rakuten TechConf2014] [B-1] Performance at scale
[Rakuten TechConf2014] [D-6] Rakuten BaaS in ROOM & Rakuten Kobo
Bare Metal Provisioning for Big Data - OpenStack最新情報セミナー(2016年12月)
Intro to GraphQL
楽天トラベルの開発プロセスに関して
Ad

Similar to [RakutenTechConf2013] [B-3_3] Rakuten Category (20)

PPTX
[Rakuten TechConf2014] [C-6] Japan ICHIBA Daily Work - Tools & Processes
PPTX
2022-12-02 Trailblazer Winter Coming to the Town.pptx
PPTX
Recommendations for Building Machine Learning Software
PDF
PeopleSoft 9.2 HCM Features and Functions Including Fluid Mobile
PDF
How To Implement Your Online Search Quality Evaluation With Kibana
PDF
25 Years of Evolution of Software Product Management: A practitioner's perspe...
PPTX
Visual guidance for power bi redmond sql sat 2019
PPTX
Telecom datascience master_public
PPTX
Visual guidance calgary user group
PDF
CookpadTechConf2018-(Mobile)TestAutomation
PDF
Agile Development – Why requirements matter by Fariz Saracevic
PPTX
Maintainable Machine Learning Products
PDF
Evolutionary Design Patterns for Software Development
PPTX
Graph processing at scale using spark &amp; graph frames
PDF
Meet Magento 2015 Utrecht - ElasticSearch - Smile
PDF
Practical Machine Learning
PDF
Minimum viable product_to_deliver_business_value_v0.4
PDF
Production model lifecycle management 2016 09
PDF
Data Visualization and the Art of Self-Reliance
PPTX
Group 3 slide presentation
[Rakuten TechConf2014] [C-6] Japan ICHIBA Daily Work - Tools & Processes
2022-12-02 Trailblazer Winter Coming to the Town.pptx
Recommendations for Building Machine Learning Software
PeopleSoft 9.2 HCM Features and Functions Including Fluid Mobile
How To Implement Your Online Search Quality Evaluation With Kibana
25 Years of Evolution of Software Product Management: A practitioner's perspe...
Visual guidance for power bi redmond sql sat 2019
Telecom datascience master_public
Visual guidance calgary user group
CookpadTechConf2018-(Mobile)TestAutomation
Agile Development – Why requirements matter by Fariz Saracevic
Maintainable Machine Learning Products
Evolutionary Design Patterns for Software Development
Graph processing at scale using spark &amp; graph frames
Meet Magento 2015 Utrecht - ElasticSearch - Smile
Practical Machine Learning
Minimum viable product_to_deliver_business_value_v0.4
Production model lifecycle management 2016 09
Data Visualization and the Art of Self-Reliance
Group 3 slide presentation

More from Rakuten Group, Inc. (20)

PDF
EPSS (Exploit Prediction Scoring System)モニタリングツールの開発
PPTX
コードレビュー改善のためにJenkinsとIntelliJ IDEAのプラグインを自作してみた話
PDF
楽天における安全な秘匿情報管理への道のり
PDF
What Makes Software Green?
PDF
Simple and Effective Knowledge-Driven Query Expansion for QA-Based Product At...
PDF
DataSkillCultureを浸透させる楽天の取り組み
PDF
大規模なリアルタイム監視の導入と展開
PDF
楽天における大規模データベースの運用
PDF
楽天サービスを支えるネットワークインフラストラクチャー
PDF
楽天の規模とクラウドプラットフォーム統括部の役割
PDF
Rakuten Services and Infrastructure Team.pdf
PDF
The Data Platform Administration Handling the 100 PB.pdf
PDF
Supporting Internal Customers as Technical Account Managers.pdf
PDF
Making Cloud Native CI_CD Services.pdf
PDF
How We Defined Our Own Cloud.pdf
PDF
Travel & Leisure Platform Department's tech info
PDF
Travel & Leisure Platform Department's tech info
PDF
OWASPTop10_Introduction
PDF
Introduction of GORA API Group technology
PDF
100PBを越えるデータプラットフォームの実情
EPSS (Exploit Prediction Scoring System)モニタリングツールの開発
コードレビュー改善のためにJenkinsとIntelliJ IDEAのプラグインを自作してみた話
楽天における安全な秘匿情報管理への道のり
What Makes Software Green?
Simple and Effective Knowledge-Driven Query Expansion for QA-Based Product At...
DataSkillCultureを浸透させる楽天の取り組み
大規模なリアルタイム監視の導入と展開
楽天における大規模データベースの運用
楽天サービスを支えるネットワークインフラストラクチャー
楽天の規模とクラウドプラットフォーム統括部の役割
Rakuten Services and Infrastructure Team.pdf
The Data Platform Administration Handling the 100 PB.pdf
Supporting Internal Customers as Technical Account Managers.pdf
Making Cloud Native CI_CD Services.pdf
How We Defined Our Own Cloud.pdf
Travel & Leisure Platform Department's tech info
Travel & Leisure Platform Department's tech info
OWASPTop10_Introduction
Introduction of GORA API Group technology
100PBを越えるデータプラットフォームの実情

Recently uploaded (20)

PPT
What is a Computer? Input Devices /output devices
PDF
Developing a website for English-speaking practice to English as a foreign la...
PDF
Assigned Numbers - 2025 - Bluetooth® Document
PDF
A contest of sentiment analysis: k-nearest neighbor versus neural network
PDF
NewMind AI Weekly Chronicles – August ’25 Week III
PDF
Taming the Chaos: How to Turn Unstructured Data into Decisions
PPTX
Benefits of Physical activity for teenagers.pptx
PDF
Zenith AI: Advanced Artificial Intelligence
PDF
CloudStack 4.21: First Look Webinar slides
PDF
Getting Started with Data Integration: FME Form 101
PDF
1 - Historical Antecedents, Social Consideration.pdf
PDF
August Patch Tuesday
PDF
Getting started with AI Agents and Multi-Agent Systems
PDF
From MVP to Full-Scale Product A Startup’s Software Journey.pdf
PPTX
Tartificialntelligence_presentation.pptx
PDF
DP Operators-handbook-extract for the Mautical Institute
PDF
STKI Israel Market Study 2025 version august
PDF
WOOl fibre morphology and structure.pdf for textiles
PDF
TrustArc Webinar - Click, Consent, Trust: Winning the Privacy Game
PDF
Enhancing emotion recognition model for a student engagement use case through...
What is a Computer? Input Devices /output devices
Developing a website for English-speaking practice to English as a foreign la...
Assigned Numbers - 2025 - Bluetooth® Document
A contest of sentiment analysis: k-nearest neighbor versus neural network
NewMind AI Weekly Chronicles – August ’25 Week III
Taming the Chaos: How to Turn Unstructured Data into Decisions
Benefits of Physical activity for teenagers.pptx
Zenith AI: Advanced Artificial Intelligence
CloudStack 4.21: First Look Webinar slides
Getting Started with Data Integration: FME Form 101
1 - Historical Antecedents, Social Consideration.pdf
August Patch Tuesday
Getting started with AI Agents and Multi-Agent Systems
From MVP to Full-Scale Product A Startup’s Software Journey.pdf
Tartificialntelligence_presentation.pptx
DP Operators-handbook-extract for the Mautical Institute
STKI Israel Market Study 2025 version august
WOOl fibre morphology and structure.pdf for textiles
TrustArc Webinar - Click, Consent, Trust: Winning the Privacy Game
Enhancing emotion recognition model for a student engagement use case through...

[RakutenTechConf2013] [B-3_3] Rakuten Category