SlideShare a Scribd company logo
3
Most read
6
Most read
15
Most read
DIFFERENTIATION OF
TRIGONOMETRIC
FUNCTIONS
TRANSCENDENTAL FUNCTIONS
Kinds of transcendental functions:
1.logarithmic and exponential functions
2.trigonometric and inverse trigonometric
functions
3.hyperbolic and inverse hyperbolic functions
Note:
Each pair of functions above is an inverse to
each other.
The TRIGONOMETRIC FUNCTIONS
.
xtan
1
xsin
xcos
xcot.4
xcot
1
xcos
xsin
xtan.3
xcos
1
xsec
xsec
1
xcos2.
xsin
1
xcsc
xcsc
1
xsin1.
IdentitiesciprocalRe.A
IdentitiesricTrigonomet
:callRe
==
==
=⇔=
=⇔=
( )
( )
( )
ytanxtan1
ytanxtan
yxtan.3
ysinxsinycosxcosyxcos2.
ysinxcosycosxsinyxsin1.
AnglesTwoofDifferenceandSum.B


±
=±
=±
±=±
xtan1
xtan2
x2tan.3
1xcos2
xsin21
xsinxcosx2cos2.
2sinxcosxx2sin1.
FormulasAngleDouble.C
2
2
2
22
−
=
−=
−=
−=
=
xcscxcot1.3
xsecxtan1.2
1xcosxsin.1
IdentitiesSquared.D
22
22
22
=+
=+
=+
DIFFERENTIATION FORMULA
Derivative of Trigonometric Function
For the differentiation formulas of the trigonometric
functions, all you need to know is the differentiation
formulas of sin u and cos u. Using these formulas
and the differentiation formulas of the algebraic
functions, the differentiation formulas of the
remaining functions, that is, tan u, cot u, sec u and
csc u may be obtained.
( )
( )
( )
( )
dx
du
usinucos
dx
d
dx
du
ucosusin
dx
d
−=
=
=
=
xfuwhereucosofDerivative
xfuwhereusinofDerivative
( )
( ) 





=
=
xcos
xsin
dx
d
xtan
dx
d
xfuwhereutanofDerivative
( )
( ) ( ) ( ) ( )
( )2
cosx
xcos
dx
d
sinxxsin
dx
d
cosx
xtan
dx
d
quotient,ofderivativegsinU
−
=
( )( ) ( )( )
xcos
xsinsinxcosxcosx
2
−−
=
xcos
1
xcos
xsinxcos
22
22
=
+
=
( ) xsecxtan
dx
d 2
=
( )
dx
du
usecutan
dx
d
Therefore 2
=
( )
( ) 





=
=
xtan
1
dx
d
xcot
dx
d
xfuwhereucotofDerivative
( )
( ) ( )
( )
( )
( )2
2
2
tanx
xsec10
tanx
xtan
dx
d
10
xtan
dx
d
quotient,ofderivativegsinU
−
=
−
=
xcsc
xsin
1
xcos
xsin
xcos
1
xtan
xsec 2
2
2
2
2
2
2
−=
−
=
−
=
−
=
( ) xcsc-xcot
dx
d 2
=
( )
dx
du
ucsc-ucot
dx
d
Therefore 2
=
( )
( ) 





=
=
xcos
1
dx
d
xsec
dx
d
xfuwhereusecofDerivative
( )
( ) ( )
( )
( )( )
( )22
cosx
xsin10
cosx
xcos
dx
d
10
xtan
dx
d
quotient,ofderivativegsinU
−−
=
−
=
xsecxtan
xcos
1
xcos
xsin
xcos
xsin
2
=⋅=
+
=
( ) xsecxtanxsec
dx
d
=
( )
dx
du
usecutanusec
dx
d
Therefore =
( )
( ) 





=
=
xsin
1
dx
d
xcsc
dx
d
xfuwhereucscofDerivative
( )
( ) ( )
( )
( )( )
( )22
xsin
xcos10
xsin
xsin
dx
d
10
xcsc
dx
d
quotient,ofderivativegsinU
−
=
−
=
xcscxcot
xsin
1
xsin
xcos
xsin
xcos
2
−=⋅
−
=
−
=
( ) xcscxcotxcsc
dx
d
−=
( )
dx
du
ucscucot-ucsc
dx
d
Therefore =
( )
dx
du
ucosusin
dx
d
=
( )
dx
du
usinucos
dx
d
−=
( )
dx
du
usecutan
dx
d 2
=
( )
dx
du
ucscucot
dx
d 2
−=
( )
dx
du
usecutanusec
dx
d
=
( )
dx
du
ucscucotucsc
dx
d
−=
If u is a differentiable function of x, then the
following are differentiation formulas of the
trigonometric functions
SUMMARY:
A. Find the derivative of each of the following
functions and simplify the result:
( ) x3sin2xf.1 =
( ) xsin
exg.2 =
( ) ( )22
x31cosxh.3 −=
( ) ( )( )
x3cos6
3x3cos2x'f
=
=
( ) xsin
dx
d
ex'g xsin
=
( ) ( )[ ]22
x31cosxh −=
x2
1
xcose xsin
⋅⋅=
( )
x2
xcosex
x
x
x2
xcose
x'g
xsinxsin
⋅
=•
⋅
=
( ) ( )[ ] ( )[ ]( )x6x31sinx31cos2x'h 22
−−−−=
( )[ ] ( )[ ]22
x31sinx31cos2x6 −−=
2sinxcosx2xsinfrom =
( ) ( )2
x312sinx6x'h −=
3x4cos3x4sin3y.4 =
( )( )( ) ( )( )( )[ ]233233
x12x4cosx4cosx12x4sinx4sin3'y +−=
xsinxcos2xcosfrom 22
−=
( )[ ]32
x42cosx36'y =
32
x8cosx36'y =
( ) x
2
x
tan2xf.5 −=
( ) 1
2
1
2
x
sec2x'f 2
−











=
( ) 1
2
x
secx'f 2
−=
( )
2
x
tanx'f 2
=
( )
x1
x
tan
3
logxh.6
−
=
( ) ( )( ) ( )
( ) 





−
−−−
⋅
−
⋅⋅
−
= 2
2
3
x1
1x1x1
x1
x
secelog
x1
x
tan
1
x'h
( ) ( )( )
( )
x1
x
cos
1
x1
x
sin
x1
x
cos
x1
xx1elog
x'h
2
2
3
−
⋅
−
−⋅
−
+−
=
( )
( ) 2
2
x1
x
cos
x1
x
sin
1
x1
elog
x'h 2
3
⋅
−−
⋅
−
=
( )
( )
( )
x1
x
cos
x1
x
sin2
1
x1
elog2
x'h 2
3
−−
⋅
−
=
( )
( )
( )
x1
x2
sin
1
x1
elog2
x'h 2
3
−
⋅
−
= ( )
( )
( ) 





−−
=⇒
x1
x2
csc
x1
elog2
x'h 2
3
( ) x2cos
x2secy.7 =
( )
( )x2seclnx2cosyln
x2seclnyln
sidesbothonlnApply
x2cos
=
=
( ) ( )( )( ) ( )[ ][ ]( )2x2sinx2secln2x2tanx2sec
x2sec
1
x2cos'y
y
1
ationdifferenticlogarithmiBy
−+



=⋅
[ ] x2seclnx2sin2
x2cos
x2sin2
x2cos'y
y
1
−





=⋅
( )[ ]x2secln1x2sin2 −=
( )[ ] yx2secln1x2sin2'y ⋅−=
( )( )( ) x2cos
x2secx2secln1x2sin2'y −=
( )
xcot1
xcot2
xh.8 2
+
=
( ) ( ) ( )( )[ ] ( )( ) ( )( )[ ]
( )22
222
xcot1
1xcscxcot2xcot21xcsc2xcot1
x'h
+
−−−+
=
( )
( )
[ ]xcot1xcot2
xcot1
xcsc2
x'h 22
22
2
−−
+
=
( )
[ ]1xcot
xcsc
xcsc2 2
22
2
−=
( ) ( ) ( ) 





−=
−
= 1
xsin
xcos
xsin2
xcsc
1xcot2
x'h 2
2
2
2
2
( ) ( ) 




 −
=
xsin
xsinxcos
xsin2x'h 2
22
2
( ) x2cos2x'h =
( ) ( )1xcscxF.9 3
+=
( ) ( ) ( )[ ]
( )1xcsc2
x31xcot1xcsc
x'F
3
233
+
++−
=
( )
( ) ( )[ ] ( )
( )1xcsc2
1xcsc1xcot1xcscx3
x'F 3
3332
+
+++
−=
( ) ( ) ( )1xcsc1xcotx
2
3
x'F 332
+



+−=
Find the derivative and simplify the result.
( ) ( )
3
x4
5sinlnxh.1 =
( ) ( )3 2
xlncosxf.2 =
( )
x4cos2
x4sin
xg.3
+
=
( ) x2cosx4sin2x2sinxcos2xF.4 −=
xcos31
sin
y.5
3
−
=
( ) ( ) xtan
xsinxF. =6
( )yxtany.7 +=
( ) 2
2
x1
x2cot
xF.8
+
=
0xyxycot.9 =+
EXERCISES:
0ycscxsec.10 22
=+

More Related Content

PPT
Basic Rules Of Differentiation
PPT
Lesson 10 derivative of exponential functions
PPT
Lesson3.1 The Derivative And The Tangent Line
PDF
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)
PPTX
Slope of the Tangent Line.pptx
PPTX
Lecture 11 systems of nonlinear equations
PDF
Lesson 21: Antiderivatives (slides)
PPTX
Lesson no. 2 (Angles in Standard Position and Coterminal Angles )
Basic Rules Of Differentiation
Lesson 10 derivative of exponential functions
Lesson3.1 The Derivative And The Tangent Line
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)
Slope of the Tangent Line.pptx
Lecture 11 systems of nonlinear equations
Lesson 21: Antiderivatives (slides)
Lesson no. 2 (Angles in Standard Position and Coterminal Angles )

What's hot (20)

PDF
Lesson 3: The Limit of a Function
PPTX
Continuity of a Function
PPTX
Exponential and logarithmic functions
PDF
Piecewise functions
PPTX
Limit of functions
PPT
Inverse functions
PPT
Piecewise Functions
PPT
Graphing polynomials
PPT
4.1 implicit differentiation
PPTX
Exponential functions
PPTX
8.4 logarithmic functions
PPTX
Graphing rational functions
PDF
4.1 Inverse Functions
PPT
Rational functions
PPTX
Inverse Function.pptx
PPTX
Basic Calculus 11 - Derivatives and Differentiation Rules
PDF
Factoring Difference of Two Squares
PPTX
PPTX
Limit of Function And Its Types
PPTX
Functions
Lesson 3: The Limit of a Function
Continuity of a Function
Exponential and logarithmic functions
Piecewise functions
Limit of functions
Inverse functions
Piecewise Functions
Graphing polynomials
4.1 implicit differentiation
Exponential functions
8.4 logarithmic functions
Graphing rational functions
4.1 Inverse Functions
Rational functions
Inverse Function.pptx
Basic Calculus 11 - Derivatives and Differentiation Rules
Factoring Difference of Two Squares
Limit of Function And Its Types
Functions
Ad

Viewers also liked (20)

PPT
Lesson 3 derivative of hyperbolic functions
PPT
Lesson 2 derivative of inverse trigonometric functions
PPT
Lesson 4 derivative of inverse hyperbolic functions
PDF
Inverse trigonometric functions ch 2
PPT
Lecture 6 limits with infinity
PPT
Lecture 8 power & exp rules
PPTX
Lesson 5 indeterminate forms
PDF
Derivatives of Trig. Functions
PPT
Lesson 18 force due to liquid pressure revised
PDF
Lesson 8: Basic Differentiation Rules (Section 21 slides)
PPTX
Derivatives and their Applications
PPTX
Power of Power Exponent Rule
PPTX
Lesson 7 antidifferentiation generalized power formula-simple substitution
PPTX
Lesson 9 transcendental functions
PPTX
Lesson 15 pappus theorem
PPTX
Applied Calculus Chapter 3 partial derivatives
 
PPTX
Lesson 10 techniques of integration
PPT
Lesson 16 length of an arc
Lesson 3 derivative of hyperbolic functions
Lesson 2 derivative of inverse trigonometric functions
Lesson 4 derivative of inverse hyperbolic functions
Inverse trigonometric functions ch 2
Lecture 6 limits with infinity
Lecture 8 power & exp rules
Lesson 5 indeterminate forms
Derivatives of Trig. Functions
Lesson 18 force due to liquid pressure revised
Lesson 8: Basic Differentiation Rules (Section 21 slides)
Derivatives and their Applications
Power of Power Exponent Rule
Lesson 7 antidifferentiation generalized power formula-simple substitution
Lesson 9 transcendental functions
Lesson 15 pappus theorem
Applied Calculus Chapter 3 partial derivatives
 
Lesson 10 techniques of integration
Lesson 16 length of an arc
Ad

Similar to Lesson 1 derivative of trigonometric functions (20)

PPT
Lesson 11 derivative of trigonometric functions
PDF
Trigonometry 10th edition larson solutions manual
PPTX
Derivative-of-Trigonometric-Functions.pptx
DOCX
PDF
Trigonometry 10th Edition Larson Solutions Manual
PDF
Trigonometry 10th edition larson solutions manual
PDF
01 regras diferenciacao
PDF
Regras diferenciacao
PPTX
06_Complex Numbers_Hyperbolic Functions.pptx
PDF
Summary Of Important Laws Of Differentiation And Integration
PDF
Formulario de calculo
DOCX
Trig packet1 000
DOCX
Trig packet1 000
PPTX
3.TRIGONOMETRIC FUNCTIONS for class 11.pptx
PDF
Add math may june 2016 p1
PDF
Lista de derivadas e integrais
PDF
Integral table
PDF
Integral table for electomagnetic
PPTX
Trigonometry Cheat Sheet
PDF
Mathematical formula tables
Lesson 11 derivative of trigonometric functions
Trigonometry 10th edition larson solutions manual
Derivative-of-Trigonometric-Functions.pptx
Trigonometry 10th Edition Larson Solutions Manual
Trigonometry 10th edition larson solutions manual
01 regras diferenciacao
Regras diferenciacao
06_Complex Numbers_Hyperbolic Functions.pptx
Summary Of Important Laws Of Differentiation And Integration
Formulario de calculo
Trig packet1 000
Trig packet1 000
3.TRIGONOMETRIC FUNCTIONS for class 11.pptx
Add math may june 2016 p1
Lista de derivadas e integrais
Integral table
Integral table for electomagnetic
Trigonometry Cheat Sheet
Mathematical formula tables

More from Lawrence De Vera (19)

PPT
Lesson 19 improper intergals
PPT
Lesson 17 work done by a spring and pump final (1)
PPT
Lesson 14 centroid of volume
PPT
Lesson 13 volume of solids of revolution
PPT
Lesson 12 centroid of an area
PPT
Lesson 11 plane areas area by integration
PPTX
Lesson 8 the definite integrals
PPTX
Lesson 6 differentials parametric-curvature
PPT
Lecture co4 math21-1
PPTX
Lecture co3 math21-1
PPTX
Lecture co1 math 21-1
PPTX
Lecture co2 math 21-1
PPTX
MIT Math Syllabus 10-3 Lesson 9: Ratio, proportion and variation
PPTX
MIT Math Syllabus 10-3 Lesson 8: Inequalities
PPTX
MIT Math Syllabus 10-3 Lesson 7: Quadratic equations
PPTX
MIT Math Syllabus 10-3 Lesson 6: Equations
PPTX
MIT Math Syllabus 10-3 Lesson 5: Complex numbers
PPTX
MIT Math Syllabus 10-3 Lesson 4: Rational exponents and radicals
PPTX
MIT Math Syllabus 10-3 Lesson 3: Rational expressions
Lesson 19 improper intergals
Lesson 17 work done by a spring and pump final (1)
Lesson 14 centroid of volume
Lesson 13 volume of solids of revolution
Lesson 12 centroid of an area
Lesson 11 plane areas area by integration
Lesson 8 the definite integrals
Lesson 6 differentials parametric-curvature
Lecture co4 math21-1
Lecture co3 math21-1
Lecture co1 math 21-1
Lecture co2 math 21-1
MIT Math Syllabus 10-3 Lesson 9: Ratio, proportion and variation
MIT Math Syllabus 10-3 Lesson 8: Inequalities
MIT Math Syllabus 10-3 Lesson 7: Quadratic equations
MIT Math Syllabus 10-3 Lesson 6: Equations
MIT Math Syllabus 10-3 Lesson 5: Complex numbers
MIT Math Syllabus 10-3 Lesson 4: Rational exponents and radicals
MIT Math Syllabus 10-3 Lesson 3: Rational expressions

Recently uploaded (20)

PPTX
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
PPTX
Lesson notes of climatology university.
PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PDF
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
PDF
Basic Mud Logging Guide for educational purpose
PPTX
Pharmacology of Heart Failure /Pharmacotherapy of CHF
PPTX
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
PDF
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
PDF
Abdominal Access Techniques with Prof. Dr. R K Mishra
PDF
2.FourierTransform-ShortQuestionswithAnswers.pdf
PDF
Insiders guide to clinical Medicine.pdf
PDF
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
PPTX
Microbial diseases, their pathogenesis and prophylaxis
PDF
O7-L3 Supply Chain Operations - ICLT Program
PPTX
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
PPTX
Institutional Correction lecture only . . .
PDF
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
PDF
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
PDF
Computing-Curriculum for Schools in Ghana
PPTX
Cell Structure & Organelles in detailed.
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
Lesson notes of climatology university.
Module 4: Burden of Disease Tutorial Slides S2 2025
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
Basic Mud Logging Guide for educational purpose
Pharmacology of Heart Failure /Pharmacotherapy of CHF
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
Abdominal Access Techniques with Prof. Dr. R K Mishra
2.FourierTransform-ShortQuestionswithAnswers.pdf
Insiders guide to clinical Medicine.pdf
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
Microbial diseases, their pathogenesis and prophylaxis
O7-L3 Supply Chain Operations - ICLT Program
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
Institutional Correction lecture only . . .
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
Computing-Curriculum for Schools in Ghana
Cell Structure & Organelles in detailed.

Lesson 1 derivative of trigonometric functions

  • 2. TRANSCENDENTAL FUNCTIONS Kinds of transcendental functions: 1.logarithmic and exponential functions 2.trigonometric and inverse trigonometric functions 3.hyperbolic and inverse hyperbolic functions Note: Each pair of functions above is an inverse to each other.
  • 3. The TRIGONOMETRIC FUNCTIONS . xtan 1 xsin xcos xcot.4 xcot 1 xcos xsin xtan.3 xcos 1 xsec xsec 1 xcos2. xsin 1 xcsc xcsc 1 xsin1. IdentitiesciprocalRe.A IdentitiesricTrigonomet :callRe == == =⇔= =⇔= ( ) ( ) ( ) ytanxtan1 ytanxtan yxtan.3 ysinxsinycosxcosyxcos2. ysinxcosycosxsinyxsin1. AnglesTwoofDifferenceandSum.B   ± =± =± ±=± xtan1 xtan2 x2tan.3 1xcos2 xsin21 xsinxcosx2cos2. 2sinxcosxx2sin1. FormulasAngleDouble.C 2 2 2 22 − = −= −= −= = xcscxcot1.3 xsecxtan1.2 1xcosxsin.1 IdentitiesSquared.D 22 22 22 =+ =+ =+
  • 4. DIFFERENTIATION FORMULA Derivative of Trigonometric Function For the differentiation formulas of the trigonometric functions, all you need to know is the differentiation formulas of sin u and cos u. Using these formulas and the differentiation formulas of the algebraic functions, the differentiation formulas of the remaining functions, that is, tan u, cot u, sec u and csc u may be obtained. ( ) ( ) ( ) ( ) dx du usinucos dx d dx du ucosusin dx d −= = = = xfuwhereucosofDerivative xfuwhereusinofDerivative
  • 5. ( ) ( )       = = xcos xsin dx d xtan dx d xfuwhereutanofDerivative ( ) ( ) ( ) ( ) ( ) ( )2 cosx xcos dx d sinxxsin dx d cosx xtan dx d quotient,ofderivativegsinU − = ( )( ) ( )( ) xcos xsinsinxcosxcosx 2 −− = xcos 1 xcos xsinxcos 22 22 = + = ( ) xsecxtan dx d 2 = ( ) dx du usecutan dx d Therefore 2 =
  • 6. ( ) ( )       = = xtan 1 dx d xcot dx d xfuwhereucotofDerivative ( ) ( ) ( ) ( ) ( ) ( )2 2 2 tanx xsec10 tanx xtan dx d 10 xtan dx d quotient,ofderivativegsinU − = − = xcsc xsin 1 xcos xsin xcos 1 xtan xsec 2 2 2 2 2 2 2 −= − = − = − = ( ) xcsc-xcot dx d 2 = ( ) dx du ucsc-ucot dx d Therefore 2 =
  • 7. ( ) ( )       = = xcos 1 dx d xsec dx d xfuwhereusecofDerivative ( ) ( ) ( ) ( ) ( )( ) ( )22 cosx xsin10 cosx xcos dx d 10 xtan dx d quotient,ofderivativegsinU −− = − = xsecxtan xcos 1 xcos xsin xcos xsin 2 =⋅= + = ( ) xsecxtanxsec dx d = ( ) dx du usecutanusec dx d Therefore =
  • 8. ( ) ( )       = = xsin 1 dx d xcsc dx d xfuwhereucscofDerivative ( ) ( ) ( ) ( ) ( )( ) ( )22 xsin xcos10 xsin xsin dx d 10 xcsc dx d quotient,ofderivativegsinU − = − = xcscxcot xsin 1 xsin xcos xsin xcos 2 −=⋅ − = − = ( ) xcscxcotxcsc dx d −= ( ) dx du ucscucot-ucsc dx d Therefore =
  • 9. ( ) dx du ucosusin dx d = ( ) dx du usinucos dx d −= ( ) dx du usecutan dx d 2 = ( ) dx du ucscucot dx d 2 −= ( ) dx du usecutanusec dx d = ( ) dx du ucscucotucsc dx d −= If u is a differentiable function of x, then the following are differentiation formulas of the trigonometric functions SUMMARY:
  • 10. A. Find the derivative of each of the following functions and simplify the result: ( ) x3sin2xf.1 = ( ) xsin exg.2 = ( ) ( )22 x31cosxh.3 −= ( ) ( )( ) x3cos6 3x3cos2x'f = = ( ) xsin dx d ex'g xsin = ( ) ( )[ ]22 x31cosxh −= x2 1 xcose xsin ⋅⋅= ( ) x2 xcosex x x x2 xcose x'g xsinxsin ⋅ =• ⋅ = ( ) ( )[ ] ( )[ ]( )x6x31sinx31cos2x'h 22 −−−−= ( )[ ] ( )[ ]22 x31sinx31cos2x6 −−= 2sinxcosx2xsinfrom = ( ) ( )2 x312sinx6x'h −=
  • 11. 3x4cos3x4sin3y.4 = ( )( )( ) ( )( )( )[ ]233233 x12x4cosx4cosx12x4sinx4sin3'y +−= xsinxcos2xcosfrom 22 −= ( )[ ]32 x42cosx36'y = 32 x8cosx36'y =
  • 12. ( ) x 2 x tan2xf.5 −= ( ) 1 2 1 2 x sec2x'f 2 −            = ( ) 1 2 x secx'f 2 −= ( ) 2 x tanx'f 2 =
  • 13. ( ) x1 x tan 3 logxh.6 − = ( ) ( )( ) ( ) ( )       − −−− ⋅ − ⋅⋅ − = 2 2 3 x1 1x1x1 x1 x secelog x1 x tan 1 x'h ( ) ( )( ) ( ) x1 x cos 1 x1 x sin x1 x cos x1 xx1elog x'h 2 2 3 − ⋅ − −⋅ − +− = ( ) ( ) 2 2 x1 x cos x1 x sin 1 x1 elog x'h 2 3 ⋅ −− ⋅ − = ( ) ( ) ( ) x1 x cos x1 x sin2 1 x1 elog2 x'h 2 3 −− ⋅ − = ( ) ( ) ( ) x1 x2 sin 1 x1 elog2 x'h 2 3 − ⋅ − = ( ) ( ) ( )       −− =⇒ x1 x2 csc x1 elog2 x'h 2 3
  • 14. ( ) x2cos x2secy.7 = ( ) ( )x2seclnx2cosyln x2seclnyln sidesbothonlnApply x2cos = = ( ) ( )( )( ) ( )[ ][ ]( )2x2sinx2secln2x2tanx2sec x2sec 1 x2cos'y y 1 ationdifferenticlogarithmiBy −+    =⋅ [ ] x2seclnx2sin2 x2cos x2sin2 x2cos'y y 1 −      =⋅ ( )[ ]x2secln1x2sin2 −= ( )[ ] yx2secln1x2sin2'y ⋅−= ( )( )( ) x2cos x2secx2secln1x2sin2'y −=
  • 15. ( ) xcot1 xcot2 xh.8 2 + = ( ) ( ) ( )( )[ ] ( )( ) ( )( )[ ] ( )22 222 xcot1 1xcscxcot2xcot21xcsc2xcot1 x'h + −−−+ = ( ) ( ) [ ]xcot1xcot2 xcot1 xcsc2 x'h 22 22 2 −− + = ( ) [ ]1xcot xcsc xcsc2 2 22 2 −= ( ) ( ) ( )       −= − = 1 xsin xcos xsin2 xcsc 1xcot2 x'h 2 2 2 2 2 ( ) ( )       − = xsin xsinxcos xsin2x'h 2 22 2 ( ) x2cos2x'h =
  • 16. ( ) ( )1xcscxF.9 3 += ( ) ( ) ( )[ ] ( )1xcsc2 x31xcot1xcsc x'F 3 233 + ++− = ( ) ( ) ( )[ ] ( ) ( )1xcsc2 1xcsc1xcot1xcscx3 x'F 3 3332 + +++ −= ( ) ( ) ( )1xcsc1xcotx 2 3 x'F 332 +    +−=
  • 17. Find the derivative and simplify the result. ( ) ( ) 3 x4 5sinlnxh.1 = ( ) ( )3 2 xlncosxf.2 = ( ) x4cos2 x4sin xg.3 + = ( ) x2cosx4sin2x2sinxcos2xF.4 −= xcos31 sin y.5 3 − = ( ) ( ) xtan xsinxF. =6 ( )yxtany.7 += ( ) 2 2 x1 x2cot xF.8 + = 0xyxycot.9 =+ EXERCISES: 0ycscxsec.10 22 =+