SlideShare a Scribd company logo
The Impact of Smoothness on Model Class
Selection in Nonlinear System Identification:
An Application of Derivatives in the RKHS
Y. Bhujwalla, V. Laurain, M. Gilson
6th July 2016
yusuf-michael.bhujwalla@univ-lorraine.fr
Yusuf Bhujwalla (Université de Lorraine) IEEE ACC 2016 1 / 23
Introduction
The Data-Generating System
Measured data : DN = {(u1, y1), (u2, y2), . . . , (uN , yN )}.
Describes So, an unknown nonlinear system with function fo : X → R,
So :
yo,k = fo(xk)
yk = yo,k + eo,k
Where xk = [yk−1 · · · yk−na uk · · · uk−nb ]⊤
∈ X = Rna+nb+1
.
Parametric Models
Nθ low (fixed)
→ Physically interpretable
Choice of basis function?
→ Combinatorially hard problem X
Nonparametric Models
Nθ high (∼ data)
→ Not interpretable X
Can define a general model class.
→ Flexibility
Yusuf Bhujwalla (Université de Lorraine) IEEE ACC 2016 2 / 23
Introduction
The Data-Generating System
Measured data : DN = {(u1, y1), (u2, y2), . . . , (uN , yN )}.
Describes So, an unknown nonlinear system with function fo : X → R,
So :
yo,k = fo(xk)
yk = yo,k + eo,k
Where xk = [yk−1 · · · yk−na uk · · · uk−nb ]⊤
∈ X = Rna+nb+1
.
Parametric Models
Nθ low (fixed)
→ Physically interpretable
Choice of basis function?
→ Combinatorially hard problem X
Nonparametric Models
Such as kernel methods :
Input
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Output
0
0.5
1
1.5
2
yo
kx
Yusuf Bhujwalla (Université de Lorraine) IEEE ACC 2016 2 / 23
Outline
1 Kernel Methods in Nonlinear Identification
2 The Kernel Selection Problem
3 Smoothness in the RKHS
4 Simulation Examples
Yusuf Bhujwalla (Université de Lorraine) IEEE ACC 2016 3 / 23
1. Kernel Methods in Nonlinear Identification
Reproducing Kernel Hilbert Spaces
Hilbert Spaces
H is a space over a class of functions, f : X → R ∈ H :
· ∥ f ∥H
· ⟨ f , g ⟩H.
In system identification, H ⇔ model class.
Reproducing Kernels
H has a unique, associated kernel function, K : X × X → R, spanning the space
H.
The Reproducing Property states that f (x) can be explicitly represented as an
infinite sum in terms of the kernel function :
f (x) = ⟨ f , Kx⟩H =
∞
i=1
αiK(xi, x)
Yusuf Bhujwalla (Université de Lorraine) IEEE ACC 2016 4 / 23
1. Kernel Methods in Nonlinear Identification
Identification in the RKHS
Identification in the RKHS
For ˆf ∈ H close to fo, ˆf should reflect observations :
ˆf = min
f
{ V( f ) = L(x, y, f (x)) }
However, infinitely many solutions ⇒ add constraint to model :
ˆf = min
f
{ V( f ) = L(x, y, f (x)) + g(∥ f ∥H) }
For such cost-functions, f (x) can be reduced to :
f (x) =
N
i=1
αiK(xi, x), α ∈ RN
· f (x) → a finite sum over the observations.
· The Representer Theorem (Schölkopf, Herbrich and Smola, 2001)
Yusuf Bhujwalla (Université de Lorraine) IEEE ACC 2016 5 / 23
1. Kernel Methods in Nonlinear Identification
A Widely-Used Example
A Widely-Used Example
As an example minimise squared-error :
L(x, y, f (x)) = ∥y − f (x)∥2
2,
and use regularisation to avoid overparameterisation :
g(∥ f ∥H) = λ∥ f ∥2
H.
Giving :
Vf : V( f ) = ∥y − f (x)∥2
2 + λf ∥ f ∥2
H
⇒ αf = (K + λf I)−1
y
· Solution depends on
I. K and
II. λf
Yusuf Bhujwalla (Université de Lorraine) IEEE ACC 2016 6 / 23
Outline
1 Kernel Methods in Nonlinear Identification
2 The Kernel Selection Problem
3 Smoothness in the RKHS
4 Simulation Examples
Yusuf Bhujwalla (Université de Lorraine) IEEE ACC 2016 7 / 23
2. The Kernel Selection Problem
Choosing a Kernel Function
Choosing a kernel function...
K defines the model class
Let X = R, and K be the Gaussian
RBF kernel :
K(xi, x) = exp −
∥x − xi∥2
σ2
.
Width (σ) defines smoothness of
the kernel function.
Hence σ determines the model
class !
Other kernels have different
hyperparameters, but they will still
influence H.
Input
-1 -0.5 0 0.5 1
0
0.2
0.4
0.6
0.8
1
Input
-1 -0.5 0 0.5 1
0
0.2
0.4
0.6
0.8
1
KxKx
σ1
σ2 > σ1
σ
Yusuf Bhujwalla (Université de Lorraine) IEEE ACC 2016 8 / 23
2. The Kernel Selection Problem
Implications of the Hyperparameter Selection
Estimation of 1D switching signal
using Vf = ∥y − f (x)∥2
2 + λf ∥f ∥2
H.
Many observations (N = 103
).
uk ∼ U(−1, 1).
Significant noise disturbances
(SNR = 5dB).
Two hyperparameters :
I. σ and
II. λ
-1 -0.5 0 0.5 1
-20
-10
0
10
20
30
fo(uk)
uk
FIGURE: Estimation of 1D switching
signal for different hyperparameter
values.
Yusuf Bhujwalla (Université de Lorraine) IEEE ACC 2016 9 / 23
2. The Kernel Selection Problem
Implications of the Hyperparameter Selection
-1 -0.5 0 0.5 1
-20
0
20
-1 -0.5 0 0.5 1
-20
0
20
-1 -0.5 0 0.5 1
-20
0
20
-1 -0.5 0 0.5 1
-20
0
20
yoyo
yoyo
ˆfMEAN
ˆfMEAN
ˆfMEAN
ˆfMEAN
ˆfSD
ˆfSD
ˆfSD
ˆfSD
SMALL λ LARGE λ
SMALLσLARGEσ
Yusuf Bhujwalla (Université de Lorraine) IEEE ACC 2016 10 / 23
2. The Kernel Selection Problem
Implications of the Hyperparameter Selection
-1 -0.5 0 0.5 1
-20
0
20
-1 -0.5 0 0.5 1
-20
0
20
-1 -0.5 0 0.5 1
-20
0
20
-1 -0.5 0 0.5 1
-20
0
20
SMOOTHNESS
FLEXIBILITY
yoyo
yoyo
ˆfMEAN
ˆfMEAN
ˆfMEAN
ˆfMEAN
ˆfSD
ˆfSD
ˆfSD
ˆfSD
SMALL λ LARGE λ
SMALLσLARGEσ
Yusuf Bhujwalla (Université de Lorraine) IEEE ACC 2016 10 / 23
2. The Kernel Selection Problem
Summary
Summary
Vf : V(f ) = ∥y − f (x)∥2
2 + λf ∥ f ∥2
H.
Kernel framework very effective :
· flexible,
· well-understood.
However, choice of kernel often compromised (e.g. by noise).
⇒ Trade-off between flexibility and smoothness.
So, why regularise over ∥ f ∥H . . .
. . . when smoothness is often a more interesting property to control?
⇒ Desirable property in many models.
⇒ Characterises many systems.
Yusuf Bhujwalla (Université de Lorraine) IEEE ACC 2016 11 / 23
Outline
1 Kernel Methods in Nonlinear Identification
2 The Kernel Selection Problem
3 Smoothness in the RKHS
4 Simulation Examples
Yusuf Bhujwalla (Université de Lorraine) IEEE ACC 2016 12 / 23
3. Smoothness in the RKHS
Regularisation Using Derivatives
Proposition
Replace functional regularisation :
Vf : V(f ) = ∥y − f (x)∥2
2 + λf ∥ f ∥2
H,
With smoothness-enforcing regularisation :
VD : V(f ) = ∥y − f (x)∥2
2 + λD∥Df ∥2
H.
Now :
· Hence, smoothness controlled by regularisation.
· And, kernel hyperparameter removed from optimisation problem.
Yusuf Bhujwalla (Université de Lorraine) IEEE ACC 2016 13 / 23
3. Smoothness in the RKHS
Regularisation Using Derivatives
Proposition
Replace functional regularisation :
Vf : V(f ) = ∥y − f (x)∥2
2 + λf ∥ f ∥2
H,
With smoothness-enforcing regularisation :
VD : V(f ) = ∥y − f (x)∥2
2 + λD∥Df ∥2
H.
Now :
· Hence, smoothness controlled by regularisation.
· And, kernel hyperparameter removed from optimisation problem.
Yusuf Bhujwalla (Université de Lorraine) IEEE ACC 2016 13 / 23
3. Smoothness in the RKHS
Regularisation Using Derivatives
Proposition
Replace functional regularisation :
Vf : V(f ) = ∥y − f (x)∥2
2 + λf ∥ f ∥2
H,
With smoothness-enforcing regularisation :
VD : V(f ) = ∥y − f (x)∥2
2 + λD∥Df ∥2
H.
Now :
· Hence, smoothness controlled by regularisation.
· And, kernel hyperparameter removed from optimisation problem.
Yusuf Bhujwalla (Université de Lorraine) IEEE ACC 2016 13 / 23
3. Smoothness in the RKHS
Derivatives in the RKHS
Derivatives in the RKHS
For f ∈ H, Df ∈ H (Zhou, 2008)
Hence, a derivative reproducing property can be defined :
Df = ⟨ f , DKx ⟩H
The Representer Theorem
Representer f (x) = N
i=1 αiK(xi, x) requires
g(∥ f ∥H) : a monotically increasing function of ∥ f ∥H
Clearly, ∥Df ∥H g(∥ f ∥H) ⇒ representer is suboptimal for VD.
However, if system is well-excited, f (x) = N
i=1 αiK(xi, x) can be used.
However, it loosely preserves the bias-variance properties of Vf
lim
λ→∞
f (x) = 0, ∀x ∈ R.
Yusuf Bhujwalla (Université de Lorraine) IEEE ACC 2016 14 / 23
3. Smoothness in the RKHS
Derivatives in the RKHS
A Closed-Form Solution
Using derivative reproducing property, ∥Df ∥H can be defined :
∥Df ∥2
H = α⊤
D(1, 1)
Kα,
where
D(1, 1)
K(xi, xj) =
∂2
K(xi, xj)
∂xj ∂xi
.
Permitting a closed-form solution :
αD = K⊤
K + λDD(1, 1)
K
−1
K⊤
y.
As per Vf ⇒ αf = (K + λf I)−1
y.
Yusuf Bhujwalla (Université de Lorraine) IEEE ACC 2016 15 / 23
Outline
1 Kernel Methods in Nonlinear Identification
2 The Kernel Selection Problem
3 Smoothness in the RKHS
4 Simulation Examples
Yusuf Bhujwalla (Université de Lorraine) IEEE ACC 2016 16 / 23
4. Simulation Examples
Example 1 : Effect of the Regularisation
Estimation of 1D switching signal
using Vf and VD.
Many observations (N = 103
).
uk ∼ U(−1, 1).
Significant noise disturbances
(SNR = 5dB).
Gaussian RBF kernel, with σ = 0.01.
Varying levels of regularisation
(through λf , λD).
-1 -0.5 0 0.5 1
-20
-10
0
10
20
30
fo(uk)
uk
FIGURE: Estimation of 1D switching
signal for different λ values.
Yusuf Bhujwalla (Université de Lorraine) IEEE ACC 2016 17 / 23
4. Simulation Examples
Example 1 : Effect of the Regularisation
⇒ Negligible regularisation (very small λf , λD).
Input
-1 -0.5 0 0.5 1
Output
-20
-10
0
10
20
30
yo
ˆfMEAN
ˆfSD
FIGURE: Vf : R( f)
Input
-1 -0.5 0 0.5 1
Output -20
-10
0
10
20
30
yo
ˆfMEAN
ˆfSD
FIGURE: VD : R(Df)
Yusuf Bhujwalla (Université de Lorraine) IEEE ACC 2016 18 / 23
4. Simulation Examples
Example 1 : Effect of the Regularisation
⇒ Light regularisation (small λf , λD).
Input
-1 -0.5 0 0.5 1
Output
-20
-10
0
10
20
30
yo
ˆfMEAN
ˆfSD
FIGURE: Vf : R( f)
Input
-1 -0.5 0 0.5 1
Output -20
-10
0
10
20
30
yo
ˆfMEAN
ˆfSD
FIGURE: VD : R(Df)
Yusuf Bhujwalla (Université de Lorraine) IEEE ACC 2016 18 / 23
4. Simulation Examples
Example 1 : Effect of the Regularisation
⇒ Moderate regularisation.
Input
-1 -0.5 0 0.5 1
Output
-20
-10
0
10
20
30
yo
ˆfMEAN
ˆfSD
FIGURE: Vf : R( f)
Input
-1 -0.5 0 0.5 1
Output -20
-10
0
10
20
30
yo
ˆfMEAN
ˆfSD
FIGURE: VD : R(Df)
Yusuf Bhujwalla (Université de Lorraine) IEEE ACC 2016 18 / 23
4. Simulation Examples
Example 1 : Effect of the Regularisation
⇒ Heavy regularisation (large λf , λD).
Input
-1 -0.5 0 0.5 1
Output
-20
-10
0
10
20
30
yo
ˆfMEAN
ˆfSD
FIGURE: Vf : R( f)
Input
-1 -0.5 0 0.5 1
Output -20
-10
0
10
20
30
yo
ˆfMEAN
ˆfSD
FIGURE: VD : R(Df)
Yusuf Bhujwalla (Université de Lorraine) IEEE ACC 2016 18 / 23
4. Simulation Examples
Example 1 : Effect of the Regularisation
⇒ Excessive regularisation (very large λf , λD).
Input
-1 -0.5 0 0.5 1
Output
-20
-10
0
10
20
30
yo
ˆfMEAN
ˆfSD
FIGURE: Vf : R( f)
Input
-1 -0.5 0 0.5 1
Output -20
-10
0
10
20
30
yo
ˆfMEAN
ˆfSD
FIGURE: VD : R(Df)
Yusuf Bhujwalla (Université de Lorraine) IEEE ACC 2016 18 / 23
4. Simulation Examples
Example 2 : 1D Structural Selection
Identification of two unknown systems (X ∈ [−1, 1], SNR = 10dB, N = 103
).
Vf : λ, σ optimised using cross-validation.
VD : λ optimised using cross-validation, σ set based on data.
-0.5 0 0.5
-10
-5
0
5
10
15
20
25
f1
o(uk)
uk
FIGURE: S1
o : Smooth
-0.5 0 0.5
-10
-5
0
5
10
15
20
25
f2
o(uk)
uk
FIGURE: S2
o : Nonsmooth
Yusuf Bhujwalla (Université de Lorraine) IEEE ACC 2016 19 / 23
4. Simulation Examples
Example 2 : Smooth S1
o
Using a small kernel, VD can reconstruct a smooth function.
Not feasible using Vf - needs kernel smoothing effect.
Input
-0.5 0 0.5
Output
-10
-5
0
5
10
15
20
25
ˆfMEAN
ˆfSD
kx
FIGURE: Vf : R( f)
Input
-0.5 0 0.5
Output
-10
-5
0
5
10
15
20
25
ˆfMEAN
ˆfSD
kx
FIGURE: VD : R(Df)
Yusuf Bhujwalla (Université de Lorraine) IEEE ACC 2016 20 / 23
4. Simulation Examples
Example 2 : Nonsmooth S2
o
Using a small kernel, VD can detect structural nonlinearity.
However, Vf is too smooth, as σ must counteract noise.
Input
-0.5 0 0.5
Output
-10
-5
0
5
10
15
20
25
ˆfMEAN
ˆfSD
kx
FIGURE: Vf : R( f)
Input
-0.5 0 0.5
Output
-10
-5
0
5
10
15
20
25
ˆfMEAN
ˆfSD
kx
FIGURE: VD : R(Df)
Yusuf Bhujwalla (Université de Lorraine) IEEE ACC 2016 21 / 23
Conclusions
RKHS in Nonlinear Identification
Flexible framework : attractive for nonlinear identification.
Smoothness controlled by kernel function and regularisation (σ and λf )
⇒ Constrained kernel function.
Derivatives in the RKHS
Smoothness controlled by regularisation (λD).
⇒ Simpler steering of the smoothness.
Simpler hyperparameter optimisation (just λD) and increased model flexibility.
⇒ Through use of a smaller kernel (small σ).
However, relies on a suboptimal representer.
⇒ Nonetheless, promising results have been obtained.
Yusuf Bhujwalla (Université de Lorraine) IEEE ACC 2016 22 / 23
The Impact of Smoothness on Model Class
Selection in Nonlinear System Identification:
An Application of Derivatives in the RKHS
Y. Bhujwalla, V. Laurain, M. Gilson
6th July 2016
yusuf-michael.bhujwalla@univ-lorraine.fr
Yusuf Bhujwalla (Université de Lorraine) IEEE ACC 2016 23 / 23
A. Bibliography
Alternative Smoothness-Enforcing Optimisation Schemes
Sobolev Spaces (Wahba, 1990 ; Pillonetto et al, 2014)
∥f ∥Hk
=
m
i=0 X
di
f (x)
dxi
2
dx
Identification using derivative observations (Zhou, 2008; Rosasco et al, 2010)
Vobvs( f ) = ∥y − f (x)∥2
2 + γ1
dy
dx
−
df (x)
dx
2
2
+ · · · γm
dm
y
dxm
−
dm
f (x)
dxm
2
2
+ λ ∥f ∥H
Regularization Using Derivatives (Rosasco et al, 2010; Lauer, Le and Bloch,
2012; Duijkers et al, 2014)
VD( f ) = ∥y − f (x)∥2
2 + λ∥Dm
f ∥p.
Yusuf Bhujwalla (Université de Lorraine) IEEE ACC 2016 23 / 23
A. Bibliography
Literature Review
Kernel Methods in Machine Learning and System Identification
· Kernel methods in system identification, machine learning and function
estimation : A survey, G. Pillonetto, F. Dinuzzo, T. Chen, G. D. Nicolao and L.
Ljung, 2014.
· Learning with Kernels, B. Schölkopf, R. Herbrich and A. J. Smola, 2002.
· Gaussian Processes for Machine Learning, C. Rasmussen and C. Williams,
2006.
Reproducing Kernel Hilbert Spaces
· Theory of Reproducing Kernels, N. Aronszajn, 1950.
· A Generalized Representer Theorem, B. Schölkopf, R. Herbrich and A. J. Smola,
2001.
· Derivative reproducing properties for kernel methods in learning theory, D. Zhou,
2008.
Yusuf Bhujwalla (Université de Lorraine) IEEE ACC 2016 23 / 23
B. Example 2 : 1D Structural Selection
S1
o : Smooth
Input
-0.5 0 0.5
Output
-10
-5
0
5
10
15
20
25
ˆfMEAN
ˆfSD
kx
FIGURE: Vf : R( f)
Input
-0.5 0 0.5Output
-10
-5
0
5
10
15
20
25
ˆfMEAN
ˆfSD
kx
FIGURE: VD : R(Df)
Yusuf Bhujwalla (Université de Lorraine) IEEE ACC 2016 23 / 23
B. Example 2 : 1D Structural Selection
S2
o : Nonsmooth
Input
-0.5 0 0.5
Output
-10
-5
0
5
10
15
20
25
ˆfMEAN
ˆfSD
kx
FIGURE: Vf : R( f)
Input
-0.5 0 0.5Output
-10
-5
0
5
10
15
20
25
ˆfMEAN
ˆfSD
kx
FIGURE: VD : R(Df)
Yusuf Bhujwalla (Université de Lorraine) IEEE ACC 2016 23 / 23
C. Applicability of the Representer
Kernel Density
Applicability of the representer depends on the kernel density, i.e. the ratio of
observations to the kernel width :
Input (x/σ)
-6 -4 -2 0 2 4 6
Output
0
0.5
1
1.5
ˆf
Kx
FIGURE: ρk = 0.6
Input (x/σ)
-6 -4 -2 0 2 4 6
Output
0
0.5
1
1.5
ˆf
Kx
FIGURE: ρk = 0.6
Input (x/σ)
-6 -4 -2 0 2 4 6
Output
0
0.5
1
1.5
ˆf
Kx
FIGURE: ρk = 0.4
Desirable to ensure σ ≈ max(∆x) (where ∆x is the spacing between adjacent
observations).
Yusuf Bhujwalla (Université de Lorraine) IEEE ACC 2016 23 / 23

More Related Content

PDF
MVPA with SpaceNet: sparse structured priors
PDF
Gtti 10032021
PDF
Macrocanonical models for texture synthesis
PDF
Stochastic Alternating Direction Method of Multipliers
PDF
Collision Detection In 3D Environments
PDF
Kernel Bayes Rule
PPTX
ARCHITECTURAL CONDITIONING FOR DISENTANGLEMENT OF OBJECT IDENTITY AND POSTURE...
PDF
Quantitative Propagation of Chaos for SGD in Wide Neural Networks
MVPA with SpaceNet: sparse structured priors
Gtti 10032021
Macrocanonical models for texture synthesis
Stochastic Alternating Direction Method of Multipliers
Collision Detection In 3D Environments
Kernel Bayes Rule
ARCHITECTURAL CONDITIONING FOR DISENTANGLEMENT OF OBJECT IDENTITY AND POSTURE...
Quantitative Propagation of Chaos for SGD in Wide Neural Networks

What's hot (20)

PDF
ICPR 2012
PDF
UCB 2012-02-28
PDF
Minimax optimal alternating minimization \\ for kernel nonparametric tensor l...
PDF
Robust Image Denoising in RKHS via Orthogonal Matching Pursuit
PDF
A Novel Methodology for Designing Linear Phase IIR Filters
PDF
PDF
Goodfellow, Bengio, Couville (2016) "Deep Learning", Chap. 7
PDF
Parallel Coordinate Descent Algorithms
PPT
CS221: HMM and Particle Filters
PDF
Lecture note4coordinatedescent
PDF
Goodfellow, Bengio, Couville (2016) "Deep Learning", Chap. 6
PDF
Multilayer Neural Networks
PPT
Convex Optimization Modelling with CVXOPT
PPTX
Brief intro : Invariance and Equivariance
PDF
VahidAkbariTalk.pdf
PDF
VahidAkbariTalk_v3.pdf
PDF
Neural Processes
PDF
Continual reinforcement learning with complex synapses
PDF
Estimating Human Pose from Occluded Images (ACCV 2009)
PDF
R package 'bayesImageS': a case study in Bayesian computation using Rcpp and ...
ICPR 2012
UCB 2012-02-28
Minimax optimal alternating minimization \\ for kernel nonparametric tensor l...
Robust Image Denoising in RKHS via Orthogonal Matching Pursuit
A Novel Methodology for Designing Linear Phase IIR Filters
Goodfellow, Bengio, Couville (2016) "Deep Learning", Chap. 7
Parallel Coordinate Descent Algorithms
CS221: HMM and Particle Filters
Lecture note4coordinatedescent
Goodfellow, Bengio, Couville (2016) "Deep Learning", Chap. 6
Multilayer Neural Networks
Convex Optimization Modelling with CVXOPT
Brief intro : Invariance and Equivariance
VahidAkbariTalk.pdf
VahidAkbariTalk_v3.pdf
Neural Processes
Continual reinforcement learning with complex synapses
Estimating Human Pose from Occluded Images (ACCV 2009)
R package 'bayesImageS': a case study in Bayesian computation using Rcpp and ...
Ad

Viewers also liked (13)

PDF
An RKHS Approach to Systematic Kernel Selection in Nonlinear System Identific...
PDF
Renrollment a fiduciary imperative
PDF
Pablo dominguez de_maria_publication_list
PDF
Sadigh Gallery Winter Bargains 2017
DOCX
Verbo to te formas neg interr
PPTX
Condiciones que favorecen la motivación
PDF
Internet Traffic Forecasting using Time Series Methods
DOCX
Week 5 paper
PPTX
PPTX
Diagramación y composición
PPTX
Bristol post ppt
PPTX
Falacia de justicia
PPTX
Bristol post ppt
An RKHS Approach to Systematic Kernel Selection in Nonlinear System Identific...
Renrollment a fiduciary imperative
Pablo dominguez de_maria_publication_list
Sadigh Gallery Winter Bargains 2017
Verbo to te formas neg interr
Condiciones que favorecen la motivación
Internet Traffic Forecasting using Time Series Methods
Week 5 paper
Diagramación y composición
Bristol post ppt
Falacia de justicia
Bristol post ppt
Ad

Similar to The Impact of Smoothness on Model Class Selection in Nonlinear System Identification (20)

PPTX
ML_in_QM_JC_02-10-18
PPT
from_data_to_differential_equations.ppt
PDF
lec4_annotated.pdf ml csci 567 vatsal sharan
PDF
IVR - Chapter 1 - Introduction
PDF
Empowering Fourier-based Pricing Methods for Efficient Valuation of High-Dime...
PDF
15.sp.dictionary_draft.pdf
PDF
A walk through the intersection between machine learning and mechanistic mode...
PPTX
Robot, Learning From Data
PDF
Intro to Quant Trading Strategies (Lecture 6 of 10)
PDF
Harmonic Analysis and Deep Learning
PPTX
PRML Chapter 6
PDF
Classification and regression based on derivatives: a consistency result for ...
DOCX
Term paper inna_tarasyan
PDF
Lecture4 kenrels functions_rkhs
PDF
Lecture5 kernel svm
PPT
lecture6.ppt
PDF
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
PDF
Error Estimates for Multi-Penalty Regularization under General Source Condition
PDF
PDF
SVM (Support Vector Machine & Kernel)
ML_in_QM_JC_02-10-18
from_data_to_differential_equations.ppt
lec4_annotated.pdf ml csci 567 vatsal sharan
IVR - Chapter 1 - Introduction
Empowering Fourier-based Pricing Methods for Efficient Valuation of High-Dime...
15.sp.dictionary_draft.pdf
A walk through the intersection between machine learning and mechanistic mode...
Robot, Learning From Data
Intro to Quant Trading Strategies (Lecture 6 of 10)
Harmonic Analysis and Deep Learning
PRML Chapter 6
Classification and regression based on derivatives: a consistency result for ...
Term paper inna_tarasyan
Lecture4 kenrels functions_rkhs
Lecture5 kernel svm
lecture6.ppt
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Error Estimates for Multi-Penalty Regularization under General Source Condition
SVM (Support Vector Machine & Kernel)

Recently uploaded (20)

PPTX
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
PPTX
Construction Project Organization Group 2.pptx
PPTX
OOP with Java - Java Introduction (Basics)
PDF
PPT on Performance Review to get promotions
PDF
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
DOCX
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
PPTX
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
PDF
Embodied AI: Ushering in the Next Era of Intelligent Systems
PDF
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
PPTX
Foundation to blockchain - A guide to Blockchain Tech
PPTX
MCN 401 KTU-2019-PPE KITS-MODULE 2.pptx
PDF
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
PPTX
Welding lecture in detail for understanding
PDF
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
PDF
TFEC-4-2020-Design-Guide-for-Timber-Roof-Trusses.pdf
PDF
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
PDF
Operating System & Kernel Study Guide-1 - converted.pdf
PPTX
UNIT 4 Total Quality Management .pptx
PDF
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
PDF
R24 SURVEYING LAB MANUAL for civil enggi
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
Construction Project Organization Group 2.pptx
OOP with Java - Java Introduction (Basics)
PPT on Performance Review to get promotions
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
Embodied AI: Ushering in the Next Era of Intelligent Systems
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
Foundation to blockchain - A guide to Blockchain Tech
MCN 401 KTU-2019-PPE KITS-MODULE 2.pptx
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
Welding lecture in detail for understanding
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
TFEC-4-2020-Design-Guide-for-Timber-Roof-Trusses.pdf
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
Operating System & Kernel Study Guide-1 - converted.pdf
UNIT 4 Total Quality Management .pptx
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
R24 SURVEYING LAB MANUAL for civil enggi

The Impact of Smoothness on Model Class Selection in Nonlinear System Identification

  • 1. The Impact of Smoothness on Model Class Selection in Nonlinear System Identification: An Application of Derivatives in the RKHS Y. Bhujwalla, V. Laurain, M. Gilson 6th July 2016 yusuf-michael.bhujwalla@univ-lorraine.fr Yusuf Bhujwalla (Université de Lorraine) IEEE ACC 2016 1 / 23
  • 2. Introduction The Data-Generating System Measured data : DN = {(u1, y1), (u2, y2), . . . , (uN , yN )}. Describes So, an unknown nonlinear system with function fo : X → R, So : yo,k = fo(xk) yk = yo,k + eo,k Where xk = [yk−1 · · · yk−na uk · · · uk−nb ]⊤ ∈ X = Rna+nb+1 . Parametric Models Nθ low (fixed) → Physically interpretable Choice of basis function? → Combinatorially hard problem X Nonparametric Models Nθ high (∼ data) → Not interpretable X Can define a general model class. → Flexibility Yusuf Bhujwalla (Université de Lorraine) IEEE ACC 2016 2 / 23
  • 3. Introduction The Data-Generating System Measured data : DN = {(u1, y1), (u2, y2), . . . , (uN , yN )}. Describes So, an unknown nonlinear system with function fo : X → R, So : yo,k = fo(xk) yk = yo,k + eo,k Where xk = [yk−1 · · · yk−na uk · · · uk−nb ]⊤ ∈ X = Rna+nb+1 . Parametric Models Nθ low (fixed) → Physically interpretable Choice of basis function? → Combinatorially hard problem X Nonparametric Models Such as kernel methods : Input 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Output 0 0.5 1 1.5 2 yo kx Yusuf Bhujwalla (Université de Lorraine) IEEE ACC 2016 2 / 23
  • 4. Outline 1 Kernel Methods in Nonlinear Identification 2 The Kernel Selection Problem 3 Smoothness in the RKHS 4 Simulation Examples Yusuf Bhujwalla (Université de Lorraine) IEEE ACC 2016 3 / 23
  • 5. 1. Kernel Methods in Nonlinear Identification Reproducing Kernel Hilbert Spaces Hilbert Spaces H is a space over a class of functions, f : X → R ∈ H : · ∥ f ∥H · ⟨ f , g ⟩H. In system identification, H ⇔ model class. Reproducing Kernels H has a unique, associated kernel function, K : X × X → R, spanning the space H. The Reproducing Property states that f (x) can be explicitly represented as an infinite sum in terms of the kernel function : f (x) = ⟨ f , Kx⟩H = ∞ i=1 αiK(xi, x) Yusuf Bhujwalla (Université de Lorraine) IEEE ACC 2016 4 / 23
  • 6. 1. Kernel Methods in Nonlinear Identification Identification in the RKHS Identification in the RKHS For ˆf ∈ H close to fo, ˆf should reflect observations : ˆf = min f { V( f ) = L(x, y, f (x)) } However, infinitely many solutions ⇒ add constraint to model : ˆf = min f { V( f ) = L(x, y, f (x)) + g(∥ f ∥H) } For such cost-functions, f (x) can be reduced to : f (x) = N i=1 αiK(xi, x), α ∈ RN · f (x) → a finite sum over the observations. · The Representer Theorem (Schölkopf, Herbrich and Smola, 2001) Yusuf Bhujwalla (Université de Lorraine) IEEE ACC 2016 5 / 23
  • 7. 1. Kernel Methods in Nonlinear Identification A Widely-Used Example A Widely-Used Example As an example minimise squared-error : L(x, y, f (x)) = ∥y − f (x)∥2 2, and use regularisation to avoid overparameterisation : g(∥ f ∥H) = λ∥ f ∥2 H. Giving : Vf : V( f ) = ∥y − f (x)∥2 2 + λf ∥ f ∥2 H ⇒ αf = (K + λf I)−1 y · Solution depends on I. K and II. λf Yusuf Bhujwalla (Université de Lorraine) IEEE ACC 2016 6 / 23
  • 8. Outline 1 Kernel Methods in Nonlinear Identification 2 The Kernel Selection Problem 3 Smoothness in the RKHS 4 Simulation Examples Yusuf Bhujwalla (Université de Lorraine) IEEE ACC 2016 7 / 23
  • 9. 2. The Kernel Selection Problem Choosing a Kernel Function Choosing a kernel function... K defines the model class Let X = R, and K be the Gaussian RBF kernel : K(xi, x) = exp − ∥x − xi∥2 σ2 . Width (σ) defines smoothness of the kernel function. Hence σ determines the model class ! Other kernels have different hyperparameters, but they will still influence H. Input -1 -0.5 0 0.5 1 0 0.2 0.4 0.6 0.8 1 Input -1 -0.5 0 0.5 1 0 0.2 0.4 0.6 0.8 1 KxKx σ1 σ2 > σ1 σ Yusuf Bhujwalla (Université de Lorraine) IEEE ACC 2016 8 / 23
  • 10. 2. The Kernel Selection Problem Implications of the Hyperparameter Selection Estimation of 1D switching signal using Vf = ∥y − f (x)∥2 2 + λf ∥f ∥2 H. Many observations (N = 103 ). uk ∼ U(−1, 1). Significant noise disturbances (SNR = 5dB). Two hyperparameters : I. σ and II. λ -1 -0.5 0 0.5 1 -20 -10 0 10 20 30 fo(uk) uk FIGURE: Estimation of 1D switching signal for different hyperparameter values. Yusuf Bhujwalla (Université de Lorraine) IEEE ACC 2016 9 / 23
  • 11. 2. The Kernel Selection Problem Implications of the Hyperparameter Selection -1 -0.5 0 0.5 1 -20 0 20 -1 -0.5 0 0.5 1 -20 0 20 -1 -0.5 0 0.5 1 -20 0 20 -1 -0.5 0 0.5 1 -20 0 20 yoyo yoyo ˆfMEAN ˆfMEAN ˆfMEAN ˆfMEAN ˆfSD ˆfSD ˆfSD ˆfSD SMALL λ LARGE λ SMALLσLARGEσ Yusuf Bhujwalla (Université de Lorraine) IEEE ACC 2016 10 / 23
  • 12. 2. The Kernel Selection Problem Implications of the Hyperparameter Selection -1 -0.5 0 0.5 1 -20 0 20 -1 -0.5 0 0.5 1 -20 0 20 -1 -0.5 0 0.5 1 -20 0 20 -1 -0.5 0 0.5 1 -20 0 20 SMOOTHNESS FLEXIBILITY yoyo yoyo ˆfMEAN ˆfMEAN ˆfMEAN ˆfMEAN ˆfSD ˆfSD ˆfSD ˆfSD SMALL λ LARGE λ SMALLσLARGEσ Yusuf Bhujwalla (Université de Lorraine) IEEE ACC 2016 10 / 23
  • 13. 2. The Kernel Selection Problem Summary Summary Vf : V(f ) = ∥y − f (x)∥2 2 + λf ∥ f ∥2 H. Kernel framework very effective : · flexible, · well-understood. However, choice of kernel often compromised (e.g. by noise). ⇒ Trade-off between flexibility and smoothness. So, why regularise over ∥ f ∥H . . . . . . when smoothness is often a more interesting property to control? ⇒ Desirable property in many models. ⇒ Characterises many systems. Yusuf Bhujwalla (Université de Lorraine) IEEE ACC 2016 11 / 23
  • 14. Outline 1 Kernel Methods in Nonlinear Identification 2 The Kernel Selection Problem 3 Smoothness in the RKHS 4 Simulation Examples Yusuf Bhujwalla (Université de Lorraine) IEEE ACC 2016 12 / 23
  • 15. 3. Smoothness in the RKHS Regularisation Using Derivatives Proposition Replace functional regularisation : Vf : V(f ) = ∥y − f (x)∥2 2 + λf ∥ f ∥2 H, With smoothness-enforcing regularisation : VD : V(f ) = ∥y − f (x)∥2 2 + λD∥Df ∥2 H. Now : · Hence, smoothness controlled by regularisation. · And, kernel hyperparameter removed from optimisation problem. Yusuf Bhujwalla (Université de Lorraine) IEEE ACC 2016 13 / 23
  • 16. 3. Smoothness in the RKHS Regularisation Using Derivatives Proposition Replace functional regularisation : Vf : V(f ) = ∥y − f (x)∥2 2 + λf ∥ f ∥2 H, With smoothness-enforcing regularisation : VD : V(f ) = ∥y − f (x)∥2 2 + λD∥Df ∥2 H. Now : · Hence, smoothness controlled by regularisation. · And, kernel hyperparameter removed from optimisation problem. Yusuf Bhujwalla (Université de Lorraine) IEEE ACC 2016 13 / 23
  • 17. 3. Smoothness in the RKHS Regularisation Using Derivatives Proposition Replace functional regularisation : Vf : V(f ) = ∥y − f (x)∥2 2 + λf ∥ f ∥2 H, With smoothness-enforcing regularisation : VD : V(f ) = ∥y − f (x)∥2 2 + λD∥Df ∥2 H. Now : · Hence, smoothness controlled by regularisation. · And, kernel hyperparameter removed from optimisation problem. Yusuf Bhujwalla (Université de Lorraine) IEEE ACC 2016 13 / 23
  • 18. 3. Smoothness in the RKHS Derivatives in the RKHS Derivatives in the RKHS For f ∈ H, Df ∈ H (Zhou, 2008) Hence, a derivative reproducing property can be defined : Df = ⟨ f , DKx ⟩H The Representer Theorem Representer f (x) = N i=1 αiK(xi, x) requires g(∥ f ∥H) : a monotically increasing function of ∥ f ∥H Clearly, ∥Df ∥H g(∥ f ∥H) ⇒ representer is suboptimal for VD. However, if system is well-excited, f (x) = N i=1 αiK(xi, x) can be used. However, it loosely preserves the bias-variance properties of Vf lim λ→∞ f (x) = 0, ∀x ∈ R. Yusuf Bhujwalla (Université de Lorraine) IEEE ACC 2016 14 / 23
  • 19. 3. Smoothness in the RKHS Derivatives in the RKHS A Closed-Form Solution Using derivative reproducing property, ∥Df ∥H can be defined : ∥Df ∥2 H = α⊤ D(1, 1) Kα, where D(1, 1) K(xi, xj) = ∂2 K(xi, xj) ∂xj ∂xi . Permitting a closed-form solution : αD = K⊤ K + λDD(1, 1) K −1 K⊤ y. As per Vf ⇒ αf = (K + λf I)−1 y. Yusuf Bhujwalla (Université de Lorraine) IEEE ACC 2016 15 / 23
  • 20. Outline 1 Kernel Methods in Nonlinear Identification 2 The Kernel Selection Problem 3 Smoothness in the RKHS 4 Simulation Examples Yusuf Bhujwalla (Université de Lorraine) IEEE ACC 2016 16 / 23
  • 21. 4. Simulation Examples Example 1 : Effect of the Regularisation Estimation of 1D switching signal using Vf and VD. Many observations (N = 103 ). uk ∼ U(−1, 1). Significant noise disturbances (SNR = 5dB). Gaussian RBF kernel, with σ = 0.01. Varying levels of regularisation (through λf , λD). -1 -0.5 0 0.5 1 -20 -10 0 10 20 30 fo(uk) uk FIGURE: Estimation of 1D switching signal for different λ values. Yusuf Bhujwalla (Université de Lorraine) IEEE ACC 2016 17 / 23
  • 22. 4. Simulation Examples Example 1 : Effect of the Regularisation ⇒ Negligible regularisation (very small λf , λD). Input -1 -0.5 0 0.5 1 Output -20 -10 0 10 20 30 yo ˆfMEAN ˆfSD FIGURE: Vf : R( f) Input -1 -0.5 0 0.5 1 Output -20 -10 0 10 20 30 yo ˆfMEAN ˆfSD FIGURE: VD : R(Df) Yusuf Bhujwalla (Université de Lorraine) IEEE ACC 2016 18 / 23
  • 23. 4. Simulation Examples Example 1 : Effect of the Regularisation ⇒ Light regularisation (small λf , λD). Input -1 -0.5 0 0.5 1 Output -20 -10 0 10 20 30 yo ˆfMEAN ˆfSD FIGURE: Vf : R( f) Input -1 -0.5 0 0.5 1 Output -20 -10 0 10 20 30 yo ˆfMEAN ˆfSD FIGURE: VD : R(Df) Yusuf Bhujwalla (Université de Lorraine) IEEE ACC 2016 18 / 23
  • 24. 4. Simulation Examples Example 1 : Effect of the Regularisation ⇒ Moderate regularisation. Input -1 -0.5 0 0.5 1 Output -20 -10 0 10 20 30 yo ˆfMEAN ˆfSD FIGURE: Vf : R( f) Input -1 -0.5 0 0.5 1 Output -20 -10 0 10 20 30 yo ˆfMEAN ˆfSD FIGURE: VD : R(Df) Yusuf Bhujwalla (Université de Lorraine) IEEE ACC 2016 18 / 23
  • 25. 4. Simulation Examples Example 1 : Effect of the Regularisation ⇒ Heavy regularisation (large λf , λD). Input -1 -0.5 0 0.5 1 Output -20 -10 0 10 20 30 yo ˆfMEAN ˆfSD FIGURE: Vf : R( f) Input -1 -0.5 0 0.5 1 Output -20 -10 0 10 20 30 yo ˆfMEAN ˆfSD FIGURE: VD : R(Df) Yusuf Bhujwalla (Université de Lorraine) IEEE ACC 2016 18 / 23
  • 26. 4. Simulation Examples Example 1 : Effect of the Regularisation ⇒ Excessive regularisation (very large λf , λD). Input -1 -0.5 0 0.5 1 Output -20 -10 0 10 20 30 yo ˆfMEAN ˆfSD FIGURE: Vf : R( f) Input -1 -0.5 0 0.5 1 Output -20 -10 0 10 20 30 yo ˆfMEAN ˆfSD FIGURE: VD : R(Df) Yusuf Bhujwalla (Université de Lorraine) IEEE ACC 2016 18 / 23
  • 27. 4. Simulation Examples Example 2 : 1D Structural Selection Identification of two unknown systems (X ∈ [−1, 1], SNR = 10dB, N = 103 ). Vf : λ, σ optimised using cross-validation. VD : λ optimised using cross-validation, σ set based on data. -0.5 0 0.5 -10 -5 0 5 10 15 20 25 f1 o(uk) uk FIGURE: S1 o : Smooth -0.5 0 0.5 -10 -5 0 5 10 15 20 25 f2 o(uk) uk FIGURE: S2 o : Nonsmooth Yusuf Bhujwalla (Université de Lorraine) IEEE ACC 2016 19 / 23
  • 28. 4. Simulation Examples Example 2 : Smooth S1 o Using a small kernel, VD can reconstruct a smooth function. Not feasible using Vf - needs kernel smoothing effect. Input -0.5 0 0.5 Output -10 -5 0 5 10 15 20 25 ˆfMEAN ˆfSD kx FIGURE: Vf : R( f) Input -0.5 0 0.5 Output -10 -5 0 5 10 15 20 25 ˆfMEAN ˆfSD kx FIGURE: VD : R(Df) Yusuf Bhujwalla (Université de Lorraine) IEEE ACC 2016 20 / 23
  • 29. 4. Simulation Examples Example 2 : Nonsmooth S2 o Using a small kernel, VD can detect structural nonlinearity. However, Vf is too smooth, as σ must counteract noise. Input -0.5 0 0.5 Output -10 -5 0 5 10 15 20 25 ˆfMEAN ˆfSD kx FIGURE: Vf : R( f) Input -0.5 0 0.5 Output -10 -5 0 5 10 15 20 25 ˆfMEAN ˆfSD kx FIGURE: VD : R(Df) Yusuf Bhujwalla (Université de Lorraine) IEEE ACC 2016 21 / 23
  • 30. Conclusions RKHS in Nonlinear Identification Flexible framework : attractive for nonlinear identification. Smoothness controlled by kernel function and regularisation (σ and λf ) ⇒ Constrained kernel function. Derivatives in the RKHS Smoothness controlled by regularisation (λD). ⇒ Simpler steering of the smoothness. Simpler hyperparameter optimisation (just λD) and increased model flexibility. ⇒ Through use of a smaller kernel (small σ). However, relies on a suboptimal representer. ⇒ Nonetheless, promising results have been obtained. Yusuf Bhujwalla (Université de Lorraine) IEEE ACC 2016 22 / 23
  • 31. The Impact of Smoothness on Model Class Selection in Nonlinear System Identification: An Application of Derivatives in the RKHS Y. Bhujwalla, V. Laurain, M. Gilson 6th July 2016 yusuf-michael.bhujwalla@univ-lorraine.fr Yusuf Bhujwalla (Université de Lorraine) IEEE ACC 2016 23 / 23
  • 32. A. Bibliography Alternative Smoothness-Enforcing Optimisation Schemes Sobolev Spaces (Wahba, 1990 ; Pillonetto et al, 2014) ∥f ∥Hk = m i=0 X di f (x) dxi 2 dx Identification using derivative observations (Zhou, 2008; Rosasco et al, 2010) Vobvs( f ) = ∥y − f (x)∥2 2 + γ1 dy dx − df (x) dx 2 2 + · · · γm dm y dxm − dm f (x) dxm 2 2 + λ ∥f ∥H Regularization Using Derivatives (Rosasco et al, 2010; Lauer, Le and Bloch, 2012; Duijkers et al, 2014) VD( f ) = ∥y − f (x)∥2 2 + λ∥Dm f ∥p. Yusuf Bhujwalla (Université de Lorraine) IEEE ACC 2016 23 / 23
  • 33. A. Bibliography Literature Review Kernel Methods in Machine Learning and System Identification · Kernel methods in system identification, machine learning and function estimation : A survey, G. Pillonetto, F. Dinuzzo, T. Chen, G. D. Nicolao and L. Ljung, 2014. · Learning with Kernels, B. Schölkopf, R. Herbrich and A. J. Smola, 2002. · Gaussian Processes for Machine Learning, C. Rasmussen and C. Williams, 2006. Reproducing Kernel Hilbert Spaces · Theory of Reproducing Kernels, N. Aronszajn, 1950. · A Generalized Representer Theorem, B. Schölkopf, R. Herbrich and A. J. Smola, 2001. · Derivative reproducing properties for kernel methods in learning theory, D. Zhou, 2008. Yusuf Bhujwalla (Université de Lorraine) IEEE ACC 2016 23 / 23
  • 34. B. Example 2 : 1D Structural Selection S1 o : Smooth Input -0.5 0 0.5 Output -10 -5 0 5 10 15 20 25 ˆfMEAN ˆfSD kx FIGURE: Vf : R( f) Input -0.5 0 0.5Output -10 -5 0 5 10 15 20 25 ˆfMEAN ˆfSD kx FIGURE: VD : R(Df) Yusuf Bhujwalla (Université de Lorraine) IEEE ACC 2016 23 / 23
  • 35. B. Example 2 : 1D Structural Selection S2 o : Nonsmooth Input -0.5 0 0.5 Output -10 -5 0 5 10 15 20 25 ˆfMEAN ˆfSD kx FIGURE: Vf : R( f) Input -0.5 0 0.5Output -10 -5 0 5 10 15 20 25 ˆfMEAN ˆfSD kx FIGURE: VD : R(Df) Yusuf Bhujwalla (Université de Lorraine) IEEE ACC 2016 23 / 23
  • 36. C. Applicability of the Representer Kernel Density Applicability of the representer depends on the kernel density, i.e. the ratio of observations to the kernel width : Input (x/σ) -6 -4 -2 0 2 4 6 Output 0 0.5 1 1.5 ˆf Kx FIGURE: ρk = 0.6 Input (x/σ) -6 -4 -2 0 2 4 6 Output 0 0.5 1 1.5 ˆf Kx FIGURE: ρk = 0.6 Input (x/σ) -6 -4 -2 0 2 4 6 Output 0 0.5 1 1.5 ˆf Kx FIGURE: ρk = 0.4 Desirable to ensure σ ≈ max(∆x) (where ∆x is the spacing between adjacent observations). Yusuf Bhujwalla (Université de Lorraine) IEEE ACC 2016 23 / 23