SlideShare a Scribd company logo
5
Most read
7
Most read
8
Most read
DIFFERENTIATION OF
HYPERBOLIC FUNCTIONS
TRANSCENDENTAL FUNCTIONS
Kinds of transcendental functions:
1.logarithmic and exponential functions
2.trigonometric and inverse trigonometric
functions
3.hyperbolic and inverse hyperbolic functions
Note:
Each pair of functions above is an inverse to
each other.
Lesson 3 derivative of hyperbolic functions
Lesson 3 derivative of hyperbolic functions
HYPERBOLIC IDENTITIES
DIFFERENTIATION FORMULA
Derivative of Hyperbolic Function
A. Find the derivative of each of the following functions
and simplify the result:
x2coshxsinhy.1 =
)xcoshxsinh(xcosh'y
)xsinhx(coshxcosh)xcoshxsinh(xsinh'y
xcoshxcoshxsinhxsinh'y
22
22
5
22
222
+=
++=
+=
xhsecxy.2 =
xhsec)xtanhxhsec(x'y +−=
xhsecy.3 2
=
xtanhxhsecxhsec2'y −=
xhsecxcothy.5 =
)xhcsc(xhsec)xtanhxhsec(xcoth'y 2
−+−=
2
xsinhlny.4 =
2
2
xsinh
xcoshx2
'y =
EXAMPLE:
)xtanhx1(xhsec'y −=
xtanhxhsec2'y 2
−=
2
xcothx2'y =
[ ]xhcscxtanhxcothxhsec'y 2
+−=
[ ]xhcsc1xhsec'y 2
+−=
hxcscxcothy
xcothxhsec'y
'
−=
−= 2
xcothlny.6 2
=
xcoth
xhcscxcoth2
'y 2
2
−
=
xcotharccosy.7 =
xcoth1
xhcsc
'y
2
2
−
−
−=
xhcscxhcsc
xhcscxhcsc
'y
22
22
−•−
−•
=
xsinh
xcosh
xsinh
1
2
'y
2
−
=
2
2
xsinhxcosh
2
'y •
−
=
x2sinh
4
'y −=
x2hcsc4'y −=
xhcsc
xhcsc
'y
2
2
−
=
xhcsc'y 2
−=
)xharctan(siny.8 2
=
( )22
2
xcosh
xcoshx2
'y =
2
xhsecx2'y =
( )22
2
xsinh1
xcoshx2
'y
+
=
A. Find the derivative and simplify the result.
( ) 2
xsinhxf.1 =
( ) w4hsecwF.2 2
=
( ) 3
xtanhxG.3 =
( ) 3
tcoshtg.4 =
( )
x
1
cothxh.5 =
( ) ( )xtanhlnxg.6 =
EXERCISES:
( ) ( )ylncothyf.7 =
( ) xcoshexh.8 x
=
( ) ( )x2sinhtanxf.9 1−
=
( ) ( )x
xsinhxg.10 =
( ) ( )21
xtanhsinxg.11 −
=
( ) 0x,xxf.12 xsinh
>=
Hyperbolic Functions Trigonometric Functions
1xsinhxcosh 22
=−
xhsecxtanh1 22
=−
xhcsc1xcoth 22
=−
ysinhxcoshycoshxsinh)yxsinh( ±=±
( ) ysinhxsinhycoshxcoshyxcosh ±=±
( )
ytanhxtanh1
ytanhxtanh
yxtanh
±
±
=± ( )
ytanxtan1
ytanxtan
yxtan

±
=±
( ) ysinxsinycosxcosyxcos =±
( ) ysinxcosycosxsinyxsin ±=±
xx 22
sectan1 =+
1sincos 22
=+ xx
xcsc1xcot 22
=+
Identities: Hyperbolic Functions vs. Trigonometric Functions
Hyperbolic Functions Trigonometric Functions
Identities: Hyperbolic Functions vs. Trigonometric Functions
sinh 2x = 2 sinh x cosh x
( ) 2/1x2coshxsinh2
−=
( ) 2/1x2coshxcosh2
+=
x
exsinhxcosh =+
x
exsinhxcosh −
=−
( ) 2/x2cos1xcos2
+=
( ) 2/x2cos1xsin2
−=
cos 2x = cos2
x – sin2
x
sin 2x = 2sinx cosx
cosh 2x = cosh2
x +sinh2
x
Lesson 3 derivative of hyperbolic functions

More Related Content

PPT
Lesson 4 derivative of inverse hyperbolic functions
PPT
Lesson 13 derivative of hyperbolic functions
PPT
Lesson 1 derivative of trigonometric functions
PPTX
Math presentation on domain and range
PPT
Lesson 12 derivative of inverse trigonometric functions
PPT
Lesson 14 derivative of inverse hyperbolic functions
PPTX
Integration of Trigonometric Functions
PPT
Exponential functions
Lesson 4 derivative of inverse hyperbolic functions
Lesson 13 derivative of hyperbolic functions
Lesson 1 derivative of trigonometric functions
Math presentation on domain and range
Lesson 12 derivative of inverse trigonometric functions
Lesson 14 derivative of inverse hyperbolic functions
Integration of Trigonometric Functions
Exponential functions

What's hot (20)

PPTX
1.1 review on algebra 1
PPTX
Combined Functions
PPTX
1.6 slopes and the difference quotient
PDF
The Definite Integral
PPTX
Limits of functions
PPT
1.4 review on log exp-functions
PPTX
Limit of Function And Its Types
PPT
Lecture 4 the limit of a function
PPT
Composition Of Functions
PPTX
3.4 derivative and graphs
PDF
Lesson 18: Maximum and Minimum Values (slides)
PPTX
Limit of functions
PPT
Integration and its basic rules and function.
PPTX
Area Under the Curve
PPT
L4 one sided limits limits at infinity
PPTX
5.1 anti derivatives
PDF
3.4 Composition of Functions
PPT
L5 infinite limits squeeze theorem
PPTX
Graphs of Log functions
PDF
3.5 Rational Functions
1.1 review on algebra 1
Combined Functions
1.6 slopes and the difference quotient
The Definite Integral
Limits of functions
1.4 review on log exp-functions
Limit of Function And Its Types
Lecture 4 the limit of a function
Composition Of Functions
3.4 derivative and graphs
Lesson 18: Maximum and Minimum Values (slides)
Limit of functions
Integration and its basic rules and function.
Area Under the Curve
L4 one sided limits limits at infinity
5.1 anti derivatives
3.4 Composition of Functions
L5 infinite limits squeeze theorem
Graphs of Log functions
3.5 Rational Functions
Ad

Viewers also liked (20)

PDF
Calculus of hyperbolic functions
PPT
Lesson 2 derivative of inverse trigonometric functions
PPTX
Hyperbolic functions dfs
PPT
Lecture 8 power & exp rules
PPT
Lecture 6 limits with infinity
PPTX
Lesson 5 indeterminate forms
PPT
Lesson 18 force due to liquid pressure revised
PDF
Lesson 8: Basic Differentiation Rules (Section 21 slides)
PPTX
Derivatives and their Applications
PDF
Lesson 15: Inverse Functions and Logarithms
PPTX
Power of Power Exponent Rule
PDF
Lesson 6: The derivative as a function
PPTX
Lesson 7 antidifferentiation generalized power formula-simple substitution
PPTX
Lesson 9 transcendental functions
PPTX
Lesson 15 pappus theorem
PPTX
Applied Calculus Chapter 3 partial derivatives
 
PPTX
Lesson 10 techniques of integration
PPT
Lesson 16 length of an arc
Calculus of hyperbolic functions
Lesson 2 derivative of inverse trigonometric functions
Hyperbolic functions dfs
Lecture 8 power & exp rules
Lecture 6 limits with infinity
Lesson 5 indeterminate forms
Lesson 18 force due to liquid pressure revised
Lesson 8: Basic Differentiation Rules (Section 21 slides)
Derivatives and their Applications
Lesson 15: Inverse Functions and Logarithms
Power of Power Exponent Rule
Lesson 6: The derivative as a function
Lesson 7 antidifferentiation generalized power formula-simple substitution
Lesson 9 transcendental functions
Lesson 15 pappus theorem
Applied Calculus Chapter 3 partial derivatives
 
Lesson 10 techniques of integration
Lesson 16 length of an arc
Ad

Similar to Lesson 3 derivative of hyperbolic functions (20)

PDF
MAT221: CALCULUS II - Hyperbolic Functions.pdf
PPSX
Calculus 05-6 ccccccccccccccccccccccc.ppsx
PPT
Hyperbolic functions
PPT
Calc 5.8a
PDF
3 handouts section3-9
PDF
2.hyperbolic functions Further Mathematics Zimbabwe Zimsec Cambridge
PDF
2. diferensial hiperbolik
PDF
01. Differentiation-Theory & solved example Module-3.pdf
DOCX
Using Eulers formula, exp(ix)=cos(x)+isin.docx
DOCX
DIFFERENTIATION
PPTX
06_Complex Numbers_Hyperbolic Functions.pptx
PPTX
Futher pure mathematics 3 hyperbolic functions
PPT
Differential calculus
PPTX
Calculus 3_Hyperbolic Functions PPT for Grade 12
PPT
Lesson 11 derivative of trigonometric functions
PPTX
Topic hyperbolic functions
PPT
Derivatives
PPTX
CALCULUS 2.pptx
PDF
Neet class 11 12 basic mathematics notes
PDF
Ah unit 1 differentiation
MAT221: CALCULUS II - Hyperbolic Functions.pdf
Calculus 05-6 ccccccccccccccccccccccc.ppsx
Hyperbolic functions
Calc 5.8a
3 handouts section3-9
2.hyperbolic functions Further Mathematics Zimbabwe Zimsec Cambridge
2. diferensial hiperbolik
01. Differentiation-Theory & solved example Module-3.pdf
Using Eulers formula, exp(ix)=cos(x)+isin.docx
DIFFERENTIATION
06_Complex Numbers_Hyperbolic Functions.pptx
Futher pure mathematics 3 hyperbolic functions
Differential calculus
Calculus 3_Hyperbolic Functions PPT for Grade 12
Lesson 11 derivative of trigonometric functions
Topic hyperbolic functions
Derivatives
CALCULUS 2.pptx
Neet class 11 12 basic mathematics notes
Ah unit 1 differentiation

More from Lawrence De Vera (19)

PPT
Lesson 19 improper intergals
PPT
Lesson 17 work done by a spring and pump final (1)
PPT
Lesson 14 centroid of volume
PPT
Lesson 13 volume of solids of revolution
PPT
Lesson 12 centroid of an area
PPT
Lesson 11 plane areas area by integration
PPTX
Lesson 8 the definite integrals
PPTX
Lesson 6 differentials parametric-curvature
PPT
Lecture co4 math21-1
PPTX
Lecture co3 math21-1
PPTX
Lecture co1 math 21-1
PPTX
Lecture co2 math 21-1
PPTX
MIT Math Syllabus 10-3 Lesson 9: Ratio, proportion and variation
PPTX
MIT Math Syllabus 10-3 Lesson 8: Inequalities
PPTX
MIT Math Syllabus 10-3 Lesson 7: Quadratic equations
PPTX
MIT Math Syllabus 10-3 Lesson 6: Equations
PPTX
MIT Math Syllabus 10-3 Lesson 5: Complex numbers
PPTX
MIT Math Syllabus 10-3 Lesson 4: Rational exponents and radicals
PPTX
MIT Math Syllabus 10-3 Lesson 3: Rational expressions
Lesson 19 improper intergals
Lesson 17 work done by a spring and pump final (1)
Lesson 14 centroid of volume
Lesson 13 volume of solids of revolution
Lesson 12 centroid of an area
Lesson 11 plane areas area by integration
Lesson 8 the definite integrals
Lesson 6 differentials parametric-curvature
Lecture co4 math21-1
Lecture co3 math21-1
Lecture co1 math 21-1
Lecture co2 math 21-1
MIT Math Syllabus 10-3 Lesson 9: Ratio, proportion and variation
MIT Math Syllabus 10-3 Lesson 8: Inequalities
MIT Math Syllabus 10-3 Lesson 7: Quadratic equations
MIT Math Syllabus 10-3 Lesson 6: Equations
MIT Math Syllabus 10-3 Lesson 5: Complex numbers
MIT Math Syllabus 10-3 Lesson 4: Rational exponents and radicals
MIT Math Syllabus 10-3 Lesson 3: Rational expressions

Recently uploaded (20)

PPTX
BOWEL ELIMINATION FACTORS AFFECTING AND TYPES
PDF
TR - Agricultural Crops Production NC III.pdf
PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PDF
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
PDF
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PDF
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
PPTX
Renaissance Architecture: A Journey from Faith to Humanism
PPTX
master seminar digital applications in india
PDF
RMMM.pdf make it easy to upload and study
PDF
Abdominal Access Techniques with Prof. Dr. R K Mishra
PPTX
Cell Structure & Organelles in detailed.
PPTX
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
PPTX
GDM (1) (1).pptx small presentation for students
PPTX
Pharmacology of Heart Failure /Pharmacotherapy of CHF
PDF
Sports Quiz easy sports quiz sports quiz
PDF
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
PPTX
PPH.pptx obstetrics and gynecology in nursing
PDF
Complications of Minimal Access Surgery at WLH
PDF
102 student loan defaulters named and shamed – Is someone you know on the list?
BOWEL ELIMINATION FACTORS AFFECTING AND TYPES
TR - Agricultural Crops Production NC III.pdf
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
Module 4: Burden of Disease Tutorial Slides S2 2025
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
Renaissance Architecture: A Journey from Faith to Humanism
master seminar digital applications in india
RMMM.pdf make it easy to upload and study
Abdominal Access Techniques with Prof. Dr. R K Mishra
Cell Structure & Organelles in detailed.
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
GDM (1) (1).pptx small presentation for students
Pharmacology of Heart Failure /Pharmacotherapy of CHF
Sports Quiz easy sports quiz sports quiz
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
PPH.pptx obstetrics and gynecology in nursing
Complications of Minimal Access Surgery at WLH
102 student loan defaulters named and shamed – Is someone you know on the list?

Lesson 3 derivative of hyperbolic functions

  • 2. TRANSCENDENTAL FUNCTIONS Kinds of transcendental functions: 1.logarithmic and exponential functions 2.trigonometric and inverse trigonometric functions 3.hyperbolic and inverse hyperbolic functions Note: Each pair of functions above is an inverse to each other.
  • 7. A. Find the derivative of each of the following functions and simplify the result: x2coshxsinhy.1 = )xcoshxsinh(xcosh'y )xsinhx(coshxcosh)xcoshxsinh(xsinh'y xcoshxcoshxsinhxsinh'y 22 22 5 22 222 += ++= += xhsecxy.2 = xhsec)xtanhxhsec(x'y +−= xhsecy.3 2 = xtanhxhsecxhsec2'y −= xhsecxcothy.5 = )xhcsc(xhsec)xtanhxhsec(xcoth'y 2 −+−= 2 xsinhlny.4 = 2 2 xsinh xcoshx2 'y = EXAMPLE: )xtanhx1(xhsec'y −= xtanhxhsec2'y 2 −= 2 xcothx2'y = [ ]xhcscxtanhxcothxhsec'y 2 +−= [ ]xhcsc1xhsec'y 2 +−= hxcscxcothy xcothxhsec'y ' −= −= 2
  • 8. xcothlny.6 2 = xcoth xhcscxcoth2 'y 2 2 − = xcotharccosy.7 = xcoth1 xhcsc 'y 2 2 − − −= xhcscxhcsc xhcscxhcsc 'y 22 22 −•− −• = xsinh xcosh xsinh 1 2 'y 2 − = 2 2 xsinhxcosh 2 'y • − = x2sinh 4 'y −= x2hcsc4'y −= xhcsc xhcsc 'y 2 2 − = xhcsc'y 2 −=
  • 9. )xharctan(siny.8 2 = ( )22 2 xcosh xcoshx2 'y = 2 xhsecx2'y = ( )22 2 xsinh1 xcoshx2 'y + =
  • 10. A. Find the derivative and simplify the result. ( ) 2 xsinhxf.1 = ( ) w4hsecwF.2 2 = ( ) 3 xtanhxG.3 = ( ) 3 tcoshtg.4 = ( ) x 1 cothxh.5 = ( ) ( )xtanhlnxg.6 = EXERCISES: ( ) ( )ylncothyf.7 = ( ) xcoshexh.8 x = ( ) ( )x2sinhtanxf.9 1− = ( ) ( )x xsinhxg.10 = ( ) ( )21 xtanhsinxg.11 − = ( ) 0x,xxf.12 xsinh >=
  • 11. Hyperbolic Functions Trigonometric Functions 1xsinhxcosh 22 =− xhsecxtanh1 22 =− xhcsc1xcoth 22 =− ysinhxcoshycoshxsinh)yxsinh( ±=± ( ) ysinhxsinhycoshxcoshyxcosh ±=± ( ) ytanhxtanh1 ytanhxtanh yxtanh ± ± =± ( ) ytanxtan1 ytanxtan yxtan  ± =± ( ) ysinxsinycosxcosyxcos =± ( ) ysinxcosycosxsinyxsin ±=± xx 22 sectan1 =+ 1sincos 22 =+ xx xcsc1xcot 22 =+ Identities: Hyperbolic Functions vs. Trigonometric Functions
  • 12. Hyperbolic Functions Trigonometric Functions Identities: Hyperbolic Functions vs. Trigonometric Functions sinh 2x = 2 sinh x cosh x ( ) 2/1x2coshxsinh2 −= ( ) 2/1x2coshxcosh2 += x exsinhxcosh =+ x exsinhxcosh − =− ( ) 2/x2cos1xcos2 += ( ) 2/x2cos1xsin2 −= cos 2x = cos2 x – sin2 x sin 2x = 2sinx cosx cosh 2x = cosh2 x +sinh2 x