SlideShare a Scribd company logo
Linked Data &
Semantic Web
Technology




                The Semantic Web
                 Part 7. RDF Semantics


                     Dr. Myungjin Lee
RDF
      • RDF
                – an assertional language intended to be used to express propositions using
                  precise formal vocabularies
                – to provide a basic foundation for more advanced assertional languages
                – to emphasize generality and precision in expressing propositions about
                  any topic




                                                                                              2
Linked Data & Semantic Web Technology
Semantics
      • What is Semantics?
                – the study of meaning focused on the relation between signifiers, like
                  words, phrases, signs, and symbols, and what they stand for


      • Syntax and Semantics
                – Syntax
                          • character strings without meaning
                – Semantics
                          • meaning of the character strings


      • Why we need semantics for RDF(S)
                – to share equally interpretable meaning from RDF(S) syntax



                                                                                          3
Linked Data & Semantic Web Technology
Model Theory
      • What is Model Theory?
                – a formal semantic theory which relates expressions to interpretations
                – If a model for a language satisfies a particular sentence or theory, it is called a
                  model of the sentence or theory.
             World                      Model                          Interpretation

                                        Daisy isA Cow
                                        Cow kindOf Animal



                                        Mary isA Person
                                        Person kindOf Animal                            a



                                         Z123ABC isA Car


                                                                              b
                                         Mary drives Z123ABC

                                                                            {<a,b>,…}                   4
Linked Data & Semantic Web Technology
Terms
      • interpretation
                – an interpretation is a world with each symbol and each expression
                  assigned an extension
      • model
                – an model of a logic theory is an interpretation of the theory that satisfies
                  all constraints specified by the theory
      • consistency
                – a logic theory is consistent if it has a model
      • satisfiability
                – a symbol or expression x is satisfiable if it is possible to find a model of K
                  that makes x true
      • entailment
                – a logic theory K entails another logical theory K’ if every model of K is a
                  model of K’

                                                                                                   5
Linked Data & Semantic Web Technology
Logical Consequence (Entailment)
      • logical consequence
                 – if an RDFS document contains
             u          rdf:type          ex:Textbook.             ex:Textbook                rdfs:subClassOf   ex:Book.

                 – then
                         u          rdf:type      ex:Book.
                                                                            It is deduced (deduction)
                                                                            or inferred (inference).


                      propositions (statements)




                                                                                 ㅠ
                                                                              logical
                                                                            entailment
                                                     p1            p2                     p3

                                                                            ㅠ
                                                           ㅠ




                                                                                     ㅠ



                                                          models        models       models
                                                           of p1         of p3        of p2


                                                                                              interpretations              6
Linked Data & Semantic Web Technology
RDF Semantics
      • RDF Semantics
                – a basic technique called model theory for specifying the semantics of a
                  formal language
                          • the language refers to a 'world‘
                – the minimal conditions that a world must satisfy in order to assign an
                  appropriate meaning for every expression in the language
                          • a particular word  an interpretation
                          • model theory  ‘interpretation theory’
                – defined as a mapping on the abstract syntax of RDF described in the
                  RDF concepts and abstract syntax


                                                RDFS-interpretation


                                                           RDF-interpretation

                                                                      simple interpretation


                                                                                              7
Linked Data & Semantic Web Technology
Graph Definitions
      • RDF graph, simply graph
                – a set of RDF triples
      • a subgraph of an RDF graph
                – a subset of the triples in the graph
      • a ground RDF graph
                – one with no blank nodes
      • a name
                – a URI reference of a literal
      • a vocabulary
                – a set of names
      • the vocabulary of a graph
                – the set of names which occur as the subject, predicate, or object of any
                  triple in the graph

                                                                                             8
Linked Data & Semantic Web Technology
Definition of a Simple Interpretation
      • A simple interpretation I of a vocabulary V is defined by:

      1. A non-empty set IR of resources, called the domain or universe of I.

      2. A set IP, called the set of properties of I.

      3. A mapping IEXT from IP into the powerset of IR x IR i.e. the set of
         sets of pairs <x,y> with x and y in IR .

      4. A mapping IS from URI references in V into (IR union IP)

      5. A mapping IL from typed literals in V into IR.

      6. A distinguished subset LV of IR, called the set of literal values, which
         contains all the plain literals in V


                                                                                    9
Linked Data & Semantic Web Technology
Semantic Conditions for Ground Graphs
      • if E is a plain literal "aaa" in V then I(E) = aaa

      • if E is a plain literal "aaa"@ttt in V then I(E) = <aaa, ttt>

      • if E is a typed literal in V then I(E) = IL(E)

      • if E is a URI reference in V then I(E) = IS(E)




                                                                        10
Linked Data & Semantic Web Technology
Semantic Conditions for Ground Graphs
      • if E is a ground triple s p o. then I(E) = true if s, p and o are in V, I(p)
        is in IP and <I(s),I(o)> is in IEXT(I(p)) otherwise I(E)= false.

      • if E is a ground RDF graph then I(E) = false if I(E') = false for some
        triple E' in E, otherwise I(E) =true.




                                                                                       11
Linked Data & Semantic Web Technology
Simple Entailment between RDF graphs
      • a set S of RDF graphs (simply) entails a graph E if every interpretation which
        satisfies every member of S also satisfies E

      • Lemma
                – Empty Graph Lemma.
                          • The empty set of triples is entailed by any graph, and does not entail any graph except itself.
                – Subgraph Lemma.
                          • A graph entails all its subgraphs.
                – Instance Lemma.
                          • A graph is entailed by any of its instances.
                – Merging lemma.
                          • The merge of a set S of RDF graphs is entailed by S, and entails every member of S.
                –     Interpolation Lemma.
                –     Anonymity lemma.
                –     Monotonicity Lemma.
                –     Compactness Lemma.




                                                                                                                              12
Linked Data & Semantic Web Technology
RDF Interpretations
      • RDF vocabulary
                – The RDF vocabulary, rdfV, is a set of URI references in the rdf:
                  namespace
          rdf:type rdf:Property rdf:XMLLiteral rdf:nil rdf:List rdf:Statement
          rdf:subject rdf:predicate rdf:object rdf:first rdf:rest rdf:Seq rdf:Bag
          rdf:Alt rdf:_1 rdf:_2 ... rdf:value


      • RDF axiomatic triples
                      rdf:type rdf:type rdf:Property .
                      rdf:subject rdf:type rdf:Property .
                      rdf:predicate rdf:type rdf:Property .
                      rdf:object rdf:type rdf:Property .
                      rdf:first rdf:type rdf:Property .
                      rdf:rest rdf:type rdf:Property .
                      rdf:value rdf:type rdf:Property .
                      rdf:_1 rdf:type rdf:Property .
                      rdf:_2 rdf:type rdf:Property .
                      ...
                      rdf:nil rdf:type rdf:List .



                                                                                     13
Linked Data & Semantic Web Technology
RDF Semantic Conditions
      • x is in IP if and only if <x, I(rdf:Property)> is in IEXT(I(rdf:type))

      • If "xxx"^^rdf:XMLLiteral is in V and xxx is a well-typed XML literal
        string, then
              IL("xxx"^^rdf:XMLLiteral) is the XML value of xxx;
              IL("xxx"^^rdf:XMLLiteral) is in LV;
              IEXT(I(rdf:type)) contains
                     <IL("xxx"^^rdf:XMLLiteral), I(rdf:XMLLiteral)>

      • If "xxx"^^rdf:XMLLiteral is in V and xxx is an ill-typed XML literal
        string, then
              IL("xxx"^^rdf:XMLLiteral) is not in LV;
              IEXT(I(rdf:type)) does not contain
                     <IL("xxx"^^rdf:XMLLiteral), I(rdf:XMLLiteral)>



                                                                                 14
Linked Data & Semantic Web Technology
RDF Entailments
      • S rdf-entails E when every rdf-interpretation which satisfies
        every member of S also satisfies E




                                                                        15
Linked Data & Semantic Web Technology
RDFS Interpretations
      • RDFS vocabulary
                – RDF Schema extends RDF to include a larger vocabulary rdfsV with
                  more complex semantic constraints

          rdfs:domain rdfs:range rdfs:Resource rdfs:Literal rdfs:Datatype rdfs:Class
          rdfs:subClassOf rdfs:subPropertyOf rdfs:member rdfs:Container
          rdfs:ContainerMembershipProperty rdfs:comment rdfs:seeAlso rdfs:isDefinedBy
          rdfs:label




                                                                                        16
Linked Data & Semantic Web Technology
RDFS Semantic Conditions
      • x is in ICEXT(y) if and only if <x,y> is in IEXT(I(rdf:type))
        IC = ICEXT(I(rdfs:Class))
        IR = ICEXT(I(rdfs:Resource))
        LV = ICEXT(I(rdfs:Literal))

      • If <x,y> is in IEXT(I(rdfs:domain)) and <u,v> is in IEXT(x) then
              u is in ICEXT(y)

      • If <x,y> is in IEXT(I(rdfs:range)) and <u,v> is in IEXT(x) then
              v is in ICEXT(y)

      • IEXT(I(rdfs:subPropertyOf)) is transitive and reflexive on IP

      • If <x,y> is in IEXT(I(rdfs:subPropertyOf)) then
              x and y are in IP and IEXT(x) is a subset of IEXT(y)



                                                                           17
Linked Data & Semantic Web Technology
RDFS Semantic Conditions
      • If x is in IC then
               <x, I(rdfs:Resource)> is in IEXT(I(rdfs:subClassOf))

      • If <x,y> is in IEXT(I(rdfs:subClassOf)) then
              x and y are in IC and ICEXT(x) is a subset of ICEXT(y)

      • IEXT(I(rdfs:subClassOf)) is transitive and reflexive on IC

      • If x is in ICEXT(I(rdfs:ContainerMembershipProperty)) then:
               <x, I(rdfs:member)> is in IEXT(I(rdfs:subPropertyOf))

      • If x is in ICEXT(I(rdfs:Datatype)) then
               <x, I(rdfs:Literal)> is in IEXT(I(rdfs:subClassOf))




                                                                       18
Linked Data & Semantic Web Technology
RDFS Axiomatic Triples
    rdf:type rdfs:domain rdfs:Resource .
    rdfs:domain rdfs:domain rdf:Property .          rdfs:member rdfs:range rdfs:Resource .
    rdfs:range rdfs:domain rdf:Property .           rdf:first rdfs:range rdfs:Resource .
    rdfs:subPropertyOf rdfs:domain rdf:Property .   rdf:rest rdfs:range rdf:List .
    rdfs:subClassOf rdfs:domain rdfs:Class .        rdfs:seeAlso rdfs:range rdfs:Resource .
    rdf:subject rdfs:domain rdf:Statement .         rdfs:isDefinedBy rdfs:range rdfs:Resource .
    rdf:predicate rdfs:domain rdf:Statement .       rdfs:comment rdfs:range rdfs:Literal .
    rdf:object rdfs:domain rdf:Statement .          rdfs:label rdfs:range rdfs:Literal .
    rdfs:member rdfs:domain rdfs:Resource .         rdf:value rdfs:range rdfs:Resource .
    rdf:first rdfs:domain rdf:List .                rdf:Alt rdfs:subClassOf rdfs:Container .
    rdf:rest rdfs:domain rdf:List .                 rdf:Bag rdfs:subClassOf rdfs:Container .
    rdfs:seeAlso rdfs:domain rdfs:Resource .        rdf:Seq rdfs:subClassOf rdfs:Container .
    rdfs:isDefinedBy rdfs:domain rdfs:Resource .    rdfs:ContainerMembershipProperty rdfs:subClassOf
    rdfs:comment rdfs:domain rdfs:Resource .        rdf:Property .
    rdfs:label rdfs:domain rdfs:Resource .
    rdf:value rdfs:domain rdfs:Resource .           rdfs:isDefinedBy rdfs:subPropertyOf rdfs:seeAlso .

    rdf:type rdfs:range rdfs:Class .                rdf:XMLLiteral rdf:type rdfs:Datatype .
    rdfs:domain rdfs:range rdfs:Class .             rdf:XMLLiteral rdfs:subClassOf rdfs:Literal .
    rdfs:range rdfs:range rdfs:Class .              rdfs:Datatype rdfs:subClassOf rdfs:Class .
    rdfs:subPropertyOf rdfs:range rdf:Property .
    rdfs:subClassOf rdfs:range rdfs:Class .         rdf:_1   rdf:type rdfs:ContainerMembershipProperty .
    rdf:subject rdfs:range rdfs:Resource .          rdf:_1   rdfs:domain rdfs:Resource .
    rdf:predicate rdfs:range rdfs:Resource .        rdf:_1   rdfs:range rdfs:Resource .
    rdf:object rdfs:range rdfs:Resource .           rdf:_2   rdf:type rdfs:ContainerMembershipProperty .
                                                    rdf:_2   rdfs:domain rdfs:Resource .
                                                    rdf:_2   rdfs:range rdfs:Resource .
                                                    ...




                                                                                                           19
Linked Data & Semantic Web Technology
Some Triples which are RDFS-Valid
                      rdfs:Resource rdf:type rdfs:Class .
                      rdfs:Class rdf:type rdfs:Class .
                      rdfs:Literal rdf:type rdfs:Class .
                      rdf:XMLLiteral rdf:type rdfs:Class .
                      rdfs:Datatype rdf:type rdfs:Class .
                      rdf:Seq rdf:type rdfs:Class .
                      rdf:Bag rdf:type rdfs:Class .
                      rdf:Alt rdf:type rdfs:Class .
                      rdfs:Container rdf:type rdfs:Class .
                      rdf:List rdf:type rdfs:Class .
                      rdfs:ContainerMembershipProperty rdf:type rdfs:Class .
                      rdf:Property rdf:type rdfs:Class .
                      rdf:Statement rdf:type rdfs:Class .

                      rdfs:domain rdf:type rdf:Property .
                      rdfs:range rdf:type rdf:Property .
                      rdfs:subPropertyOf rdf:type rdf:Property .
                      rdfs:subClassOf rdf:type rdf:Property .
                      rdfs:member rdf:type rdf:Property .
                      rdfs:seeAlso rdf:type rdf:Property .
                      rdfs:isDefinedBy rdf:type rdf:Property .
                      rdfs:comment rdf:type rdf:Property .
                      rdfs:label rdf:type rdf:Property .



                                                                               20
Linked Data & Semantic Web Technology
Extensional Semantic Conditions
      • <x,y> is in IEXT(I(rdfs:subClassOf)) if and only if
            x and y are in IC and ICEXT(x) is a subset of ICEXT(y)

      • <x,y> is in IEXT(I(rdfs:subPropertyOf)) if and only if
            x and y are in IP and IEXT(x) is a subset of IEXT(y)

      • <x,y> is in IEXT(I(rdfs:range)) if and only if
            (if <u,v> is in IEXT(x) then v is in ICEXT(y))

      • <x,y> is in IEXT(I(rdfs:domain)) if and only if
            (if <u,v> is in IEXT(x) then u is in ICEXT(y))




                                                                     21
Linked Data & Semantic Web Technology
RDFS Entailments
      • S rdfs-entails E when every rdfs-interpretation which satisfies
        every member of S also satisfies E
                – since every rdfs-interpretation is an rdf-interpretation, if S rdfs-entails E
                  then it rdf-entails E
                – rdfs-entailment is stronger than rdf-entailment




                                                                                                  22
Linked Data & Semantic Web Technology
Entailment Rules
      • What is Entailment Rules?
                – some inference patterns which capture some of the various forms of
                  vocabulary entailment used as a guide for the design of software to check
                  RDF graphs for RDF and RDFS entailment
                – to add a consequent triple to a graph when it contains triples conforming
                  to a pattern
                          • a graph entails any larger graph that is obtained by applying the rules to the
                            original graph


      • Conventions
                –     aaa, bbb, etc., stand for any URI reference
                –     uuu, vvv, etc. for any URI reference or blank node identifier
                –     xxx, yyy etc. for any URI reference, blank node identifier or literal
                –     lll for any literal
                –     _:nnn, etc., for blank node identifiers


                                                                                                             23
Linked Data & Semantic Web Technology
Simple Entailment Rules
      • Simple Entailment Rules
              Rule Name                 if E contains                         then add
                                                                              uuu aaa _:nnn .
              se1                       uuu aaa xxx .
                                                                              where _:nnn identifies a blank node allocated to xxx by rule se1 or se2.
                                                                              _:nnn aaa xxx .
              se2                       uuu aaa xxx .
                                                                              where _:nnn identifies a blank node allocated to uuu by rule se1 or se2.



      • Literal Generalization Rule
              Rule Name                 if E contains                         then add
                                                                              uuu aaa _:nnn .
              lg                        uuu aaa lll .
                                                                              where _:nnn identifies a blank node allocated to the literal lll by this rule.



      • Literal Instantiation Rule
              Rule Name                 if E contains                                                                       then add
                                        uuu aaa _:nnn .
              gl                                                                                                            uuu aaa lll .
                                        where _:nnn identifies a blank node allocated to the literal lll by rule lg.




                                                                                                                                                               24
Linked Data & Semantic Web Technology
RDF Entailment Rules

      Rule Name                if E contains                             then add

      rdf1                     uuu aaa yyy .                             aaa rdf:type rdf:Property .


                               uuu aaa lll .                             _:nnn rdf:type rdf:XMLLiteral .
      rdf2
                               where lll is a well-typed XML literal .   where _:nnn identifies a blank node allocated to lll by rule lg.




                                                                                                                                            25
Linked Data & Semantic Web Technology
RDFS Entailment Rules
      Rule Name              if E contains                                                 then add
                             uuu aaa lll.                                                  _:nnn rdf:type rdfs:Literal .
      rdfs1                  where lll is a plain literal (with or without a language ta   where _:nnn identifies a blank node allocated to lll by rule
                             g).                                                           rule lg.
                             aaa rdfs:domain xxx .
      rdfs2                                                                                uuu rdf:type xxx .
                             uuu aaa yyy .
                             aaa rdfs:range xxx .
      rdfs3                                                                                vvv rdf:type xxx .
                             uuu aaa vvv .
      rdfs4a                 uuu aaa xxx .                                                 uuu rdf:type rdfs:Resource .
      rdfs4b                 uuu aaa vvv.                                                  vvv rdf:type rdfs:Resource .
                             uuu rdfs:subPropertyOf vvv .
      rdfs5                                                                                uuu rdfs:subPropertyOf xxx .
                             vvv rdfs:subPropertyOf xxx .
      rdfs6                  uuu rdf:type rdf:Property .                                   uuu rdfs:subPropertyOf uuu .
                             aaa rdfs:subPropertyOf bbb .
      rdfs7                                                                                uuu bbb yyy .
                             uuu aaa yyy .
      rdfs8                  uuu rdf:type rdfs:Class .                                     uuu rdfs:subClassOf rdfs:Resource .
                             uuu rdfs:subClassOf xxx .
      rdfs9                                                                                vvv rdf:type xxx .
                             vvv rdf:type uuu .
      rdfs10                 uuu rdf:type rdfs:Class .                                     uuu rdfs:subClassOf uuu .
                             uuu rdfs:subClassOf vvv .
      rdfs11                                                                               uuu rdfs:subClassOf xxx .
                             vvv rdfs:subClassOf xxx .
                             uuu rdf:type
      rdfs12                                                                               uuu rdfs:subPropertyOf rdfs:member .
                             rdfs:ContainerMembershipProperty .
      rdfs13                 uuu rdf:type rdfs:Datatype .                                  uuu rdfs:subClassOf rdfs:Literal .                             26
Linked Data & Semantic Web Technology
Extensional Entailment Rules
      Rule Name           if E contains                                 then add

                          uuu rdfs:domain vvv .
      ext1                                                              uuu rdfs:domain zzz .
                          vvv rdfs:subClassOf zzz .

                          uuu rdfs:range vvv .
      ext2                                                              uuu rdfs:range zzz .
                          vvv rdfs:subClassOf zzz .

                          uuu rdfs:domain vvv .
      ext3                                                              www rdfs:domain vvv .
                          www rdfs:subPropertyOf uuu .

                          uuu rdfs:range vvv .
      ext4                                                              www rdfs:range vvv .
                          www rdfs:subPropertyOf uuu .

                          rdf:type rdfs:subPropertyOf www .
      ext5                                                              rdfs:Resource rdfs:subClassOf vvv .
                          www rdfs:domain vvv .

                          rdfs:subClassOf rdfs:subPropertyOf www .
      ext6                                                              rdfs:Class rdfs:subClassOf vvv .
                          www rdfs:domain vvv .

                          rdfs:subPropertyOf rdfs:subPropertyOf www .
      ext7                                                              rdf:Property rdfs:subClassOf vvv .
                          www rdfs:domain vvv .

                          rdfs:subClassOf rdfs:subPropertyOf www .
      ext8                                                              rdfs:Class rdfs:subClassOf vvv .
                          www rdfs:range vvv .

                          rdfs:subPropertyOf rdfs:subPropertyOf www .
      ext9                                                              rdf:Property rdfs:subClassOf vvv .
                          www rdfs:range vvv .




                                                                                                              27
Linked Data & Semantic Web Technology
References
      •       http://www.w3.org/TR/2004/REC-rdf-mt-20040210/
      •       http://en.wikipedia.org/wiki/Semantics
      •       Pascal Hitzler, Knowledge Representation for the Semantic Web, Winter 2011.
      •       http://www.slideshare.net/baojie_iowa/rdf-semantics
      •       http://www.slideshare.net/lysander07/08-semantic-web-technologies-rdfs-semantics
      •       http://www.csee.umbc.edu/courses/691s/notes/06rdfsemantics.ppt




                                                                                                 28
Linked Data & Semantic Web Technology
Dr. Myungjin Lee
                                                                  e-Mail : mjlee@li-st.com
                                                Twitter : http://twitter.com/MyungjinLee
                                           Facebook : http://www.facebook.com/mjinlee
                                        SlideShare : http://www.slideshare.net/onlyjiny/
                                                                                       29
                                                                                        29
Linked Data & Semantic Web Technology

More Related Content

PDF
The Semantic Web #8 - Ontology
PDF
KR Workshop 1 - Ontologies
PDF
Ontology Dev
PDF
UnBBayes-PRM - On Implementing Probabilistic Relational Models
PPT
Knowledge Representation & Reasoning
PPTX
Representation and organization of knowledge in memory
PPTX
What is knowledge representation and reasoning ?
PDF
Semantic Search Trend
The Semantic Web #8 - Ontology
KR Workshop 1 - Ontologies
Ontology Dev
UnBBayes-PRM - On Implementing Probabilistic Relational Models
Knowledge Representation & Reasoning
Representation and organization of knowledge in memory
What is knowledge representation and reasoning ?
Semantic Search Trend

What's hot (20)

PPTX
Characterising the Emergent Semantics in Twitter Lists
PDF
Semantic Technology: State of the arts and Trends
PPTX
DynaLearn: Problem-based learning supported by semantic techniques
PDF
AbstractKR on Pargram 2006
PDF
Tutorial kcc-2011
PDF
Harold Boley: RuleML/Grailog: The Rule Metalogic Visualized with Generalized ...
PPTX
Knowledge representation
PPT
Artificial intelligence and knowledge representation
PDF
Annotating Rhetorical and Argumentative Structures in Mathematical Knowledge
PDF
Machine Learning of Natural Language
PPTX
REPRESENTATION OF DECLARATIVE KNOWLEDGE
PPTX
Ontology
PDF
Question answer template
PDF
AI_ 3 & 4 Knowledge Representation issues
PPT
Representation of knowledge
PDF
Ai lecture 14(unit03)
PDF
Eswcsummerschool2010 ontologies final
PDF
Lean Logic for Lean Times: Varieties of Natural Logic
PDF
Lec 3 knowledge acquisition representation and inference
PDF
Introduction to Ontology Engineering with Fluent Editor 2014
Characterising the Emergent Semantics in Twitter Lists
Semantic Technology: State of the arts and Trends
DynaLearn: Problem-based learning supported by semantic techniques
AbstractKR on Pargram 2006
Tutorial kcc-2011
Harold Boley: RuleML/Grailog: The Rule Metalogic Visualized with Generalized ...
Knowledge representation
Artificial intelligence and knowledge representation
Annotating Rhetorical and Argumentative Structures in Mathematical Knowledge
Machine Learning of Natural Language
REPRESENTATION OF DECLARATIVE KNOWLEDGE
Ontology
Question answer template
AI_ 3 & 4 Knowledge Representation issues
Representation of knowledge
Ai lecture 14(unit03)
Eswcsummerschool2010 ontologies final
Lean Logic for Lean Times: Varieties of Natural Logic
Lec 3 knowledge acquisition representation and inference
Introduction to Ontology Engineering with Fluent Editor 2014
Ad

Viewers also liked (20)

DOC
02 notiziario settembre 2011 c
PDF
16 Hispano Suiza
PDF
Wipo pub 925
PDF
Nemetsky yazyk bazovyy_kurs
PDF
PDF
March2013 Sapref
DOCX
How to access your personal website
PDF
15 Hispano Suiza
PDF
Futebol
PDF
Monthly mahasin e islam may _2013
PDF
Cape gate-ims-e-15-may-2012
PPT
CAPTain Online Test
PDF
Violencia Genero Antiguedad
PDF
TCC Daniel Collyer Braga - Futebol e Guerra: Uma questão histórica, política ...
PPT
Becoming A Positive Thinker
PDF
A.a.12.divisionof powers1
PDF
A.a.12.multiplicationof powers1
PDF
Deans List Fall 2014_1
DOCX
Motivation story
02 notiziario settembre 2011 c
16 Hispano Suiza
Wipo pub 925
Nemetsky yazyk bazovyy_kurs
March2013 Sapref
How to access your personal website
15 Hispano Suiza
Futebol
Monthly mahasin e islam may _2013
Cape gate-ims-e-15-may-2012
CAPTain Online Test
Violencia Genero Antiguedad
TCC Daniel Collyer Braga - Futebol e Guerra: Uma questão histórica, política ...
Becoming A Positive Thinker
A.a.12.divisionof powers1
A.a.12.multiplicationof powers1
Deans List Fall 2014_1
Motivation story
Ad

Similar to The Semantic Web #7 - RDF Semantics (20)

PDF
RDF Semantics
PPTX
Semantic web
PDF
Ontologies and Vocabularies
PPTX
The Semantic Web #4 - RDF (1)
PPTX
Intro to the Semantic Web Landscape - 2011
PPT
A Semantic Best-Effort Approach for Extracting Structured Discourse Graphs fr...
PDF
Learning ontologies
PDF
Semantic Web and web of commerce - Disruptive technology
PDF
Semantic Web and the Web Of Commerce - pdf version
PDF
Logic and Reasoning in the Semantic Web
PPT
Relationships at the Heart of Semantic Web: Modeling, Discovering, Validating...
PPTX
Semantic web
PDF
Logic and Reasoning in the Semantic Web (part I –RDF/RDFS)
PPT
Relationships at the Heart of Semantic Web: Modeling, Discovering, Validating...
PDF
2012 04-26-ifip-wg.pptx
PDF
A category theoretic model of rdf ontology
PDF
From Linked Data to Semantic Applications
PPT
A Semantic Multimedia Web (Part 2)
PPTX
SNSW CO3.pptx
PPTX
Web 3 final(1)
RDF Semantics
Semantic web
Ontologies and Vocabularies
The Semantic Web #4 - RDF (1)
Intro to the Semantic Web Landscape - 2011
A Semantic Best-Effort Approach for Extracting Structured Discourse Graphs fr...
Learning ontologies
Semantic Web and web of commerce - Disruptive technology
Semantic Web and the Web Of Commerce - pdf version
Logic and Reasoning in the Semantic Web
Relationships at the Heart of Semantic Web: Modeling, Discovering, Validating...
Semantic web
Logic and Reasoning in the Semantic Web (part I –RDF/RDFS)
Relationships at the Heart of Semantic Web: Modeling, Discovering, Validating...
2012 04-26-ifip-wg.pptx
A category theoretic model of rdf ontology
From Linked Data to Semantic Applications
A Semantic Multimedia Web (Part 2)
SNSW CO3.pptx
Web 3 final(1)

More from Myungjin Lee (20)

PDF
지식그래프 개념과 활용방안 (Knowledge Graph - Introduction and Use Cases)
PDF
JSP 프로그래밍 #05 HTML과 JSP
PDF
JSP 프로그래밍 #04 JSP 의 기본
PDF
JSP 프로그래밍 #03 서블릿
PDF
JSP 프로그래밍 #02 서블릿과 JSP 시작하기
PDF
JSP 프로그래밍 #01 웹 프로그래밍
PDF
관광 지식베이스와 스마트 관광 서비스 (Knowledge base and Smart Tourism)
PDF
오픈 데이터와 인공지능
PDF
법령 온톨로지의 구축 및 검색
PDF
도서관과 Linked Data
PDF
공공데이터, 현재 우리는?
PDF
LODAC 2017 Linked Open Data Workshop
PDF
Introduction of Deep Learning
PDF
쉽게 이해하는 LOD
PDF
서울시 열린데이터 광장 문화관광 분야 LOD 서비스
PDF
LOD(Linked Open Data) Recommendations
PDF
Interlinking for Linked Data
PDF
Linked Open Data Tutorial
PPTX
Linked Data Usecases
PDF
공공데이터와 Linked open data
지식그래프 개념과 활용방안 (Knowledge Graph - Introduction and Use Cases)
JSP 프로그래밍 #05 HTML과 JSP
JSP 프로그래밍 #04 JSP 의 기본
JSP 프로그래밍 #03 서블릿
JSP 프로그래밍 #02 서블릿과 JSP 시작하기
JSP 프로그래밍 #01 웹 프로그래밍
관광 지식베이스와 스마트 관광 서비스 (Knowledge base and Smart Tourism)
오픈 데이터와 인공지능
법령 온톨로지의 구축 및 검색
도서관과 Linked Data
공공데이터, 현재 우리는?
LODAC 2017 Linked Open Data Workshop
Introduction of Deep Learning
쉽게 이해하는 LOD
서울시 열린데이터 광장 문화관광 분야 LOD 서비스
LOD(Linked Open Data) Recommendations
Interlinking for Linked Data
Linked Open Data Tutorial
Linked Data Usecases
공공데이터와 Linked open data

Recently uploaded (20)

PDF
Dropbox Q2 2025 Financial Results & Investor Presentation
PDF
Encapsulation_ Review paper, used for researhc scholars
PDF
Spectral efficient network and resource selection model in 5G networks
PDF
Network Security Unit 5.pdf for BCA BBA.
PDF
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
PDF
Review of recent advances in non-invasive hemoglobin estimation
PDF
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
PPTX
Cloud computing and distributed systems.
PDF
Advanced methodologies resolving dimensionality complications for autism neur...
PPTX
Big Data Technologies - Introduction.pptx
PPTX
sap open course for s4hana steps from ECC to s4
PDF
A comparative analysis of optical character recognition models for extracting...
PDF
Mobile App Security Testing_ A Comprehensive Guide.pdf
PDF
Building Integrated photovoltaic BIPV_UPV.pdf
PDF
MIND Revenue Release Quarter 2 2025 Press Release
PDF
Reach Out and Touch Someone: Haptics and Empathic Computing
PDF
Diabetes mellitus diagnosis method based random forest with bat algorithm
PDF
Approach and Philosophy of On baking technology
PDF
Assigned Numbers - 2025 - Bluetooth® Document
DOCX
The AUB Centre for AI in Media Proposal.docx
Dropbox Q2 2025 Financial Results & Investor Presentation
Encapsulation_ Review paper, used for researhc scholars
Spectral efficient network and resource selection model in 5G networks
Network Security Unit 5.pdf for BCA BBA.
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
Review of recent advances in non-invasive hemoglobin estimation
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
Cloud computing and distributed systems.
Advanced methodologies resolving dimensionality complications for autism neur...
Big Data Technologies - Introduction.pptx
sap open course for s4hana steps from ECC to s4
A comparative analysis of optical character recognition models for extracting...
Mobile App Security Testing_ A Comprehensive Guide.pdf
Building Integrated photovoltaic BIPV_UPV.pdf
MIND Revenue Release Quarter 2 2025 Press Release
Reach Out and Touch Someone: Haptics and Empathic Computing
Diabetes mellitus diagnosis method based random forest with bat algorithm
Approach and Philosophy of On baking technology
Assigned Numbers - 2025 - Bluetooth® Document
The AUB Centre for AI in Media Proposal.docx

The Semantic Web #7 - RDF Semantics

  • 1. Linked Data & Semantic Web Technology The Semantic Web Part 7. RDF Semantics Dr. Myungjin Lee
  • 2. RDF • RDF – an assertional language intended to be used to express propositions using precise formal vocabularies – to provide a basic foundation for more advanced assertional languages – to emphasize generality and precision in expressing propositions about any topic 2 Linked Data & Semantic Web Technology
  • 3. Semantics • What is Semantics? – the study of meaning focused on the relation between signifiers, like words, phrases, signs, and symbols, and what they stand for • Syntax and Semantics – Syntax • character strings without meaning – Semantics • meaning of the character strings • Why we need semantics for RDF(S) – to share equally interpretable meaning from RDF(S) syntax 3 Linked Data & Semantic Web Technology
  • 4. Model Theory • What is Model Theory? – a formal semantic theory which relates expressions to interpretations – If a model for a language satisfies a particular sentence or theory, it is called a model of the sentence or theory. World Model Interpretation Daisy isA Cow Cow kindOf Animal Mary isA Person Person kindOf Animal a Z123ABC isA Car b Mary drives Z123ABC {<a,b>,…} 4 Linked Data & Semantic Web Technology
  • 5. Terms • interpretation – an interpretation is a world with each symbol and each expression assigned an extension • model – an model of a logic theory is an interpretation of the theory that satisfies all constraints specified by the theory • consistency – a logic theory is consistent if it has a model • satisfiability – a symbol or expression x is satisfiable if it is possible to find a model of K that makes x true • entailment – a logic theory K entails another logical theory K’ if every model of K is a model of K’ 5 Linked Data & Semantic Web Technology
  • 6. Logical Consequence (Entailment) • logical consequence – if an RDFS document contains u rdf:type ex:Textbook. ex:Textbook rdfs:subClassOf ex:Book. – then u rdf:type ex:Book. It is deduced (deduction) or inferred (inference). propositions (statements) ㅠ logical entailment p1 p2 p3 ㅠ ㅠ ㅠ models models models of p1 of p3 of p2 interpretations 6 Linked Data & Semantic Web Technology
  • 7. RDF Semantics • RDF Semantics – a basic technique called model theory for specifying the semantics of a formal language • the language refers to a 'world‘ – the minimal conditions that a world must satisfy in order to assign an appropriate meaning for every expression in the language • a particular word  an interpretation • model theory  ‘interpretation theory’ – defined as a mapping on the abstract syntax of RDF described in the RDF concepts and abstract syntax RDFS-interpretation RDF-interpretation simple interpretation 7 Linked Data & Semantic Web Technology
  • 8. Graph Definitions • RDF graph, simply graph – a set of RDF triples • a subgraph of an RDF graph – a subset of the triples in the graph • a ground RDF graph – one with no blank nodes • a name – a URI reference of a literal • a vocabulary – a set of names • the vocabulary of a graph – the set of names which occur as the subject, predicate, or object of any triple in the graph 8 Linked Data & Semantic Web Technology
  • 9. Definition of a Simple Interpretation • A simple interpretation I of a vocabulary V is defined by: 1. A non-empty set IR of resources, called the domain or universe of I. 2. A set IP, called the set of properties of I. 3. A mapping IEXT from IP into the powerset of IR x IR i.e. the set of sets of pairs <x,y> with x and y in IR . 4. A mapping IS from URI references in V into (IR union IP) 5. A mapping IL from typed literals in V into IR. 6. A distinguished subset LV of IR, called the set of literal values, which contains all the plain literals in V 9 Linked Data & Semantic Web Technology
  • 10. Semantic Conditions for Ground Graphs • if E is a plain literal "aaa" in V then I(E) = aaa • if E is a plain literal "aaa"@ttt in V then I(E) = <aaa, ttt> • if E is a typed literal in V then I(E) = IL(E) • if E is a URI reference in V then I(E) = IS(E) 10 Linked Data & Semantic Web Technology
  • 11. Semantic Conditions for Ground Graphs • if E is a ground triple s p o. then I(E) = true if s, p and o are in V, I(p) is in IP and <I(s),I(o)> is in IEXT(I(p)) otherwise I(E)= false. • if E is a ground RDF graph then I(E) = false if I(E') = false for some triple E' in E, otherwise I(E) =true. 11 Linked Data & Semantic Web Technology
  • 12. Simple Entailment between RDF graphs • a set S of RDF graphs (simply) entails a graph E if every interpretation which satisfies every member of S also satisfies E • Lemma – Empty Graph Lemma. • The empty set of triples is entailed by any graph, and does not entail any graph except itself. – Subgraph Lemma. • A graph entails all its subgraphs. – Instance Lemma. • A graph is entailed by any of its instances. – Merging lemma. • The merge of a set S of RDF graphs is entailed by S, and entails every member of S. – Interpolation Lemma. – Anonymity lemma. – Monotonicity Lemma. – Compactness Lemma. 12 Linked Data & Semantic Web Technology
  • 13. RDF Interpretations • RDF vocabulary – The RDF vocabulary, rdfV, is a set of URI references in the rdf: namespace rdf:type rdf:Property rdf:XMLLiteral rdf:nil rdf:List rdf:Statement rdf:subject rdf:predicate rdf:object rdf:first rdf:rest rdf:Seq rdf:Bag rdf:Alt rdf:_1 rdf:_2 ... rdf:value • RDF axiomatic triples rdf:type rdf:type rdf:Property . rdf:subject rdf:type rdf:Property . rdf:predicate rdf:type rdf:Property . rdf:object rdf:type rdf:Property . rdf:first rdf:type rdf:Property . rdf:rest rdf:type rdf:Property . rdf:value rdf:type rdf:Property . rdf:_1 rdf:type rdf:Property . rdf:_2 rdf:type rdf:Property . ... rdf:nil rdf:type rdf:List . 13 Linked Data & Semantic Web Technology
  • 14. RDF Semantic Conditions • x is in IP if and only if <x, I(rdf:Property)> is in IEXT(I(rdf:type)) • If "xxx"^^rdf:XMLLiteral is in V and xxx is a well-typed XML literal string, then IL("xxx"^^rdf:XMLLiteral) is the XML value of xxx; IL("xxx"^^rdf:XMLLiteral) is in LV; IEXT(I(rdf:type)) contains <IL("xxx"^^rdf:XMLLiteral), I(rdf:XMLLiteral)> • If "xxx"^^rdf:XMLLiteral is in V and xxx is an ill-typed XML literal string, then IL("xxx"^^rdf:XMLLiteral) is not in LV; IEXT(I(rdf:type)) does not contain <IL("xxx"^^rdf:XMLLiteral), I(rdf:XMLLiteral)> 14 Linked Data & Semantic Web Technology
  • 15. RDF Entailments • S rdf-entails E when every rdf-interpretation which satisfies every member of S also satisfies E 15 Linked Data & Semantic Web Technology
  • 16. RDFS Interpretations • RDFS vocabulary – RDF Schema extends RDF to include a larger vocabulary rdfsV with more complex semantic constraints rdfs:domain rdfs:range rdfs:Resource rdfs:Literal rdfs:Datatype rdfs:Class rdfs:subClassOf rdfs:subPropertyOf rdfs:member rdfs:Container rdfs:ContainerMembershipProperty rdfs:comment rdfs:seeAlso rdfs:isDefinedBy rdfs:label 16 Linked Data & Semantic Web Technology
  • 17. RDFS Semantic Conditions • x is in ICEXT(y) if and only if <x,y> is in IEXT(I(rdf:type)) IC = ICEXT(I(rdfs:Class)) IR = ICEXT(I(rdfs:Resource)) LV = ICEXT(I(rdfs:Literal)) • If <x,y> is in IEXT(I(rdfs:domain)) and <u,v> is in IEXT(x) then u is in ICEXT(y) • If <x,y> is in IEXT(I(rdfs:range)) and <u,v> is in IEXT(x) then v is in ICEXT(y) • IEXT(I(rdfs:subPropertyOf)) is transitive and reflexive on IP • If <x,y> is in IEXT(I(rdfs:subPropertyOf)) then x and y are in IP and IEXT(x) is a subset of IEXT(y) 17 Linked Data & Semantic Web Technology
  • 18. RDFS Semantic Conditions • If x is in IC then <x, I(rdfs:Resource)> is in IEXT(I(rdfs:subClassOf)) • If <x,y> is in IEXT(I(rdfs:subClassOf)) then x and y are in IC and ICEXT(x) is a subset of ICEXT(y) • IEXT(I(rdfs:subClassOf)) is transitive and reflexive on IC • If x is in ICEXT(I(rdfs:ContainerMembershipProperty)) then: <x, I(rdfs:member)> is in IEXT(I(rdfs:subPropertyOf)) • If x is in ICEXT(I(rdfs:Datatype)) then <x, I(rdfs:Literal)> is in IEXT(I(rdfs:subClassOf)) 18 Linked Data & Semantic Web Technology
  • 19. RDFS Axiomatic Triples rdf:type rdfs:domain rdfs:Resource . rdfs:domain rdfs:domain rdf:Property . rdfs:member rdfs:range rdfs:Resource . rdfs:range rdfs:domain rdf:Property . rdf:first rdfs:range rdfs:Resource . rdfs:subPropertyOf rdfs:domain rdf:Property . rdf:rest rdfs:range rdf:List . rdfs:subClassOf rdfs:domain rdfs:Class . rdfs:seeAlso rdfs:range rdfs:Resource . rdf:subject rdfs:domain rdf:Statement . rdfs:isDefinedBy rdfs:range rdfs:Resource . rdf:predicate rdfs:domain rdf:Statement . rdfs:comment rdfs:range rdfs:Literal . rdf:object rdfs:domain rdf:Statement . rdfs:label rdfs:range rdfs:Literal . rdfs:member rdfs:domain rdfs:Resource . rdf:value rdfs:range rdfs:Resource . rdf:first rdfs:domain rdf:List . rdf:Alt rdfs:subClassOf rdfs:Container . rdf:rest rdfs:domain rdf:List . rdf:Bag rdfs:subClassOf rdfs:Container . rdfs:seeAlso rdfs:domain rdfs:Resource . rdf:Seq rdfs:subClassOf rdfs:Container . rdfs:isDefinedBy rdfs:domain rdfs:Resource . rdfs:ContainerMembershipProperty rdfs:subClassOf rdfs:comment rdfs:domain rdfs:Resource . rdf:Property . rdfs:label rdfs:domain rdfs:Resource . rdf:value rdfs:domain rdfs:Resource . rdfs:isDefinedBy rdfs:subPropertyOf rdfs:seeAlso . rdf:type rdfs:range rdfs:Class . rdf:XMLLiteral rdf:type rdfs:Datatype . rdfs:domain rdfs:range rdfs:Class . rdf:XMLLiteral rdfs:subClassOf rdfs:Literal . rdfs:range rdfs:range rdfs:Class . rdfs:Datatype rdfs:subClassOf rdfs:Class . rdfs:subPropertyOf rdfs:range rdf:Property . rdfs:subClassOf rdfs:range rdfs:Class . rdf:_1 rdf:type rdfs:ContainerMembershipProperty . rdf:subject rdfs:range rdfs:Resource . rdf:_1 rdfs:domain rdfs:Resource . rdf:predicate rdfs:range rdfs:Resource . rdf:_1 rdfs:range rdfs:Resource . rdf:object rdfs:range rdfs:Resource . rdf:_2 rdf:type rdfs:ContainerMembershipProperty . rdf:_2 rdfs:domain rdfs:Resource . rdf:_2 rdfs:range rdfs:Resource . ... 19 Linked Data & Semantic Web Technology
  • 20. Some Triples which are RDFS-Valid rdfs:Resource rdf:type rdfs:Class . rdfs:Class rdf:type rdfs:Class . rdfs:Literal rdf:type rdfs:Class . rdf:XMLLiteral rdf:type rdfs:Class . rdfs:Datatype rdf:type rdfs:Class . rdf:Seq rdf:type rdfs:Class . rdf:Bag rdf:type rdfs:Class . rdf:Alt rdf:type rdfs:Class . rdfs:Container rdf:type rdfs:Class . rdf:List rdf:type rdfs:Class . rdfs:ContainerMembershipProperty rdf:type rdfs:Class . rdf:Property rdf:type rdfs:Class . rdf:Statement rdf:type rdfs:Class . rdfs:domain rdf:type rdf:Property . rdfs:range rdf:type rdf:Property . rdfs:subPropertyOf rdf:type rdf:Property . rdfs:subClassOf rdf:type rdf:Property . rdfs:member rdf:type rdf:Property . rdfs:seeAlso rdf:type rdf:Property . rdfs:isDefinedBy rdf:type rdf:Property . rdfs:comment rdf:type rdf:Property . rdfs:label rdf:type rdf:Property . 20 Linked Data & Semantic Web Technology
  • 21. Extensional Semantic Conditions • <x,y> is in IEXT(I(rdfs:subClassOf)) if and only if x and y are in IC and ICEXT(x) is a subset of ICEXT(y) • <x,y> is in IEXT(I(rdfs:subPropertyOf)) if and only if x and y are in IP and IEXT(x) is a subset of IEXT(y) • <x,y> is in IEXT(I(rdfs:range)) if and only if (if <u,v> is in IEXT(x) then v is in ICEXT(y)) • <x,y> is in IEXT(I(rdfs:domain)) if and only if (if <u,v> is in IEXT(x) then u is in ICEXT(y)) 21 Linked Data & Semantic Web Technology
  • 22. RDFS Entailments • S rdfs-entails E when every rdfs-interpretation which satisfies every member of S also satisfies E – since every rdfs-interpretation is an rdf-interpretation, if S rdfs-entails E then it rdf-entails E – rdfs-entailment is stronger than rdf-entailment 22 Linked Data & Semantic Web Technology
  • 23. Entailment Rules • What is Entailment Rules? – some inference patterns which capture some of the various forms of vocabulary entailment used as a guide for the design of software to check RDF graphs for RDF and RDFS entailment – to add a consequent triple to a graph when it contains triples conforming to a pattern • a graph entails any larger graph that is obtained by applying the rules to the original graph • Conventions – aaa, bbb, etc., stand for any URI reference – uuu, vvv, etc. for any URI reference or blank node identifier – xxx, yyy etc. for any URI reference, blank node identifier or literal – lll for any literal – _:nnn, etc., for blank node identifiers 23 Linked Data & Semantic Web Technology
  • 24. Simple Entailment Rules • Simple Entailment Rules Rule Name if E contains then add uuu aaa _:nnn . se1 uuu aaa xxx . where _:nnn identifies a blank node allocated to xxx by rule se1 or se2. _:nnn aaa xxx . se2 uuu aaa xxx . where _:nnn identifies a blank node allocated to uuu by rule se1 or se2. • Literal Generalization Rule Rule Name if E contains then add uuu aaa _:nnn . lg uuu aaa lll . where _:nnn identifies a blank node allocated to the literal lll by this rule. • Literal Instantiation Rule Rule Name if E contains then add uuu aaa _:nnn . gl uuu aaa lll . where _:nnn identifies a blank node allocated to the literal lll by rule lg. 24 Linked Data & Semantic Web Technology
  • 25. RDF Entailment Rules Rule Name if E contains then add rdf1 uuu aaa yyy . aaa rdf:type rdf:Property . uuu aaa lll . _:nnn rdf:type rdf:XMLLiteral . rdf2 where lll is a well-typed XML literal . where _:nnn identifies a blank node allocated to lll by rule lg. 25 Linked Data & Semantic Web Technology
  • 26. RDFS Entailment Rules Rule Name if E contains then add uuu aaa lll. _:nnn rdf:type rdfs:Literal . rdfs1 where lll is a plain literal (with or without a language ta where _:nnn identifies a blank node allocated to lll by rule g). rule lg. aaa rdfs:domain xxx . rdfs2 uuu rdf:type xxx . uuu aaa yyy . aaa rdfs:range xxx . rdfs3 vvv rdf:type xxx . uuu aaa vvv . rdfs4a uuu aaa xxx . uuu rdf:type rdfs:Resource . rdfs4b uuu aaa vvv. vvv rdf:type rdfs:Resource . uuu rdfs:subPropertyOf vvv . rdfs5 uuu rdfs:subPropertyOf xxx . vvv rdfs:subPropertyOf xxx . rdfs6 uuu rdf:type rdf:Property . uuu rdfs:subPropertyOf uuu . aaa rdfs:subPropertyOf bbb . rdfs7 uuu bbb yyy . uuu aaa yyy . rdfs8 uuu rdf:type rdfs:Class . uuu rdfs:subClassOf rdfs:Resource . uuu rdfs:subClassOf xxx . rdfs9 vvv rdf:type xxx . vvv rdf:type uuu . rdfs10 uuu rdf:type rdfs:Class . uuu rdfs:subClassOf uuu . uuu rdfs:subClassOf vvv . rdfs11 uuu rdfs:subClassOf xxx . vvv rdfs:subClassOf xxx . uuu rdf:type rdfs12 uuu rdfs:subPropertyOf rdfs:member . rdfs:ContainerMembershipProperty . rdfs13 uuu rdf:type rdfs:Datatype . uuu rdfs:subClassOf rdfs:Literal . 26 Linked Data & Semantic Web Technology
  • 27. Extensional Entailment Rules Rule Name if E contains then add uuu rdfs:domain vvv . ext1 uuu rdfs:domain zzz . vvv rdfs:subClassOf zzz . uuu rdfs:range vvv . ext2 uuu rdfs:range zzz . vvv rdfs:subClassOf zzz . uuu rdfs:domain vvv . ext3 www rdfs:domain vvv . www rdfs:subPropertyOf uuu . uuu rdfs:range vvv . ext4 www rdfs:range vvv . www rdfs:subPropertyOf uuu . rdf:type rdfs:subPropertyOf www . ext5 rdfs:Resource rdfs:subClassOf vvv . www rdfs:domain vvv . rdfs:subClassOf rdfs:subPropertyOf www . ext6 rdfs:Class rdfs:subClassOf vvv . www rdfs:domain vvv . rdfs:subPropertyOf rdfs:subPropertyOf www . ext7 rdf:Property rdfs:subClassOf vvv . www rdfs:domain vvv . rdfs:subClassOf rdfs:subPropertyOf www . ext8 rdfs:Class rdfs:subClassOf vvv . www rdfs:range vvv . rdfs:subPropertyOf rdfs:subPropertyOf www . ext9 rdf:Property rdfs:subClassOf vvv . www rdfs:range vvv . 27 Linked Data & Semantic Web Technology
  • 28. References • http://www.w3.org/TR/2004/REC-rdf-mt-20040210/ • http://en.wikipedia.org/wiki/Semantics • Pascal Hitzler, Knowledge Representation for the Semantic Web, Winter 2011. • http://www.slideshare.net/baojie_iowa/rdf-semantics • http://www.slideshare.net/lysander07/08-semantic-web-technologies-rdfs-semantics • http://www.csee.umbc.edu/courses/691s/notes/06rdfsemantics.ppt 28 Linked Data & Semantic Web Technology
  • 29. Dr. Myungjin Lee e-Mail : mjlee@li-st.com Twitter : http://twitter.com/MyungjinLee Facebook : http://www.facebook.com/mjinlee SlideShare : http://www.slideshare.net/onlyjiny/ 29 29 Linked Data & Semantic Web Technology