The document defines Riemann sums and definite integrals. Riemann sums approximate the area under a function curve between two points by dividing the interval into subintervals and evaluating the function at sample points in each. The definite integral is defined as the limit of Riemann sums as the number of subintervals approaches infinity. Geometrically, the definite integral represents the net area between the function curve and x-axis over the interval.