14
Most read
18
Most read
20
Most read
TOPIC
APPLICATIONS
CENTROIDS OF PLANE AREA
The mass of a physical body is a measure of the quantity of the matter in it,
whereas the volume of the body is a measure of the space it occupies.
If the mass per unit volume is the same throughout the body is said to
be homogeneous or to have constant density.
It is highly desirable in physics and mechanics to consider a given mass
as concentrated at a point, called its center of mass (also, its center of gravity).
For a homogeneous body, this point coincides with its geometric center or
centroid. For example, the center of mass of a homogeneous rubber ball
coincides with the centroid (center) of the ball considered as a geometric
solid (a sphere).
DISCUSSION
The centroid of a rectangular sheet of paper lies midway between the two
surfaces but it may well be considered as located on one of the surfaces
at the intersection of the two diagonals. Then the center of mass of a thin
sheet coincides with the centroid of the sheet considered as a plane area.
The Moment ML of a Plane Region with respect to a line L is the product
of the area and the directed distance of the centroid from the line. The
moment of a composite region with respect to a line is the sum of the
moments of the individual sub-regions with respect to the line.
The moment of a plane region with respect to a coordinate axis may
be found as follows:
3. Evaluate the definite integral of the product in step 2 and apply the
fundamental theorem.
1. Sketch the region; showing a representative strip.
2. Form the product of the area of the rectangle and the distance of its
centroid from the axis.
For a plane region having an area A, centroid and moments
and with respect to x and y axes,
( ),, yxC
xM yM
yM Ax= xM Ay=and
A
M
x
y
=
A
M
y x
=
Determine the centroid of the first-quadrant region bounded by the parabola
.
.4 2
xy −=
V(0,4)
y
x
dx
(0,2)
x x=
( ),C x y
Curve: 2
4y x= −
( )
( )
2
2
4
4
0,4
x y
x y
V
= − +
= − −
0y =
2
0 4 x= −
2
4
2
x
x
=
= ±
if
Solving for the area A:
∫ −=
2
0
2
)4( dxxA2
04
2
2
+−
=
+
=
xyy
y BA
y
04 2
−−=− xyy BA
dxxdA )4( 2
−=
EXAMPLE
0
2
3
4
3






−=
x
xA






−= )8(
3
1
)2(4
3
16
=A sq. units
( )
( )
( )
( )( )
( )
( ) ( ) ( )
2
2
0
2
2
0
2
2
0
2
2
2 2
0
2
2 4
0
2
3 5
0
4
2
4
2
1
4
2
sin 4
1
4 4
2
1
16 8
2
1
16 8
2 3 5
1 8 1
16 2 8 32
2 3 5
1 480 320 96
2 15
x
x
x
x
x
x
x
x
M A y
M x y dx
y
but y
y
M x dx
x y dx
ce y x
M x x dx
M x x dx
x x
M x
M
M
= ×
= − ×
=
= − ×
= − ×
= −
= − −
= − +
 
= − × + 
 
 
= − + 
 
− + 
=  
 
∫
∫
∫
∫
∫
1 256 128
.
2 15 15
xM cu units
 
= = 
 
Moment about the x-axis
Moment about the y-axis
( )
( )
( )
( ) ( )
2
2
0
2
2
0
2
3
0
2
2 4
0
2
2 4
0
4
4
4
4
2 4
1
2
4
1
2 4 16
4
8 4
4 .
y
y
y
y
y
y
y
y
y
M A x
M x x dx
but x x
M x xdx
M x x dx
x x
M
M x x
M
M
M cu units
= ×
= − ×
=
= −
= −
 
= × − 
 
 
= − 
 
= −
= −
=
∫
∫
∫
units
128
15
16
3
8
5
x
x
M A y
M
y
A
y
= ×
= =
= units
4
16
3
3
4
y
y
M A x
M
x
A
x
= ×
= =
=






5
8
,
4
3
:C
Determine the centroid of the fourth-quadrant area bounded by the curve
2
4y x x= −
.
V(2,-4)
dx
y
x
y−
2
y
y =
xx =
•
Curve: 2
4y x x= −
( )
( )
2
2
4 4 4
2 4
2, 4
x x y
x y
V
− + = +
− = +
−
( )
2
0; 4 0
4 0
0; 4
y x x
x x
x x
= − =
− =
= =
EXAMPLE
( )
4
0
2
4
2
0
4
4
dA y dx
A y dx
y x x
A x x dx
= − ×
= − ×
= −
= − −
∫
∫
but
Solving for area A:
( )
( ) ( )
4
2 3
4
2
0
0
4 4
2 3
1 64
2 16 64 32
3 3
96 64 32
.
3 3
or
x x
A x x dx
A
A sq units

= − = × − 

= − = −
−
= =
∫
( )
( )
( )
( ) ( ) ( )
4
0
4
0
2
2
0
2
4
2
0
4 2
2
0
4
4 3 2
0
4
5 4 3
0
2
2
1
4
2
sin 4
1
2
1
4
2
1
8 16
2
1
8 16
2 5 4 3
1 1 16
1024 2 256 64
2 5 3
x
x
x
x
x
x
x
x
M A y
M y y dx
y
but y
y
M y dx
x y dx
ce y x
M y dx
M x x dx
M x x x dx
x x x
M
M
= ×
= − × ×
=
= − × ×
= − ×
= −
= − ×
= − −
= − − +
 
= − − × + × 
 
 
= − − +
 
∫
∫
∫
∫
∫
∫
1 3072 7680 5120
2 15
1 512 256
.
2 15 15
x
x
M
M cu units

− + 
= −  
 
 
= − = − 
 
( )
( )
( )
( )
4
2
0
4
2
0
4
2 3
0
4
3 4
0
4
4
4
4
3 4
4
64 64
3
256
64
3
256 192
3
64
.
3
y
y
y
y
y
y
y
y
y
M A x
M x x x dx
but x x
M x x xdx
M x x dx
x x
M
M
M
M
M cu units
= ×
= − ×
=
= −
= −
 
= × − 
 
 
= − 
 
 
= − 
 
− 
=  
 
=
∫
∫
∫
_
x yAM =
3
32
15
256
A
M
y x
_
−
==
unitsy
5
8−
= units
64
3
32
3
2
y
y
M A x
M
x
A
x
= ×
= =
=





 −
∴
5
8
,2C
2
y x=
y x=
Determine the centroid of the region bounded by the curve
and the line .
.
dx
y
x
(1,1)
2
y x=
y x=
x x=
Curve: 2
y x=
( )0,0V
y x=Line:
Intersection point:
( )
2
2
0
1 0
0; 1
0; 0
1; 1
x x
x x
x x
x x
if x y
x y
=
− =
− =
= =
= =
= =
yA-yB
EXAMPLE
Solving for area A : dA = ydx
∫=
1
0
ydxA ∫ −=
1
0
CL dx)yy( but yL
= x, yC
= x2
∫ −=
1
0
2
)( dxxxA
0
1
3
x
2
x 32
−=
)1(
3
1
)1(
2
1
−=
6
1
A = square units
( )
( )
( )
( )
1
0
1
2 2
0
1 2
2 2
0
1
2 4
0
1
3 5
0
2
1
2
1
2
1
2
1
2 3 5
1 1 1
2 3 5
1 5 3
2 15
1
.
15
x
L C
x L C
x L C
x
x
x
x
x
M A y
y y
M y y dx
M y y dx
x x dx
M x x dx
x x
M
M
M
M cu units
= ×
+ 
= −  ÷
 
= −
 = −
  
= −
 
= − 
 
 
= − 
 
− 
=  
 
=
∫
∫
∫
∫
( )
( )
( )
units.cuM
M
xx
M
dxxxM
dxxxxM
dxxyyM
xAM
y
y
y
y
0
y
0
CLy
y
12
1
12
34
4
1
3
1
43
1
0
43
1
0
32
1
2
1
=
−
=−=



−=
−=
−=
−=
⋅=
∫
∫
∫
1
15
1
6
2
5
x
x
M A y
M
y
A
y units
= ×
= =
=
1
12
1
6
1
2
y
y
M A x
M
x
A
x units
= ×
= =
=
1 2
,
2 5
C
 
∴  ÷
 
2
x y= 2
8x y= −Determine the centroid of the area bounded by the parabolas and
.
2
x y=
( )0,0V
Curve 1:
dy
y
x
(x1,y) (x2,y)
(4,-2)
2
x y=
2
8x y= −
2 1x x−
x
( ),C x y
y
Curve 2: 2
8x y= −
( )0,0V
Solving for intersection points:
( )
( )
2
2
4
4
3
8
8
8 0
8 0
0; 2
0; 4
y y
y y
y y
y y
y y
x x
= −
= −
+ =
+ =
= = −
= =
Therefore, the intersection points
are (0, 0) and (4, -2).
EXAMPLE
( )
( )
( )
( )
( )
( ) ( ) ( )
[ ]
3
2
3
2
2 1
0
2 12
2
2
2
1
0
2
2
0
3
0
2
2
0
3
2
3
8
8
8
8
2
2 2
2 3
2 1
1
3 3
2
2 1
2 2 2
3 3
2 8
8
3 3
16 8
3 3
8
3
dA x x dy
A x x dy
x x y
x y
x y
x x y
A y y dy
y
A y dy
y
A y
A
A
A
A
−
−
−
−
−
= −
= −
= −
= ± −
= −
=
= − −

= − − − − 

−
= − −


 = − − + − 
− 
= +  
 
= −
=
∫
∫
∫
:
:
.sq units
Solving for area A:
Continue solving for the centroid
Find the centroid of each of the given plane region bounded by the following curves:
1. y = 10x – x2
, the x-axis and the lines x = 2 and x = 5
2. 2x + y = 6, the coordinate axes
3. y = 2x + 1, x + y = 7, x = 8
4. y2
= 2x, y = x – 4
5. y = x3
, y = 4x [first quadrant]
6. y2
= x3
, y = 2x
7. y = x2
– 4, y = 2x – x2
8. the first quadrant area of the circle x2
+y2
= a2
9. the region enclosed by b2
x2
+ a2
y2
= a2
b2
in the first
quadrant

More Related Content

PDF
Mechanics of solids 1 lecture-1
PDF
6161103 8.2 problems involving dry friction
PDF
Fluid mechanic white (cap2.1)
PPTX
Applications of Definite Intergral
PDF
6161103 10.4 moments of inertia for an area by integration
PDF
Simple Stress: Normal Stress
PPTX
Lesson 10 techniques of integration
Mechanics of solids 1 lecture-1
6161103 8.2 problems involving dry friction
Fluid mechanic white (cap2.1)
Applications of Definite Intergral
6161103 10.4 moments of inertia for an area by integration
Simple Stress: Normal Stress
Lesson 10 techniques of integration

What's hot (20)

PDF
10.5 Circles in the Coordinate Plane
DOCX
Friction full
PDF
Beer vector mechanics for engineers statics 10th solutions
DOCX
Truss examples
PDF
Families of curves
PPT
Lesson 14 centroid of volume
PDF
STRUCTURAL ANALYSIS NINTH EDITION R. C. HIBBELER
PPTX
Engineering Economics
PPT
Functions limits and continuity
PPTX
Jose Rizal in UST
PDF
Integral table
PDF
Strength of materials
PDF
Ge 105 lecture 1 (LEAST SQUARES ADJUSTMENT) by: Broddett B. Abatayo
PPT
PDF
005 first law
PPT
Gch10 l5
PDF
Strength of materials by singer and pytel (4th edt)
PDF
3_hydrostatic-force_tutorial-solution(1)
PPTX
Customs of the Tagalogs by Plasencia (English version) (1).pptx
PPTX
11 the inverse trigonometric functions x
10.5 Circles in the Coordinate Plane
Friction full
Beer vector mechanics for engineers statics 10th solutions
Truss examples
Families of curves
Lesson 14 centroid of volume
STRUCTURAL ANALYSIS NINTH EDITION R. C. HIBBELER
Engineering Economics
Functions limits and continuity
Jose Rizal in UST
Integral table
Strength of materials
Ge 105 lecture 1 (LEAST SQUARES ADJUSTMENT) by: Broddett B. Abatayo
005 first law
Gch10 l5
Strength of materials by singer and pytel (4th edt)
3_hydrostatic-force_tutorial-solution(1)
Customs of the Tagalogs by Plasencia (English version) (1).pptx
11 the inverse trigonometric functions x
Ad

Viewers also liked (20)

PPTX
PPT
Lesson 17 work done by a spring and pump final (1)
PPTX
CENTROID
PPT
Lesson 13 volume of solids of revolution
PPTX
Lesson 15 pappus theorem
PPT
Lecture material week 6
PPT
Lesson 16 length of an arc
PPT
centroid and centre of gravity...
PPTX
Centroid & Center Of Gravity
PDF
Centroids and center of mass
PPT
Lesson 11 plane areas area by integration
PPTX
6.2 volume of solid of revolution dfs
DOCX
Btech_II_ engineering mathematics_unit3
PDF
Building Structure // Column Analysis Report
PPTX
Centroid Planar Lamina
PPTX
Lesson 5 indeterminate forms
PDF
Ch01 composition of_forces
PPTX
Force notes #4
PPT
Lesson 18 force due to liquid pressure revised
Lesson 17 work done by a spring and pump final (1)
CENTROID
Lesson 13 volume of solids of revolution
Lesson 15 pappus theorem
Lecture material week 6
Lesson 16 length of an arc
centroid and centre of gravity...
Centroid & Center Of Gravity
Centroids and center of mass
Lesson 11 plane areas area by integration
6.2 volume of solid of revolution dfs
Btech_II_ engineering mathematics_unit3
Building Structure // Column Analysis Report
Centroid Planar Lamina
Lesson 5 indeterminate forms
Ch01 composition of_forces
Force notes #4
Lesson 18 force due to liquid pressure revised
Ad

Similar to Lesson 12 centroid of an area (20)

PPTX
Straight-Line-Graphs-Final -2.pptx
PPT
10 Coordinate Geometry Math Concepts .ppt
PDF
Cbse Class 12 Maths Sample Paper 2013 Model 3
PDF
48 circle part 1 of 2
PPTX
IAL Edexcel Pure 4 Integration topic 6.pptx
PDF
Module 3 plane coordinate geometry
PDF
Circunfêrencia 3
PDF
03 Integration 2.pdf presentation for undergrad
PDF
Solutions for Exercises in Fluid Mechanics, 8th Edition, SI Version by Fox an...
PPTX
Coordinate geometry
PDF
Spm add-maths-formula-list-form4-091022090639-phpapp01
PDF
Additional Mathematics form 4 (formula)
PDF
Spm add-maths-formula-list-form4-091022090639-phpapp01
PPTX
Presentacion unidad 4
PPTX
Chapter 8.pptx
PDF
CBSE XII MATHS SAMPLE PAPER BY KENDRIYA VIDYALAYA
PPTX
Exposicion semana13
PDF
Capitulo 1, 7ma edición
PDF
Applications of Differential Calculus in real life
PPTX
graphs of functions 2
Straight-Line-Graphs-Final -2.pptx
10 Coordinate Geometry Math Concepts .ppt
Cbse Class 12 Maths Sample Paper 2013 Model 3
48 circle part 1 of 2
IAL Edexcel Pure 4 Integration topic 6.pptx
Module 3 plane coordinate geometry
Circunfêrencia 3
03 Integration 2.pdf presentation for undergrad
Solutions for Exercises in Fluid Mechanics, 8th Edition, SI Version by Fox an...
Coordinate geometry
Spm add-maths-formula-list-form4-091022090639-phpapp01
Additional Mathematics form 4 (formula)
Spm add-maths-formula-list-form4-091022090639-phpapp01
Presentacion unidad 4
Chapter 8.pptx
CBSE XII MATHS SAMPLE PAPER BY KENDRIYA VIDYALAYA
Exposicion semana13
Capitulo 1, 7ma edición
Applications of Differential Calculus in real life
graphs of functions 2

More from Lawrence De Vera (20)

PPT
Lesson 19 improper intergals
PPTX
Lesson 9 transcendental functions
PPTX
Lesson 8 the definite integrals
PPTX
Lesson 7 antidifferentiation generalized power formula-simple substitution
PPTX
Lesson 6 differentials parametric-curvature
PPT
Lesson 4 derivative of inverse hyperbolic functions
PPT
Lesson 3 derivative of hyperbolic functions
PPT
Lesson 1 derivative of trigonometric functions
PPT
Lesson 2 derivative of inverse trigonometric functions
PPT
Lecture co4 math21-1
PPTX
Lecture co3 math21-1
PPTX
Lecture co1 math 21-1
PPTX
Lecture co2 math 21-1
PPTX
MIT Math Syllabus 10-3 Lesson 9: Ratio, proportion and variation
PPTX
MIT Math Syllabus 10-3 Lesson 8: Inequalities
PPTX
MIT Math Syllabus 10-3 Lesson 7: Quadratic equations
PPTX
MIT Math Syllabus 10-3 Lesson 6: Equations
PPTX
MIT Math Syllabus 10-3 Lesson 5: Complex numbers
PPTX
MIT Math Syllabus 10-3 Lesson 4: Rational exponents and radicals
Lesson 19 improper intergals
Lesson 9 transcendental functions
Lesson 8 the definite integrals
Lesson 7 antidifferentiation generalized power formula-simple substitution
Lesson 6 differentials parametric-curvature
Lesson 4 derivative of inverse hyperbolic functions
Lesson 3 derivative of hyperbolic functions
Lesson 1 derivative of trigonometric functions
Lesson 2 derivative of inverse trigonometric functions
Lecture co4 math21-1
Lecture co3 math21-1
Lecture co1 math 21-1
Lecture co2 math 21-1
MIT Math Syllabus 10-3 Lesson 9: Ratio, proportion and variation
MIT Math Syllabus 10-3 Lesson 8: Inequalities
MIT Math Syllabus 10-3 Lesson 7: Quadratic equations
MIT Math Syllabus 10-3 Lesson 6: Equations
MIT Math Syllabus 10-3 Lesson 5: Complex numbers
MIT Math Syllabus 10-3 Lesson 4: Rational exponents and radicals

Recently uploaded (20)

PDF
Vision Prelims GS PYQ Analysis 2011-2022 www.upscpdf.com.pdf
PDF
FOISHS ANNUAL IMPLEMENTATION PLAN 2025.pdf
PDF
LDMMIA Reiki Yoga Finals Review Spring Summer
PDF
Hazard Identification & Risk Assessment .pdf
PDF
Uderstanding digital marketing and marketing stratergie for engaging the digi...
PPTX
Unit 4 Computer Architecture Multicore Processor.pptx
PDF
Trump Administration's workforce development strategy
DOC
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
PDF
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 1)
PDF
Environmental Education MCQ BD2EE - Share Source.pdf
PDF
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
PDF
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
PDF
1.3 FINAL REVISED K-10 PE and Health CG 2023 Grades 4-10 (1).pdf
PPTX
202450812 BayCHI UCSC-SV 20250812 v17.pptx
PDF
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 2).pdf
PPTX
Chinmaya Tiranga Azadi Quiz (Class 7-8 )
PPTX
CHAPTER IV. MAN AND BIOSPHERE AND ITS TOTALITY.pptx
PDF
Weekly quiz Compilation Jan -July 25.pdf
PDF
MBA _Common_ 2nd year Syllabus _2021-22_.pdf
PPTX
Computer Architecture Input Output Memory.pptx
Vision Prelims GS PYQ Analysis 2011-2022 www.upscpdf.com.pdf
FOISHS ANNUAL IMPLEMENTATION PLAN 2025.pdf
LDMMIA Reiki Yoga Finals Review Spring Summer
Hazard Identification & Risk Assessment .pdf
Uderstanding digital marketing and marketing stratergie for engaging the digi...
Unit 4 Computer Architecture Multicore Processor.pptx
Trump Administration's workforce development strategy
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 1)
Environmental Education MCQ BD2EE - Share Source.pdf
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
1.3 FINAL REVISED K-10 PE and Health CG 2023 Grades 4-10 (1).pdf
202450812 BayCHI UCSC-SV 20250812 v17.pptx
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 2).pdf
Chinmaya Tiranga Azadi Quiz (Class 7-8 )
CHAPTER IV. MAN AND BIOSPHERE AND ITS TOTALITY.pptx
Weekly quiz Compilation Jan -July 25.pdf
MBA _Common_ 2nd year Syllabus _2021-22_.pdf
Computer Architecture Input Output Memory.pptx

Lesson 12 centroid of an area

  • 2. The mass of a physical body is a measure of the quantity of the matter in it, whereas the volume of the body is a measure of the space it occupies. If the mass per unit volume is the same throughout the body is said to be homogeneous or to have constant density. It is highly desirable in physics and mechanics to consider a given mass as concentrated at a point, called its center of mass (also, its center of gravity). For a homogeneous body, this point coincides with its geometric center or centroid. For example, the center of mass of a homogeneous rubber ball coincides with the centroid (center) of the ball considered as a geometric solid (a sphere). DISCUSSION The centroid of a rectangular sheet of paper lies midway between the two surfaces but it may well be considered as located on one of the surfaces at the intersection of the two diagonals. Then the center of mass of a thin sheet coincides with the centroid of the sheet considered as a plane area.
  • 3. The Moment ML of a Plane Region with respect to a line L is the product of the area and the directed distance of the centroid from the line. The moment of a composite region with respect to a line is the sum of the moments of the individual sub-regions with respect to the line. The moment of a plane region with respect to a coordinate axis may be found as follows: 3. Evaluate the definite integral of the product in step 2 and apply the fundamental theorem. 1. Sketch the region; showing a representative strip. 2. Form the product of the area of the rectangle and the distance of its centroid from the axis.
  • 4. For a plane region having an area A, centroid and moments and with respect to x and y axes, ( ),, yxC xM yM yM Ax= xM Ay=and A M x y = A M y x =
  • 5. Determine the centroid of the first-quadrant region bounded by the parabola . .4 2 xy −= V(0,4) y x dx (0,2) x x= ( ),C x y Curve: 2 4y x= − ( ) ( ) 2 2 4 4 0,4 x y x y V = − + = − − 0y = 2 0 4 x= − 2 4 2 x x = = ± if Solving for the area A: ∫ −= 2 0 2 )4( dxxA2 04 2 2 +− = + = xyy y BA y 04 2 −−=− xyy BA dxxdA )4( 2 −= EXAMPLE
  • 7. ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) 2 2 0 2 2 0 2 2 0 2 2 2 2 0 2 2 4 0 2 3 5 0 4 2 4 2 1 4 2 sin 4 1 4 4 2 1 16 8 2 1 16 8 2 3 5 1 8 1 16 2 8 32 2 3 5 1 480 320 96 2 15 x x x x x x x x M A y M x y dx y but y y M x dx x y dx ce y x M x x dx M x x dx x x M x M M = × = − × = = − × = − × = − = − − = − +   = − × +      = − +    − +  =     ∫ ∫ ∫ ∫ ∫ 1 256 128 . 2 15 15 xM cu units   = =    Moment about the x-axis
  • 8. Moment about the y-axis ( ) ( ) ( ) ( ) ( ) 2 2 0 2 2 0 2 3 0 2 2 4 0 2 2 4 0 4 4 4 4 2 4 1 2 4 1 2 4 16 4 8 4 4 . y y y y y y y y y M A x M x x dx but x x M x xdx M x x dx x x M M x x M M M cu units = × = − × = = − = −   = × −      = −    = − = − = ∫ ∫ ∫
  • 9. units 128 15 16 3 8 5 x x M A y M y A y = × = = = units 4 16 3 3 4 y y M A x M x A x = × = = =       5 8 , 4 3 :C
  • 10. Determine the centroid of the fourth-quadrant area bounded by the curve 2 4y x x= − . V(2,-4) dx y x y− 2 y y = xx = • Curve: 2 4y x x= − ( ) ( ) 2 2 4 4 4 2 4 2, 4 x x y x y V − + = + − = + − ( ) 2 0; 4 0 4 0 0; 4 y x x x x x x = − = − = = = EXAMPLE
  • 11. ( ) 4 0 2 4 2 0 4 4 dA y dx A y dx y x x A x x dx = − × = − × = − = − − ∫ ∫ but Solving for area A: ( ) ( ) ( ) 4 2 3 4 2 0 0 4 4 2 3 1 64 2 16 64 32 3 3 96 64 32 . 3 3 or x x A x x dx A A sq units  = − = × −   = − = − − = = ∫
  • 12. ( ) ( ) ( ) ( ) ( ) ( ) 4 0 4 0 2 2 0 2 4 2 0 4 2 2 0 4 4 3 2 0 4 5 4 3 0 2 2 1 4 2 sin 4 1 2 1 4 2 1 8 16 2 1 8 16 2 5 4 3 1 1 16 1024 2 256 64 2 5 3 x x x x x x x x M A y M y y dx y but y y M y dx x y dx ce y x M y dx M x x dx M x x x dx x x x M M = × = − × × = = − × × = − × = − = − × = − − = − − +   = − − × + ×      = − − +   ∫ ∫ ∫ ∫ ∫ ∫ 1 3072 7680 5120 2 15 1 512 256 . 2 15 15 x x M M cu units  − +  = −       = − = −    ( ) ( ) ( ) ( ) 4 2 0 4 2 0 4 2 3 0 4 3 4 0 4 4 4 4 3 4 4 64 64 3 256 64 3 256 192 3 64 . 3 y y y y y y y y y M A x M x x x dx but x x M x x xdx M x x dx x x M M M M M cu units = × = − × = = − = −   = × −      = −      = −    −  =     = ∫ ∫ ∫
  • 13. _ x yAM = 3 32 15 256 A M y x _ − == unitsy 5 8− = units 64 3 32 3 2 y y M A x M x A x = × = = =       − ∴ 5 8 ,2C
  • 14. 2 y x= y x= Determine the centroid of the region bounded by the curve and the line . . dx y x (1,1) 2 y x= y x= x x= Curve: 2 y x= ( )0,0V y x=Line: Intersection point: ( ) 2 2 0 1 0 0; 1 0; 0 1; 1 x x x x x x x x if x y x y = − = − = = = = = = = yA-yB EXAMPLE
  • 15. Solving for area A : dA = ydx ∫= 1 0 ydxA ∫ −= 1 0 CL dx)yy( but yL = x, yC = x2 ∫ −= 1 0 2 )( dxxxA 0 1 3 x 2 x 32 −= )1( 3 1 )1( 2 1 −= 6 1 A = square units
  • 16. ( ) ( ) ( ) ( ) 1 0 1 2 2 0 1 2 2 2 0 1 2 4 0 1 3 5 0 2 1 2 1 2 1 2 1 2 3 5 1 1 1 2 3 5 1 5 3 2 15 1 . 15 x L C x L C x L C x x x x x M A y y y M y y dx M y y dx x x dx M x x dx x x M M M M cu units = × +  = −  ÷   = −  = −    = −   = −      = −    −  =     = ∫ ∫ ∫ ∫ ( ) ( ) ( ) units.cuM M xx M dxxxM dxxxxM dxxyyM xAM y y y y 0 y 0 CLy y 12 1 12 34 4 1 3 1 43 1 0 43 1 0 32 1 2 1 = − =−=    −= −= −= −= ⋅= ∫ ∫ ∫
  • 17. 1 15 1 6 2 5 x x M A y M y A y units = × = = = 1 12 1 6 1 2 y y M A x M x A x units = × = = = 1 2 , 2 5 C   ∴  ÷  
  • 18. 2 x y= 2 8x y= −Determine the centroid of the area bounded by the parabolas and . 2 x y= ( )0,0V Curve 1: dy y x (x1,y) (x2,y) (4,-2) 2 x y= 2 8x y= − 2 1x x− x ( ),C x y y Curve 2: 2 8x y= − ( )0,0V Solving for intersection points: ( ) ( ) 2 2 4 4 3 8 8 8 0 8 0 0; 2 0; 4 y y y y y y y y y y x x = − = − + = + = = = − = = Therefore, the intersection points are (0, 0) and (4, -2). EXAMPLE
  • 19. ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ] 3 2 3 2 2 1 0 2 12 2 2 2 1 0 2 2 0 3 0 2 2 0 3 2 3 8 8 8 8 2 2 2 2 3 2 1 1 3 3 2 2 1 2 2 2 3 3 2 8 8 3 3 16 8 3 3 8 3 dA x x dy A x x dy x x y x y x y x x y A y y dy y A y dy y A y A A A A − − − − − = − = − = − = ± − = − = = − −  = − − − −   − = − −    = − − + −  −  = +     = − = ∫ ∫ ∫ : : .sq units Solving for area A: Continue solving for the centroid
  • 20. Find the centroid of each of the given plane region bounded by the following curves: 1. y = 10x – x2 , the x-axis and the lines x = 2 and x = 5 2. 2x + y = 6, the coordinate axes 3. y = 2x + 1, x + y = 7, x = 8 4. y2 = 2x, y = x – 4 5. y = x3 , y = 4x [first quadrant] 6. y2 = x3 , y = 2x 7. y = x2 – 4, y = 2x – x2 8. the first quadrant area of the circle x2 +y2 = a2 9. the region enclosed by b2 x2 + a2 y2 = a2 b2 in the first quadrant