Here are the key points about using content-based filtering techniques:
- Content-based filtering relies on analyzing the content or description of items to recommend items similar to what the user has liked in the past. It looks for patterns and regularities in item attributes/descriptions to distinguish highly rated items.
- The item content/descriptions are analyzed automatically by extracting information from sources like web pages, or entered manually from product databases.
- It focuses on objective attributes about items that can be extracted algorithmically, like text analysis of documents.
- However, personal preferences and what makes an item appealing are often subjective qualities not easily extracted algorithmically, like writing style or taste.
- So while content-based filtering can