SlideShare a Scribd company logo
TRANSCENDENTAL
FUNCTIONS
OBJECTIVES
At the end of the lesson, the students are
expected to:
• use the Log Rule for Integration to integrate a
rational functions.
• integrate exponential functions.
• integrate trigonometric functions.
• integrate functions of the nth power of the
different trigonometric functions.
• use Walli’s Formula to shorten the solution in
finding the antiderivative of powers of sine
and cosine.
• integrate functions whose antiderivatives
involve inverse trigonometric functions.
• use the method of completing the square to
integrate a function.
• review the basic integration rules involving
elementary functions.
• integrate hyperbolic functions.
• integrate functions involving inverse
hyperbolic functions.
LOG RULE FOR INTEGRATION
Let u be a differentiable function of x.
𝑑𝑢
𝑢
= 𝑙𝑛 𝑢 + 𝐶
or the above formula can also be written as
𝑢′
𝑢
𝑑𝑥 = 𝑙𝑛 𝑢 + 𝐶
To apply this rule, look for quotients in which
the numerator is the derivative of the
denominator.
• EXAMPLE
• Find the indefinite integral.
1.
𝑥2
5−𝑥3 𝑑𝑥 5.
𝑠𝑒𝑐𝑥𝑡𝑎𝑛𝑥
𝑠𝑒𝑐𝑥−1
𝑑𝑥
2.
𝑥3−6𝑥−20
𝑥+5
𝑑𝑥 6.
𝑒2𝑥
𝑒 𝑥−1
𝑑𝑥
3.
1
𝑥𝑙𝑛𝑥3 𝑑𝑥
4.
1
𝑥
2
3 1+𝑥
1
3
𝑑𝑥
INTEGRATION OF EXPONENTIAL
FUNCTIONS
Let u be a differentiable function of x.
𝒆 𝒖
𝒅𝒖 = 𝒆 𝒖
+ 𝒄
𝒂 𝒖
𝒅𝒖 =
𝒂 𝒖
𝒍𝒏𝒂
+ c
EXAMPLE
• Find the indefinite integral.
1.
𝑒
1
𝑥
𝑥2 𝑑𝑥 6. 𝑥473𝑥3
𝑑𝑥
2. 𝑒2𝑥
+ 𝑒−𝑥 2
𝑑𝑥
3. 𝑥𝑒3𝑥2+4
𝑑𝑥
4.
5𝑒 𝑙𝑛𝑥2
𝑥
𝑑𝑥
5. 10 𝑥3
𝑥2
𝑑𝑥
BASIC TRIGONOMETRIC FUNCTIONS
INTEGRATION FORMULAS
• cos 𝑢𝑑𝑢 = sin 𝑢 +c
• sin 𝑢𝑑𝑢 = -cos 𝑢 + c
• 𝑠𝑒𝑐2 𝑢𝑑𝑢 = tan 𝑢 + c
• 𝑐𝑠𝑐2 𝑢𝑑𝑢 = -cot 𝑢 + 𝑐
• sec 𝑢 tan 𝑢𝑑𝑢 = sec 𝑢 + c
• csc 𝑢 cot 𝑢 𝑑𝑢 = -csc 𝑢 + c
• tan 𝑢𝑑𝑢 = ln sec 𝑢 + c or - lncos 𝑢 + c
• cot 𝑢𝑑𝑢 = lnsin 𝑢 + c
• sec 𝑢𝑑𝑢 = ln ( sec 𝑢 +tan 𝑢 ) + c
• csc 𝑢𝑑𝑢 = -ln ( csc 𝑢 + cot 𝑢 ) + c
• In all these formulas, u is an angle. In dealing
with integrals involving trigonometric
functions, transformations using the
trigonometric identities are almost always
necessary to reduce the integral to one or
more of the standard forms.
EXAMPLE
Find the indefinite integral.
1.
cos 𝑥
sec 𝑥+tan 𝑥
𝑑𝑥
2. cot 3𝑥 sin 3𝑥𝑑𝑥 7.
1−cos 𝑥
𝑠𝑖𝑛2 𝑥
𝑑𝑥
3. 𝑥 csc 𝑥2
𝑑𝑥 8.
2
𝑐𝑜𝑠22𝑥
𝑑𝑥
4.
sin 2𝑥
𝑐𝑜𝑠2 𝑥 sin 𝑥
𝑑𝑥
5.
cos 𝑥
1− cos 𝑥
𝑑𝑥
6. (csc 𝑥 sin 2𝑥 +
1
sin 𝑥 sec 𝑥
) 𝑑𝑥
TRANSFORMATION OF
TRIGONOMETRIC FUNCTIONS
If we are given the product of an integral power
of sin 𝑥 and an integral power of cos 𝑥, where in
the powers may be equal or unequal, both even,
both odd, or one is even the other odd, we use
the trigonometric identities and express the
given integrand as a power of a trigonometric
function times the derivative of that function or
as the sum of powers of a function times the
derivative of the function
• We shall now see how to perform the details
under specified conditions.
POWERS OF SINE AND COSINE
• CASE 1. 𝒔𝒊𝒏 𝒏
𝒖𝒄𝒐𝒔 𝒎
𝒖 𝒅𝒖
Transformations:
a) If n is odd and m is even, 𝒔𝒊𝒏 𝒏
𝒖𝒄𝒐𝒔 𝒎
𝒖 =
𝒔𝒊𝒏 𝒏−𝟏
𝒖𝒄𝒐𝒔 𝒎
(𝒔𝒊𝒏 𝒖)
b) If m isoddand n is even,
𝒔𝒊𝒏 𝒏
𝒖𝒄𝒐𝒔 𝒎
𝒖 = 𝒔𝒊𝒏 𝒏
𝒖𝒄𝒐𝒔 𝒎−𝟏
𝒖(𝒄𝒐𝒔𝒖) c) If
n and m are both odd,
transform the lesser power. If n and m are same
degree either can be transformed
CASE II. 𝒔𝒊𝒏 𝒏
𝒙𝒄𝒐𝒔 𝒎
𝒙 𝒅𝒙
where m and n are positive even integers.
When both m and n are even, the method of
type 1 fails. In this case, the identities,
𝒔𝒊𝒏 𝟐
𝒙 =
𝟏 − 𝒄𝒐𝒔𝟐𝒙
𝟐
,
𝒄𝒐𝒔 𝟐
𝒙 =
𝟏+𝒄𝒐𝒔𝟐𝒙
𝟐
,
𝒔𝒊𝒏 𝒙 𝒄𝒐𝒔 𝒙 =
𝒔𝒊𝒏 𝟐𝒙
𝟐
will be used.
EXAMPLE
• Evaluate the following integrals:
1. 𝑐𝑜𝑠3
𝑥𝑠𝑖𝑛7
𝑥 𝑑𝑥 2. 𝑠𝑖𝑛5
2𝑥𝑐𝑜𝑠5
2𝑥 𝑑𝑥
3 𝑠𝑖𝑛−3
𝑥𝑐𝑜𝑠5
𝑥 𝑑𝑥 4. 𝑠𝑖𝑛2
𝑥𝑐𝑜𝑠4
𝑥 𝑑𝑥
5. 𝑠𝑖𝑛4
2𝑥 𝑑𝑥 6. 𝑐𝑜𝑠2𝑥 + 2𝑠𝑖𝑛𝑥 2
𝑑𝑥
7. 𝑠𝑖𝑛6
𝑥𝑐𝑜𝑠4
𝑥 𝑑𝑥 8. 𝑠𝑖𝑛4
𝑥𝑐𝑜𝑠5
𝑥 𝑑𝑥
9. 0
𝜋
2 𝑠𝑖𝑛2
𝑥𝑐𝑜𝑠5
𝑥 𝑑𝑥 10. 0
𝜋
2 𝑠𝑖𝑛2
𝑥𝑐𝑜𝑠2
𝑥 𝑑𝑥
PRODUCT OF SINE AND COSINE
• Integration of the products sin 𝑎𝑥 sin 𝑏𝑥 ,
cos 𝑎𝑥 cos 𝑏𝑥 , sin 𝑎𝑥 cos 𝑏𝑥 , where a and b
are constants is carried out by using the
formulas:
sin 𝐴 sin 𝐵 =
1
2
cos 𝐴 − 𝐵 -
1
2
cos 𝐴 + 𝐵
sin 𝐴 cos 𝐵 =
1
2
sin 𝐴 − 𝐵 +
1
2
sin 𝐴 + 𝐵
cos 𝐴 cos 𝐵 =
1
2
cos 𝐴 − 𝐵 +
1
2
cos 𝐴 + 𝐵
EXAMPLE
• Perform the indicated integrations:
1. cos 8𝑥 cos 5𝑥 𝑑𝑥
2. sin 6𝑥 cos 8𝑥 𝑑𝑥
3. 2 cos 6𝑥 cos −4𝑥 𝑑𝑥
4. 2 sin(2𝑥 − 𝜋) sin 3𝜋 − 2𝑥 𝑑𝑥
5. cos 5𝑥 cos 7𝑥 sin 3𝑥 𝑑𝑥
6. sin 4𝑥 sin 10𝑥 𝑑𝑥
7. 2 cos 2𝑥 cos 𝑥 𝑑𝑥 8. 3 sin 𝑥 cos 3𝑥 𝑑𝑥
WALLIS’ FORMULA
𝟎
𝝅
𝟐
𝒔𝒊𝒏 𝒎
𝒙𝒄𝒐𝒔 𝒏
𝒙 𝒅𝒙
=
𝑚−1 𝑚−3 ...
2
𝑜𝑟
1
𝑛−1 𝑛−3 …
2
𝑜𝑟
1
𝑚+𝑛 𝑚+𝑛−2 …
2
𝑜𝑟
1
∙ 𝜃
where in m and n are integers ≥ 0,
𝜃 =
𝜋
2
, if m and n are both even, 𝜃 = 1 ,
if either one or both are odd,
and that the lower and upper limits are 0 and
𝜋
2
EXAMPLE
• Evaluate by Wallis’ Formula.
1. 0
𝜋
2 𝑠𝑖𝑛4
𝑥𝑑𝑥
2. 0
𝜋
2 𝑠𝑖𝑛5
𝑥𝑐𝑜𝑠6
𝑥𝑑𝑥
3. 0
𝜋
2 𝑠𝑖𝑛4
𝑥𝑐𝑜𝑠8
𝑥𝑑𝑥
4. 0
𝜋
6 𝑠𝑖𝑛6
3𝑦𝑐𝑜𝑠3
3𝑦𝑑𝑦
5. 0
𝜋
3 𝑠𝑖𝑛2 3𝑥
2
𝑐𝑜𝑠2 3𝑥
2
𝑑𝑥
POWERS OF TANGENT AND SECANT
(COTANGENT AND COSECANT)
I. 𝒕𝒂𝒏 𝒏
𝜽 𝒅𝜽 or 𝒄𝒐𝒕 𝒏
𝜽 𝒅𝜽
where n is a positive integer. When n=1
𝒕𝒂𝒏 𝒏
𝜽 𝒅𝜽= - ln𝒄𝒐𝒔 𝜽 + c
𝒄𝒐𝒕 𝒏
𝜽 𝒅𝜽 =ln sin 𝜽 + c
When n≥ 1, we set 𝑡𝑎𝑛 𝑛
𝜃 equal to
𝑡𝑎𝑛 𝑛−2
𝜃 𝑡𝑎𝑛2
𝜃 𝑜𝑟 𝑐𝑜𝑡2
𝜃 𝑏𝑦 𝑐𝑜𝑡 𝑛−2
𝜃𝑐𝑜𝑡2
𝜃 ,
replace 𝑡𝑎𝑛2
𝜃 𝑏𝑦 𝑠𝑒𝑐2
𝜃 − 1 𝑜𝑟 𝑐𝑜𝑡2
𝜃 by
(𝑐𝑠𝑐2
𝜃 − 1). Thus we get powers of tan𝜃 and by
power formula, we can evaluate the integral.
II. 𝒔𝒆𝒄 𝒎
𝜽𝒕𝒂𝒏 𝒏
𝜽 𝒅𝜽 𝒐𝒓 𝒄𝒔𝒄 𝒎
𝜽𝒄𝒐𝒕 𝒏
𝜽𝒅𝜽
where m and n are positive integers.
• When m is even, we let 𝒔𝒆𝒄 𝒎
𝜽 =
𝒔𝒆𝒄 𝒎−𝟐
𝜽 𝒔𝒆𝒄 𝟐
𝜽, and express
𝒔𝒆𝒄 𝒎−𝟐
𝜽 = (𝒕𝒂𝒏 𝟐
𝜽 + 𝟏)
𝒎−𝟐
.We will then
obtain products of powers of tan 𝜃 𝑏𝑦 𝑠𝑒𝑐2
𝜃.
The integral could be integrated by means of
power formula.
• If n is odd, we express 𝒔𝒆𝒄 𝒎
𝒕𝒂𝒏 𝒏
𝜽 =
𝒔𝒆𝒄 𝒎−𝟏
𝜽𝒕𝒂𝒏 𝒏−𝟏
𝜽(𝐬𝐞𝐜 𝜽 𝐭𝐚𝐧 𝜽).Then we
transform 𝑡𝑎𝑛 𝑛−1
into power of sec𝜃 using
the identity 𝒕𝒂𝒏 𝟐
𝜽 = 𝒔𝒆𝒄 𝟐
𝜽 − 𝟏.
• If m is odd and n is even this can be evaluated
using integration by parts
EXAMPLE
• Find the indefinite integral.
1. 𝑡𝑎𝑛5
𝑥𝑑𝑥
2. 𝑡𝑎𝑛3
𝑥𝑠𝑒𝑐4
𝑥𝑑𝑥
3. 𝑐𝑠𝑐4
𝑥𝑑𝑥
4. 𝑐𝑜𝑡2
𝑥𝑐𝑠𝑐4
𝑥𝑑𝑥
5. 𝑡𝑎𝑛3
𝑥𝑠𝑒𝑐5
𝑥𝑑𝑥
INTEGRALS INVOLVING INVERSE
TRIGONOMETRIC FUNCTIONS
• Let u be a differentiable function of x, and let
a> 0.
1.
𝑑𝑢
𝑎2−𝑢2
= 𝑎𝑟𝑐𝑠𝑖𝑛
𝑢
𝑎
+ 𝐶
2.
𝑑𝑢
𝑎2+𝑢2 =
1
𝑎
𝑎𝑟𝑐𝑡𝑎𝑛
𝑢
𝑎
+ 𝐶
3.
𝑑𝑢
𝑢 𝑢2−𝑎2
=
1
𝑎
𝑎𝑟𝑐𝑠𝑒𝑐
𝑢
𝑎
+ 𝐶
EXAMPLE
• Find or evaluate the integral.
1.
𝑥−3
𝑥2+1
𝑑𝑥 6. 𝑙𝑛2
𝑙𝑛4 𝑒−𝑥
1−𝑒−2𝑥
𝑑𝑥
2.
𝑠𝑒𝑐2 𝑥
25−𝑡𝑎𝑛2 𝑥
𝑑𝑥 7.
𝑥
9+8𝑥2−𝑥4
𝑑𝑥
3.
3
2 𝑥(1+𝑥)
𝑑𝑥 8. 3
6 1
25+(𝑥−3)2 𝑑𝑥
4. 2
3 2𝑥−3
4𝑥−𝑥2
𝑑𝑥 9.
𝑥+2
−𝑥2−4𝑥
𝑑𝑥
5. −2
2 𝑑𝑥
𝑥2+4𝑥+13
10.
2𝑥−5
𝑥2+2𝑥+2
𝑑𝑥
HYPERBOLIC FUNCTIONS
• Definitions of the Hyperbolic Function
𝑠𝑖𝑛ℎ𝑥 =
𝑒𝑥 − 𝑒−𝑥
2
𝑐𝑠𝑐ℎ𝑥 =
1
𝑠𝑖𝑛ℎ𝑥
, 𝑥 ≠ 0
c𝑜𝑠ℎ𝑥 =
𝑒 𝑥+𝑒−𝑥
2
𝑠𝑒𝑐ℎ𝑥 =
1
𝑐𝑜𝑠ℎ𝑥
𝑡𝑎𝑛ℎ𝑥 =
𝑠𝑖𝑛ℎ𝑥
𝑐𝑜𝑠ℎ𝑥
𝑐𝑜𝑡ℎ𝑥 =
1
𝑡𝑎𝑛ℎ𝑥
, 𝑥 ≠ 0
• HYPERBOLIC IDENTITIES
𝑐𝑜𝑠ℎ2
𝑢 − 𝑠𝑖𝑛ℎ2
𝑢 = 1
𝑡𝑎𝑛ℎ2
𝑢 + 𝑠𝑒𝑐ℎ2
𝑢 = 1
𝑐𝑜𝑡ℎ2
𝑢 − 𝑐𝑠𝑐ℎ2
𝑢 = 1
cosh2u = 𝑐𝑜𝑠ℎ2
𝑢 + 𝑠𝑖𝑛ℎ2
𝑢
𝑠𝑖𝑛ℎ2𝑥 = 2𝑠𝑖𝑛ℎ𝑥𝑐𝑜𝑠ℎ𝑥
𝑠𝑖𝑛ℎ2
1
2
𝑢 =
1
2
(𝑐𝑜𝑠ℎ 𝑢 − 1)
𝑐𝑜𝑠ℎ2
𝑥 =
1 + 𝑐𝑜𝑠ℎ2𝑥
2
tanh(x + y) =
(𝑡𝑎𝑛ℎ 𝑥+𝑡𝑎𝑛ℎ 𝑦)
1+𝑡𝑎𝑛ℎ 𝑥 𝑡𝑎𝑛ℎ𝑦
INTEGRALS OF HYPERBOLIC FUNCTIONS
Let u be a differentiable function of x.
1. 𝑠𝑖𝑛ℎ𝑢 𝑑𝑢 = 𝑐𝑜𝑠ℎ𝑢 + 𝐶
2. 𝑐𝑜𝑠ℎ𝑢 𝑑𝑢 = 𝑠𝑖𝑛ℎ𝑢 + 𝐶
3. 𝑡𝑎𝑛ℎ𝑢 𝑑𝑢 = 𝑙𝑛 𝑐𝑜𝑠ℎ𝑢 + 𝐶
4.
𝑐𝑜𝑡ℎ𝑢 𝑑𝑢 = 𝑙𝑛 𝑠𝑖𝑛ℎ 𝑢 + 𝐶 5. 𝑠𝑒𝑐ℎ𝑢 𝑑𝑢 = 𝑡𝑎𝑛−1
𝑠𝑖𝑛
6. 𝑐𝑠𝑐ℎ𝑢 𝑑𝑢 = 𝑙𝑛(𝑐𝑜𝑡ℎ 𝑢 − 𝑐𝑠𝑐ℎ𝑢) + 𝐶
7. 𝑠𝑒𝑐ℎ2 𝑢 𝑑𝑢 = 𝑡𝑎𝑛ℎ𝑢 + 𝐶
8. 𝑐𝑠𝑐ℎ2 𝑢 𝑑𝑢 = − 𝑐𝑜𝑡ℎ 𝑢 + 𝐶
9. 𝑠𝑒𝑐ℎ𝑢 𝑡𝑎𝑛ℎ𝑢 𝑑𝑢 = −𝑠𝑒𝑐ℎ𝑢 + 𝐶
10. 𝑐𝑠𝑐ℎ 𝑢 𝑐𝑜𝑡ℎ𝑢 𝑑𝑢 = −𝑐𝑠𝑐ℎ𝑢 + 𝐶
INVERSE HYPERBOLIC FUNCTIONS
• Function Domain
• 𝑠𝑖𝑛ℎ−1
𝑥 = 𝑙𝑛(𝑥 + 𝑥2 + 1)(−∞, +∞)
• 𝑐𝑜𝑠ℎ−1
𝑥 = 𝑙𝑛(𝑥 + 𝑥2 − 1) 1, ∞
• 𝑡𝑎𝑛ℎ−1
𝑥 =
1
2
𝑙𝑛
1+𝑥
1−𝑥
−1,1
• 𝑐𝑜𝑡ℎ−1
𝑥 =
1
2
𝑙𝑛
𝑥+1
𝑥−1
−∞, −1 U(1, ∞)
• 𝑠𝑒𝑐ℎ−1
𝑥 = 𝑙𝑛
1+ 1−𝑥2
𝑥
(0,1
• 𝑐𝑠𝑐ℎ−1
𝑥 = 𝑙𝑛
1
𝑥
+
1+𝑥2
𝑥
−∞, 0 U(0, ∞)
INTEGRATION INVOLVING INVERSE
HYPERBOLIC FUNCTION
• Let u be a differentiable function of x.
•
𝑑𝑢
𝑢2±𝑎2
= 𝑙𝑛 𝑢 + 𝑢2 ± 𝑎2 + 𝐶
•
𝑑𝑢
𝑎2−𝑢2 =
1
2𝑎
𝑙𝑛
𝑎+𝑢
𝑎−𝑢
+ 𝐶
•
𝑑𝑢
𝑢 𝑎2±𝑢2
= −
1
𝑎
𝑙𝑛
𝑎+ 𝑎2±𝑢2
𝑢
+ 𝐶
EXAMPLE
• Find the indefinite integral.
1.
1
3−9𝑥2 𝑑𝑥
2.
1
𝑥 1+𝑥
𝑑𝑥
3.
1
1−4𝑥−2𝑥2 𝑑𝑥
4.
𝑑𝑥
(𝑥+2) 𝑥2+4𝑥+8
5.
𝑥
1+𝑥3
𝑑𝑥

More Related Content

PPT
Pre-5.1 - trigonometry ratios in right triangle and special right triangles.ppt
PPTX
Multiplying-and-dividing-polynomials.pptx
PPTX
Factoring the difference of two squares
PPT
Factor theorem
PPT
3.1 derivative of a function
PPTX
Integration of Trigonometric Functions
PDF
Inquiry-Based Lesson Plans in Pre-Calculus for Senior High School
PDF
Arc length, area of a sector and segments of a circle
Pre-5.1 - trigonometry ratios in right triangle and special right triangles.ppt
Multiplying-and-dividing-polynomials.pptx
Factoring the difference of two squares
Factor theorem
3.1 derivative of a function
Integration of Trigonometric Functions
Inquiry-Based Lesson Plans in Pre-Calculus for Senior High School
Arc length, area of a sector and segments of a circle

What's hot (20)

PPTX
common monomial factor
PPTX
Exponential Growth And Decay
PPTX
Indefinite Integral
PPT
2/27/12 Special Factoring - Sum & Difference of Two Cubes
PPT
Rational Exponents
PDF
Algebra 2 Section 2-2
PDF
Lesson 9: Basic Differentiation Rules
PPT
Limits
DOCX
Logarithm exercise
PPTX
Basic Calculus 11 - Derivatives and Differentiation Rules
PPTX
Group homomorphism
PDF
G9-MELC-Q2-Wk4-simplifies expressions with rational exponents and writes expr...
PDF
Multiplying polynomials
PPTX
MIDLINE THEOREM.pptx
PDF
Lesson 7: Limits at Infinity
PPTX
Factoring the Difference of Two Squares
PPTX
1 illustrating limit of a function
PPTX
Integral Exponents
PDF
Simplifying Rational Algebraic Expressions
PPT
Distance between two points
common monomial factor
Exponential Growth And Decay
Indefinite Integral
2/27/12 Special Factoring - Sum & Difference of Two Cubes
Rational Exponents
Algebra 2 Section 2-2
Lesson 9: Basic Differentiation Rules
Limits
Logarithm exercise
Basic Calculus 11 - Derivatives and Differentiation Rules
Group homomorphism
G9-MELC-Q2-Wk4-simplifies expressions with rational exponents and writes expr...
Multiplying polynomials
MIDLINE THEOREM.pptx
Lesson 7: Limits at Infinity
Factoring the Difference of Two Squares
1 illustrating limit of a function
Integral Exponents
Simplifying Rational Algebraic Expressions
Distance between two points
Ad

Viewers also liked (20)

PPT
Lecture 27 inductors. stored energy. lr circuits
PPTX
Deep or dark web
PPTX
Rlc circuits and differential equations1
PPTX
A presentation on differencial calculus
PPTX
Calculus
PPTX
Law of Sines ppt
PPTX
Resonance in R-L-C circuit
PPTX
Differential calculus
PDF
Integral calculus
PPTX
Law of sine and cosines
DOCX
Calculus I basic concepts
PPTX
Differential calculus
PPT
Lecture 28 lc, rlc circuits.
PPTX
Lesson 10 techniques of integration
PPTX
Resonance in series and parallel circuits
PPTX
PPTX
Barilla Spagethi Case Study
PDF
Basic calculus
PPTX
Barilla Spa: A case on Supply Chain Integration
PPT
Integral Calculus
Lecture 27 inductors. stored energy. lr circuits
Deep or dark web
Rlc circuits and differential equations1
A presentation on differencial calculus
Calculus
Law of Sines ppt
Resonance in R-L-C circuit
Differential calculus
Integral calculus
Law of sine and cosines
Calculus I basic concepts
Differential calculus
Lecture 28 lc, rlc circuits.
Lesson 10 techniques of integration
Resonance in series and parallel circuits
Barilla Spagethi Case Study
Basic calculus
Barilla Spa: A case on Supply Chain Integration
Integral Calculus
Ad

Similar to Lesson 9 transcendental functions (20)

DOCX
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
PPT
11365.integral 2
PPT
Special trigonometric integrals
PPTX
INTEGRATION.pptx
PDF
Trig substitution
PPTX
Mathematical toolls of Physics.pptx jdjdj
PPTX
Lecture for Week2 inetral calculus .pptx
PDF
3c3 trigonomet integrals-stu
PPTX
06_Complex Numbers_Hyperbolic Functions.pptx
PPTX
Basic mathematics integration
PDF
instegration basic notes of class 12th h
PDF
MAT221: CALCULUS II - REDUCTION FORMULA, POWERS OF TRIG FUNCTIONS AND TRIGONO...
PPTX
INTEGRATION BY PARTS ,TRIPLE INTEGRAL ,CHANGE THE ORDER OF INTEGRATION,BETA ...
PDF
Indefinite integration.pdf
PDF
Mathematical formula tables
PDF
Integration techniques
PDF
13 1 basics_integration
PPTX
A course on integral calculus
DOCX
Integration - Mathematics - UoZ
PDF
University of manchester mathematical formula tables
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
11365.integral 2
Special trigonometric integrals
INTEGRATION.pptx
Trig substitution
Mathematical toolls of Physics.pptx jdjdj
Lecture for Week2 inetral calculus .pptx
3c3 trigonomet integrals-stu
06_Complex Numbers_Hyperbolic Functions.pptx
Basic mathematics integration
instegration basic notes of class 12th h
MAT221: CALCULUS II - REDUCTION FORMULA, POWERS OF TRIG FUNCTIONS AND TRIGONO...
INTEGRATION BY PARTS ,TRIPLE INTEGRAL ,CHANGE THE ORDER OF INTEGRATION,BETA ...
Indefinite integration.pdf
Mathematical formula tables
Integration techniques
13 1 basics_integration
A course on integral calculus
Integration - Mathematics - UoZ
University of manchester mathematical formula tables

More from Lawrence De Vera (20)

PPT
Lesson 19 improper intergals
PPT
Lesson 18 force due to liquid pressure revised
PPT
Lesson 17 work done by a spring and pump final (1)
PPT
Lesson 16 length of an arc
PPTX
Lesson 15 pappus theorem
PPT
Lesson 14 centroid of volume
PPT
Lesson 13 volume of solids of revolution
PPT
Lesson 12 centroid of an area
PPT
Lesson 11 plane areas area by integration
PPTX
Lesson 8 the definite integrals
PPTX
Lesson 7 antidifferentiation generalized power formula-simple substitution
PPTX
Lesson 6 differentials parametric-curvature
PPTX
Lesson 5 indeterminate forms
PPT
Lesson 4 derivative of inverse hyperbolic functions
PPT
Lesson 3 derivative of hyperbolic functions
PPT
Lesson 1 derivative of trigonometric functions
PPT
Lesson 2 derivative of inverse trigonometric functions
PPT
Lecture co4 math21-1
PPTX
Lecture co3 math21-1
Lesson 19 improper intergals
Lesson 18 force due to liquid pressure revised
Lesson 17 work done by a spring and pump final (1)
Lesson 16 length of an arc
Lesson 15 pappus theorem
Lesson 14 centroid of volume
Lesson 13 volume of solids of revolution
Lesson 12 centroid of an area
Lesson 11 plane areas area by integration
Lesson 8 the definite integrals
Lesson 7 antidifferentiation generalized power formula-simple substitution
Lesson 6 differentials parametric-curvature
Lesson 5 indeterminate forms
Lesson 4 derivative of inverse hyperbolic functions
Lesson 3 derivative of hyperbolic functions
Lesson 1 derivative of trigonometric functions
Lesson 2 derivative of inverse trigonometric functions
Lecture co4 math21-1
Lecture co3 math21-1

Recently uploaded (20)

PDF
Abdominal Access Techniques with Prof. Dr. R K Mishra
PDF
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
PDF
Computing-Curriculum for Schools in Ghana
PDF
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
PPTX
master seminar digital applications in india
PDF
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
PPTX
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
PPTX
Cell Types and Its function , kingdom of life
PPTX
Renaissance Architecture: A Journey from Faith to Humanism
PDF
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
PDF
VCE English Exam - Section C Student Revision Booklet
PDF
Sports Quiz easy sports quiz sports quiz
PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PDF
Anesthesia in Laparoscopic Surgery in India
PDF
TR - Agricultural Crops Production NC III.pdf
PDF
STATICS OF THE RIGID BODIES Hibbelers.pdf
PDF
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
PDF
RMMM.pdf make it easy to upload and study
PPTX
human mycosis Human fungal infections are called human mycosis..pptx
PDF
Classroom Observation Tools for Teachers
Abdominal Access Techniques with Prof. Dr. R K Mishra
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
Computing-Curriculum for Schools in Ghana
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
master seminar digital applications in india
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
Cell Types and Its function , kingdom of life
Renaissance Architecture: A Journey from Faith to Humanism
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
VCE English Exam - Section C Student Revision Booklet
Sports Quiz easy sports quiz sports quiz
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
Anesthesia in Laparoscopic Surgery in India
TR - Agricultural Crops Production NC III.pdf
STATICS OF THE RIGID BODIES Hibbelers.pdf
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
RMMM.pdf make it easy to upload and study
human mycosis Human fungal infections are called human mycosis..pptx
Classroom Observation Tools for Teachers

Lesson 9 transcendental functions

  • 2. OBJECTIVES At the end of the lesson, the students are expected to: • use the Log Rule for Integration to integrate a rational functions. • integrate exponential functions. • integrate trigonometric functions. • integrate functions of the nth power of the different trigonometric functions. • use Walli’s Formula to shorten the solution in finding the antiderivative of powers of sine and cosine.
  • 3. • integrate functions whose antiderivatives involve inverse trigonometric functions. • use the method of completing the square to integrate a function. • review the basic integration rules involving elementary functions. • integrate hyperbolic functions. • integrate functions involving inverse hyperbolic functions.
  • 4. LOG RULE FOR INTEGRATION Let u be a differentiable function of x. 𝑑𝑢 𝑢 = 𝑙𝑛 𝑢 + 𝐶 or the above formula can also be written as 𝑢′ 𝑢 𝑑𝑥 = 𝑙𝑛 𝑢 + 𝐶 To apply this rule, look for quotients in which the numerator is the derivative of the denominator.
  • 5. • EXAMPLE • Find the indefinite integral. 1. 𝑥2 5−𝑥3 𝑑𝑥 5. 𝑠𝑒𝑐𝑥𝑡𝑎𝑛𝑥 𝑠𝑒𝑐𝑥−1 𝑑𝑥 2. 𝑥3−6𝑥−20 𝑥+5 𝑑𝑥 6. 𝑒2𝑥 𝑒 𝑥−1 𝑑𝑥 3. 1 𝑥𝑙𝑛𝑥3 𝑑𝑥 4. 1 𝑥 2 3 1+𝑥 1 3 𝑑𝑥
  • 6. INTEGRATION OF EXPONENTIAL FUNCTIONS Let u be a differentiable function of x. 𝒆 𝒖 𝒅𝒖 = 𝒆 𝒖 + 𝒄 𝒂 𝒖 𝒅𝒖 = 𝒂 𝒖 𝒍𝒏𝒂 + c
  • 7. EXAMPLE • Find the indefinite integral. 1. 𝑒 1 𝑥 𝑥2 𝑑𝑥 6. 𝑥473𝑥3 𝑑𝑥 2. 𝑒2𝑥 + 𝑒−𝑥 2 𝑑𝑥 3. 𝑥𝑒3𝑥2+4 𝑑𝑥 4. 5𝑒 𝑙𝑛𝑥2 𝑥 𝑑𝑥 5. 10 𝑥3 𝑥2 𝑑𝑥
  • 8. BASIC TRIGONOMETRIC FUNCTIONS INTEGRATION FORMULAS • cos 𝑢𝑑𝑢 = sin 𝑢 +c • sin 𝑢𝑑𝑢 = -cos 𝑢 + c • 𝑠𝑒𝑐2 𝑢𝑑𝑢 = tan 𝑢 + c • 𝑐𝑠𝑐2 𝑢𝑑𝑢 = -cot 𝑢 + 𝑐 • sec 𝑢 tan 𝑢𝑑𝑢 = sec 𝑢 + c • csc 𝑢 cot 𝑢 𝑑𝑢 = -csc 𝑢 + c • tan 𝑢𝑑𝑢 = ln sec 𝑢 + c or - lncos 𝑢 + c • cot 𝑢𝑑𝑢 = lnsin 𝑢 + c • sec 𝑢𝑑𝑢 = ln ( sec 𝑢 +tan 𝑢 ) + c • csc 𝑢𝑑𝑢 = -ln ( csc 𝑢 + cot 𝑢 ) + c
  • 9. • In all these formulas, u is an angle. In dealing with integrals involving trigonometric functions, transformations using the trigonometric identities are almost always necessary to reduce the integral to one or more of the standard forms.
  • 10. EXAMPLE Find the indefinite integral. 1. cos 𝑥 sec 𝑥+tan 𝑥 𝑑𝑥 2. cot 3𝑥 sin 3𝑥𝑑𝑥 7. 1−cos 𝑥 𝑠𝑖𝑛2 𝑥 𝑑𝑥 3. 𝑥 csc 𝑥2 𝑑𝑥 8. 2 𝑐𝑜𝑠22𝑥 𝑑𝑥 4. sin 2𝑥 𝑐𝑜𝑠2 𝑥 sin 𝑥 𝑑𝑥 5. cos 𝑥 1− cos 𝑥 𝑑𝑥 6. (csc 𝑥 sin 2𝑥 + 1 sin 𝑥 sec 𝑥 ) 𝑑𝑥
  • 11. TRANSFORMATION OF TRIGONOMETRIC FUNCTIONS If we are given the product of an integral power of sin 𝑥 and an integral power of cos 𝑥, where in the powers may be equal or unequal, both even, both odd, or one is even the other odd, we use the trigonometric identities and express the given integrand as a power of a trigonometric function times the derivative of that function or as the sum of powers of a function times the derivative of the function • We shall now see how to perform the details under specified conditions.
  • 12. POWERS OF SINE AND COSINE • CASE 1. 𝒔𝒊𝒏 𝒏 𝒖𝒄𝒐𝒔 𝒎 𝒖 𝒅𝒖 Transformations: a) If n is odd and m is even, 𝒔𝒊𝒏 𝒏 𝒖𝒄𝒐𝒔 𝒎 𝒖 = 𝒔𝒊𝒏 𝒏−𝟏 𝒖𝒄𝒐𝒔 𝒎 (𝒔𝒊𝒏 𝒖) b) If m isoddand n is even, 𝒔𝒊𝒏 𝒏 𝒖𝒄𝒐𝒔 𝒎 𝒖 = 𝒔𝒊𝒏 𝒏 𝒖𝒄𝒐𝒔 𝒎−𝟏 𝒖(𝒄𝒐𝒔𝒖) c) If n and m are both odd, transform the lesser power. If n and m are same degree either can be transformed
  • 13. CASE II. 𝒔𝒊𝒏 𝒏 𝒙𝒄𝒐𝒔 𝒎 𝒙 𝒅𝒙 where m and n are positive even integers. When both m and n are even, the method of type 1 fails. In this case, the identities, 𝒔𝒊𝒏 𝟐 𝒙 = 𝟏 − 𝒄𝒐𝒔𝟐𝒙 𝟐 , 𝒄𝒐𝒔 𝟐 𝒙 = 𝟏+𝒄𝒐𝒔𝟐𝒙 𝟐 , 𝒔𝒊𝒏 𝒙 𝒄𝒐𝒔 𝒙 = 𝒔𝒊𝒏 𝟐𝒙 𝟐 will be used.
  • 14. EXAMPLE • Evaluate the following integrals: 1. 𝑐𝑜𝑠3 𝑥𝑠𝑖𝑛7 𝑥 𝑑𝑥 2. 𝑠𝑖𝑛5 2𝑥𝑐𝑜𝑠5 2𝑥 𝑑𝑥 3 𝑠𝑖𝑛−3 𝑥𝑐𝑜𝑠5 𝑥 𝑑𝑥 4. 𝑠𝑖𝑛2 𝑥𝑐𝑜𝑠4 𝑥 𝑑𝑥 5. 𝑠𝑖𝑛4 2𝑥 𝑑𝑥 6. 𝑐𝑜𝑠2𝑥 + 2𝑠𝑖𝑛𝑥 2 𝑑𝑥 7. 𝑠𝑖𝑛6 𝑥𝑐𝑜𝑠4 𝑥 𝑑𝑥 8. 𝑠𝑖𝑛4 𝑥𝑐𝑜𝑠5 𝑥 𝑑𝑥 9. 0 𝜋 2 𝑠𝑖𝑛2 𝑥𝑐𝑜𝑠5 𝑥 𝑑𝑥 10. 0 𝜋 2 𝑠𝑖𝑛2 𝑥𝑐𝑜𝑠2 𝑥 𝑑𝑥
  • 15. PRODUCT OF SINE AND COSINE • Integration of the products sin 𝑎𝑥 sin 𝑏𝑥 , cos 𝑎𝑥 cos 𝑏𝑥 , sin 𝑎𝑥 cos 𝑏𝑥 , where a and b are constants is carried out by using the formulas: sin 𝐴 sin 𝐵 = 1 2 cos 𝐴 − 𝐵 - 1 2 cos 𝐴 + 𝐵 sin 𝐴 cos 𝐵 = 1 2 sin 𝐴 − 𝐵 + 1 2 sin 𝐴 + 𝐵 cos 𝐴 cos 𝐵 = 1 2 cos 𝐴 − 𝐵 + 1 2 cos 𝐴 + 𝐵
  • 16. EXAMPLE • Perform the indicated integrations: 1. cos 8𝑥 cos 5𝑥 𝑑𝑥 2. sin 6𝑥 cos 8𝑥 𝑑𝑥 3. 2 cos 6𝑥 cos −4𝑥 𝑑𝑥 4. 2 sin(2𝑥 − 𝜋) sin 3𝜋 − 2𝑥 𝑑𝑥 5. cos 5𝑥 cos 7𝑥 sin 3𝑥 𝑑𝑥 6. sin 4𝑥 sin 10𝑥 𝑑𝑥 7. 2 cos 2𝑥 cos 𝑥 𝑑𝑥 8. 3 sin 𝑥 cos 3𝑥 𝑑𝑥
  • 17. WALLIS’ FORMULA 𝟎 𝝅 𝟐 𝒔𝒊𝒏 𝒎 𝒙𝒄𝒐𝒔 𝒏 𝒙 𝒅𝒙 = 𝑚−1 𝑚−3 ... 2 𝑜𝑟 1 𝑛−1 𝑛−3 … 2 𝑜𝑟 1 𝑚+𝑛 𝑚+𝑛−2 … 2 𝑜𝑟 1 ∙ 𝜃 where in m and n are integers ≥ 0, 𝜃 = 𝜋 2 , if m and n are both even, 𝜃 = 1 , if either one or both are odd, and that the lower and upper limits are 0 and 𝜋 2
  • 18. EXAMPLE • Evaluate by Wallis’ Formula. 1. 0 𝜋 2 𝑠𝑖𝑛4 𝑥𝑑𝑥 2. 0 𝜋 2 𝑠𝑖𝑛5 𝑥𝑐𝑜𝑠6 𝑥𝑑𝑥 3. 0 𝜋 2 𝑠𝑖𝑛4 𝑥𝑐𝑜𝑠8 𝑥𝑑𝑥 4. 0 𝜋 6 𝑠𝑖𝑛6 3𝑦𝑐𝑜𝑠3 3𝑦𝑑𝑦 5. 0 𝜋 3 𝑠𝑖𝑛2 3𝑥 2 𝑐𝑜𝑠2 3𝑥 2 𝑑𝑥
  • 19. POWERS OF TANGENT AND SECANT (COTANGENT AND COSECANT) I. 𝒕𝒂𝒏 𝒏 𝜽 𝒅𝜽 or 𝒄𝒐𝒕 𝒏 𝜽 𝒅𝜽 where n is a positive integer. When n=1 𝒕𝒂𝒏 𝒏 𝜽 𝒅𝜽= - ln𝒄𝒐𝒔 𝜽 + c 𝒄𝒐𝒕 𝒏 𝜽 𝒅𝜽 =ln sin 𝜽 + c When n≥ 1, we set 𝑡𝑎𝑛 𝑛 𝜃 equal to 𝑡𝑎𝑛 𝑛−2 𝜃 𝑡𝑎𝑛2 𝜃 𝑜𝑟 𝑐𝑜𝑡2 𝜃 𝑏𝑦 𝑐𝑜𝑡 𝑛−2 𝜃𝑐𝑜𝑡2 𝜃 , replace 𝑡𝑎𝑛2 𝜃 𝑏𝑦 𝑠𝑒𝑐2 𝜃 − 1 𝑜𝑟 𝑐𝑜𝑡2 𝜃 by (𝑐𝑠𝑐2 𝜃 − 1). Thus we get powers of tan𝜃 and by power formula, we can evaluate the integral.
  • 20. II. 𝒔𝒆𝒄 𝒎 𝜽𝒕𝒂𝒏 𝒏 𝜽 𝒅𝜽 𝒐𝒓 𝒄𝒔𝒄 𝒎 𝜽𝒄𝒐𝒕 𝒏 𝜽𝒅𝜽 where m and n are positive integers. • When m is even, we let 𝒔𝒆𝒄 𝒎 𝜽 = 𝒔𝒆𝒄 𝒎−𝟐 𝜽 𝒔𝒆𝒄 𝟐 𝜽, and express 𝒔𝒆𝒄 𝒎−𝟐 𝜽 = (𝒕𝒂𝒏 𝟐 𝜽 + 𝟏) 𝒎−𝟐 .We will then obtain products of powers of tan 𝜃 𝑏𝑦 𝑠𝑒𝑐2 𝜃. The integral could be integrated by means of power formula.
  • 21. • If n is odd, we express 𝒔𝒆𝒄 𝒎 𝒕𝒂𝒏 𝒏 𝜽 = 𝒔𝒆𝒄 𝒎−𝟏 𝜽𝒕𝒂𝒏 𝒏−𝟏 𝜽(𝐬𝐞𝐜 𝜽 𝐭𝐚𝐧 𝜽).Then we transform 𝑡𝑎𝑛 𝑛−1 into power of sec𝜃 using the identity 𝒕𝒂𝒏 𝟐 𝜽 = 𝒔𝒆𝒄 𝟐 𝜽 − 𝟏. • If m is odd and n is even this can be evaluated using integration by parts
  • 22. EXAMPLE • Find the indefinite integral. 1. 𝑡𝑎𝑛5 𝑥𝑑𝑥 2. 𝑡𝑎𝑛3 𝑥𝑠𝑒𝑐4 𝑥𝑑𝑥 3. 𝑐𝑠𝑐4 𝑥𝑑𝑥 4. 𝑐𝑜𝑡2 𝑥𝑐𝑠𝑐4 𝑥𝑑𝑥 5. 𝑡𝑎𝑛3 𝑥𝑠𝑒𝑐5 𝑥𝑑𝑥
  • 23. INTEGRALS INVOLVING INVERSE TRIGONOMETRIC FUNCTIONS • Let u be a differentiable function of x, and let a> 0. 1. 𝑑𝑢 𝑎2−𝑢2 = 𝑎𝑟𝑐𝑠𝑖𝑛 𝑢 𝑎 + 𝐶 2. 𝑑𝑢 𝑎2+𝑢2 = 1 𝑎 𝑎𝑟𝑐𝑡𝑎𝑛 𝑢 𝑎 + 𝐶 3. 𝑑𝑢 𝑢 𝑢2−𝑎2 = 1 𝑎 𝑎𝑟𝑐𝑠𝑒𝑐 𝑢 𝑎 + 𝐶
  • 24. EXAMPLE • Find or evaluate the integral. 1. 𝑥−3 𝑥2+1 𝑑𝑥 6. 𝑙𝑛2 𝑙𝑛4 𝑒−𝑥 1−𝑒−2𝑥 𝑑𝑥 2. 𝑠𝑒𝑐2 𝑥 25−𝑡𝑎𝑛2 𝑥 𝑑𝑥 7. 𝑥 9+8𝑥2−𝑥4 𝑑𝑥 3. 3 2 𝑥(1+𝑥) 𝑑𝑥 8. 3 6 1 25+(𝑥−3)2 𝑑𝑥 4. 2 3 2𝑥−3 4𝑥−𝑥2 𝑑𝑥 9. 𝑥+2 −𝑥2−4𝑥 𝑑𝑥 5. −2 2 𝑑𝑥 𝑥2+4𝑥+13 10. 2𝑥−5 𝑥2+2𝑥+2 𝑑𝑥
  • 25. HYPERBOLIC FUNCTIONS • Definitions of the Hyperbolic Function 𝑠𝑖𝑛ℎ𝑥 = 𝑒𝑥 − 𝑒−𝑥 2 𝑐𝑠𝑐ℎ𝑥 = 1 𝑠𝑖𝑛ℎ𝑥 , 𝑥 ≠ 0 c𝑜𝑠ℎ𝑥 = 𝑒 𝑥+𝑒−𝑥 2 𝑠𝑒𝑐ℎ𝑥 = 1 𝑐𝑜𝑠ℎ𝑥 𝑡𝑎𝑛ℎ𝑥 = 𝑠𝑖𝑛ℎ𝑥 𝑐𝑜𝑠ℎ𝑥 𝑐𝑜𝑡ℎ𝑥 = 1 𝑡𝑎𝑛ℎ𝑥 , 𝑥 ≠ 0
  • 26. • HYPERBOLIC IDENTITIES 𝑐𝑜𝑠ℎ2 𝑢 − 𝑠𝑖𝑛ℎ2 𝑢 = 1 𝑡𝑎𝑛ℎ2 𝑢 + 𝑠𝑒𝑐ℎ2 𝑢 = 1 𝑐𝑜𝑡ℎ2 𝑢 − 𝑐𝑠𝑐ℎ2 𝑢 = 1 cosh2u = 𝑐𝑜𝑠ℎ2 𝑢 + 𝑠𝑖𝑛ℎ2 𝑢 𝑠𝑖𝑛ℎ2𝑥 = 2𝑠𝑖𝑛ℎ𝑥𝑐𝑜𝑠ℎ𝑥 𝑠𝑖𝑛ℎ2 1 2 𝑢 = 1 2 (𝑐𝑜𝑠ℎ 𝑢 − 1) 𝑐𝑜𝑠ℎ2 𝑥 = 1 + 𝑐𝑜𝑠ℎ2𝑥 2 tanh(x + y) = (𝑡𝑎𝑛ℎ 𝑥+𝑡𝑎𝑛ℎ 𝑦) 1+𝑡𝑎𝑛ℎ 𝑥 𝑡𝑎𝑛ℎ𝑦
  • 27. INTEGRALS OF HYPERBOLIC FUNCTIONS Let u be a differentiable function of x. 1. 𝑠𝑖𝑛ℎ𝑢 𝑑𝑢 = 𝑐𝑜𝑠ℎ𝑢 + 𝐶 2. 𝑐𝑜𝑠ℎ𝑢 𝑑𝑢 = 𝑠𝑖𝑛ℎ𝑢 + 𝐶 3. 𝑡𝑎𝑛ℎ𝑢 𝑑𝑢 = 𝑙𝑛 𝑐𝑜𝑠ℎ𝑢 + 𝐶 4. 𝑐𝑜𝑡ℎ𝑢 𝑑𝑢 = 𝑙𝑛 𝑠𝑖𝑛ℎ 𝑢 + 𝐶 5. 𝑠𝑒𝑐ℎ𝑢 𝑑𝑢 = 𝑡𝑎𝑛−1 𝑠𝑖𝑛 6. 𝑐𝑠𝑐ℎ𝑢 𝑑𝑢 = 𝑙𝑛(𝑐𝑜𝑡ℎ 𝑢 − 𝑐𝑠𝑐ℎ𝑢) + 𝐶 7. 𝑠𝑒𝑐ℎ2 𝑢 𝑑𝑢 = 𝑡𝑎𝑛ℎ𝑢 + 𝐶 8. 𝑐𝑠𝑐ℎ2 𝑢 𝑑𝑢 = − 𝑐𝑜𝑡ℎ 𝑢 + 𝐶 9. 𝑠𝑒𝑐ℎ𝑢 𝑡𝑎𝑛ℎ𝑢 𝑑𝑢 = −𝑠𝑒𝑐ℎ𝑢 + 𝐶 10. 𝑐𝑠𝑐ℎ 𝑢 𝑐𝑜𝑡ℎ𝑢 𝑑𝑢 = −𝑐𝑠𝑐ℎ𝑢 + 𝐶
  • 28. INVERSE HYPERBOLIC FUNCTIONS • Function Domain • 𝑠𝑖𝑛ℎ−1 𝑥 = 𝑙𝑛(𝑥 + 𝑥2 + 1)(−∞, +∞) • 𝑐𝑜𝑠ℎ−1 𝑥 = 𝑙𝑛(𝑥 + 𝑥2 − 1) 1, ∞ • 𝑡𝑎𝑛ℎ−1 𝑥 = 1 2 𝑙𝑛 1+𝑥 1−𝑥 −1,1 • 𝑐𝑜𝑡ℎ−1 𝑥 = 1 2 𝑙𝑛 𝑥+1 𝑥−1 −∞, −1 U(1, ∞) • 𝑠𝑒𝑐ℎ−1 𝑥 = 𝑙𝑛 1+ 1−𝑥2 𝑥 (0,1 • 𝑐𝑠𝑐ℎ−1 𝑥 = 𝑙𝑛 1 𝑥 + 1+𝑥2 𝑥 −∞, 0 U(0, ∞)
  • 29. INTEGRATION INVOLVING INVERSE HYPERBOLIC FUNCTION • Let u be a differentiable function of x. • 𝑑𝑢 𝑢2±𝑎2 = 𝑙𝑛 𝑢 + 𝑢2 ± 𝑎2 + 𝐶 • 𝑑𝑢 𝑎2−𝑢2 = 1 2𝑎 𝑙𝑛 𝑎+𝑢 𝑎−𝑢 + 𝐶 • 𝑑𝑢 𝑢 𝑎2±𝑢2 = − 1 𝑎 𝑙𝑛 𝑎+ 𝑎2±𝑢2 𝑢 + 𝐶
  • 30. EXAMPLE • Find the indefinite integral. 1. 1 3−9𝑥2 𝑑𝑥 2. 1 𝑥 1+𝑥 𝑑𝑥 3. 1 1−4𝑥−2𝑥2 𝑑𝑥 4. 𝑑𝑥 (𝑥+2) 𝑥2+4𝑥+8 5. 𝑥 1+𝑥3 𝑑𝑥