SlideShare a Scribd company logo
1
n
• ~2013.3, PhD@ ,
• 2013.4~2016.3, @IBM
• 2016.4~2017.8, @ ERATO, NII
• 2017.9~, @ ,
n
•
ECML’11
AISTATS’15,17
•
AISTATS’18
AAAI’17,18
2
Cont.
n
• ℓ"
n
• Lasso
min
&
1
2
) − +, -
+ / , "
3
Cont.
n
• ℓ"
n
• Lasso
min
&
1
2
) − +, -
+ / , "
n
• Lasso
4
n
• Sparse Coding
Learned ISTA (LISTA)
n Sparse Coding
• Lasso
n LISTA ISTA
• ISTA: Iterative Soft-Threshold Algorithm
proximal gradient descent
5
[Gregor and LeCun, ICML’10]
Sparse Coding ISTA
n /
n ISTA Lasso
6
ISTA
Sparse Coding ISTA
n /
n ISTA Lasso
7
ISTA
Sparse Coding Learned ISTA
n Learned ISTA (LISTA) [Gregor and LeCun, ICML’10]
ISTA
n LISTA
•
•
•
8
MNIST LISTA
n
n
• ISTA
• Learned ISTA (LISTA)
n
n LISTA
n
n
9
Iterative Soft-Thresholding Algorithm (ISTA)
n
• !∗ ∈ ℝ% ←
n
• & ∈ ℝ' ←
• / ( ∈ ℝ'×% ←
!∗ & = (!∗ + ,
• !∗
n Lasso
-! = argmin
4
1
2
& − (! 8 + 9 ! :
10
Iterative Soft-Thresholding Algorithm (ISTA)
n
!" = argmin
*
1
2
- − /" 0 + 2 " 3
n ISTA Lasso
• " ← 06
• "
3
0
- − /" 0 "
• " ← " − 7 /8/" − /8- = 96 − 7/8/ " + 7/8-
"
• " ← ℎ;< " = sign " ⊙ max {0, abs " − 72}
11→
Learned ISTA (LISTA) [Gregor and LeCun, ICML’10]
n ISTA
• !" = ℎ%&
'()
→ !+ = ℎ%,
-"!" + '")
→ !/ = ℎ%0
-+!+ + '+)
→ …
n ISTA
12
-2 = 34 − 6787
'2 = 678
92 = :;
!"
)
!+ !/-" ℎ%, -+ ℎ%0
'(
'" '+
←
↑
ℎ%&
ISTA 3
4 DNN
Learned ISTA (LISTA) [Gregor and LeCun, ICML’10]
n LISTA
• !" = $"(&; (, *, +) K+1 DNN
• ISTA -! DNN !"
(, *, + DNN
13
-!
(, *, +
DNN
!.
/
!0 !1(. ℎ34 (0 ℎ35
*6
*. *0
←
↑
ℎ37
Learned ISTA (LISTA) [Gregor and LeCun, ICML’10]
n LISTA -
• ! "#
{ !%, "#% }%()
*
• K+1 DNN #+ = -+(!; 0, 1, 2)
•
min
7,8,9
1
2
<=, "> "# − -+(!; 0, 1, 2) @
n LISTA -
• #+ = -+(!; 0, 1, 2)
DNN
14
SGD
MNIST LISTA
n
n
• ISTA
• Learned ISTA (LISTA)
n
n LISTA
n
n
15
Research Question
LISTA
n 10~20
n
• ! = #$∗ + ' (($∗, ')
• (($∗
, ') !′ ISTA
-$′
16
ISTA 100
n
• !∗ #
!∗
$ ≤ &, !∗
( ≤ ), # * ≤ +
n
• ,- = / − 1-2 i.e. !-3* = ℎ56
!- + 1- 8 − 2!-
• s 9 !-
:, ; > 0 1-, >-
!- − !∗
? ≤ )&exp −:9 + ;+
17
s
8 = 2!∗
+ #
!-3* = ℎ56
,!- + 1-8
n
• !∗ #
!∗
$ ≤ &, !∗
( ≤ ), # * ≤ +
n
• ,- = / − 12- i.e. !34* = ℎ67
!3 + 2- 9 − 1!3
• : !3 ;, < > 0
2-, ?-
!3 − !∗
@ ≤ )&exp −;: + <+
s
9 = 1!∗
+ #
18
LISTA DNN
n
• !" = $ − &"' i.e. (")* = ℎ,-
(" + &" / − '("
• s 0 ("
1, 3 > 0 &", 6"
(" − (∗
8 ≤ :;exp −10 + 3?
n @ = supp (∗
• @ = supp (∗ : = D: (E
∗
≠ 0
n 2
• &E, 6E
1. (" E = 0, ∀D ∉ @, ∀0
2. (" − (∗
* 0
19
n Notation
• !
! " #
! $ %
• &
&"' (#, *)
&",: #
&:,' *
&:,$ %
• -. = 01 sup
5∗,7
8. − 8∗
: + <=>
01: = max
"B'
C. ",:D:,' <=: = max
",'
C. "'
20
1.
n DNN
• !"#$ = ℎ'(
!" + *" + − -!"
n !" . = 0, ∀2 ∉ 4
• + = -!∗ + 6 ∀2 ∉ 4
!"#$ . = ℎ'(
!" . + *" .,:- !∗ − !" + *" .,:6
= ℎ'(
*" .,:-:,8 !∗ − !" 8 + *" .,:6
n 9" = :; sup
?∗,@
!" − !∗
$ + ABC
• :;: = max
.GH
*" .,:-:,H AB: = max
.,H
*" .H
*" .,:-:,8 !∗ − !" 8 + *" .,:6 ≤ 9" ⇒ !"#$ . = 0
21≤ :; sup
?∗,@
!" − !∗
$ ≤ ABC
2. !" − !∗
% &
n ' ∈ )
!"*% + = ℎ./
!" + + 1" +,:4:,5 !∗ − !" 5 + 1" +,:6
n 1" +,:4:,+ = 1 1"
!" + + 1" +,:4:,5 !∗ − !" 5
= !" + + 1" +,:4:,5∖+ !∗ − !" 5∖+ + !∗ − !" +
= !∗
+ + 1" +,:4:,5∖+ !∗ − !" 5∖+
!"*% + − !∗
+ − 1" +,:4:,5∖+ !∗ − !" 5∖+ − 1" +,:6 ≤ :"
!"*% + − !∗
+
≤ 1" +,:4:,5∖+ !∗ − !" 5∖+ + 1" +,:6 + :"
≤ ;< !∗ − !" 5∖+ %
+ =>? + :"
22
ℎ./
:"
shrink
2. !" − !∗
% &
n !"'% − !∗
%
!"'% − !∗
% ≤ ∑*∈, !"'% * − !∗
*
≤ ∑*∈, -. !∗ − !" ,∖* %
+ 123 + 4"
≤ -. 5 − 1 !∗ − !" % + 5 4" + 5 123
n sup
sup
:∗,<
!"'% − !∗
%
≤ 2-.> − -. sup
:∗,<
!∗ − !" % + 2>123
≤ 2-.> − -. "'%sup
:∗,<
!∗ − !? % + 2>123 ∑@A?
"'%
2-.> − -. @
≤ 2-.> − -. ">B + 13
≤ >Bexp −E& + 13
23
E = −log 2-.> − -.
1 =
JKLM
%'NOPJNOK2 -.> − -. < 1
=
!* R = 0, ∀U ∉ 5
4" = -. sup
:∗,<
!" − !∗
% + 123
n LISTA-CP (LISTA with weights coupling)
• LISTA !"#$ = ℎ'(
)"!" + +",
• LISTA-CP !"#$ = ℎ'(
!" + +" , − .!"
n
• LISTA-CP +", 0"
!" − !∗
2 ≤ 45exp −9: + ;<
n LISTA-CP LISTA LISTA
)", +", 0"
24
n !∗ !# − !∗
%
n LISTA ISTA &!
!∗ !# − !∗
%
n !# − &! %
• !# − &! %
%
≤ !∗ − &! %
%
+ !# − !∗
%
%
!# − &! % tight
25
n
n
• ISTA
• Learned ISTA (LISTA)
n
n LISTA
n
n
26
LISTA
n ℎ"
• ℎ" # $
= sign #$ ⊙ max #$ − /
n Support Selection ℎ"
0
• #1 #1
→ shrink
• ℎ"
0
#
$
= 2
#$
ℎ" # $
27
#
shrink
#1 3% shrink
shrink
LISTA
n LISTA-CPSS
• s ! "#
$%% ≥ $, (%% ≤ ( *#, +#
"# − "∗
. ≤ /0exp −$%%! + (%%5
28
Weights Coupling Weights Coupling
Support Selection LISTA
"#67 = ℎ:;
<#"# + *#=
LISTA-CP
"#67 = ℎ:;
"# + *#(= − ?"#)
Support Selection LISTA-SS
"#67 = ℎ:;
A
<#"# + *#=
LISTA-CPSS
"#67 = ℎ:;
A
"# + *#(= − ?"#)
LIST-CP
n
n
• ISTA
• Learned ISTA (LISTA)
n
n LISTA
n
n
29
n
• !∗ 500
• # 250
• $
n LISTA-CP
30
NMSE
/
ISTA, FISTA
AMP
LISTA
LISTA-CP
NMSE
/
ISTA, FISTA
AMP
LISTA
LISTA-CP
LIST-CP
https://github.com/xchen-tamu/linear-lista-cpss
n
• !∗ 500
• # 250
• $
n LISTA-CPSS
31
LIST-CPSS
NMSE
/
LISTA-CPSS
NMSE
LISTA-CPSS
/
https://github.com/xchen-tamu/linear-lista-cpss
n Research Question
• Learned ISTA (LISTA)
n
• LISTA
• LISTA weights coupling (CP), support
selection (SS)
n LISTA-CPSS
32

More Related Content

PDF
機械学習モデルの判断根拠の説明
PDF
Alphabet free-worksheets
PDF
Ecuacionesfuncionales1 1
PDF
Ecuacionesfuncionales2 1
PDF
Promocion de la_salud_mental
PDF
Criptosistemas Clásicos
KEY
Evolving systems and the link to service orientation
PDF
safer erlang.PDF
機械学習モデルの判断根拠の説明
Alphabet free-worksheets
Ecuacionesfuncionales1 1
Ecuacionesfuncionales2 1
Promocion de la_salud_mental
Criptosistemas Clásicos
Evolving systems and the link to service orientation
safer erlang.PDF

What's hot (17)

PDF
Les polynômes formels à une indéterminée à coefficients dans un corps K
PDF
Who was william shakespeare ?
PDF
Curso de leitura
PDF
[Harvard CS264] 04 - Intermediate-level CUDA Programming
KEY
Massive device deployment - EclipseCon 2011
PDF
York, "Delivering Digital Content For New Generations of Research: Strategies...
PDF
Max Niederhofer, Qwerly
PDF
Instructivo manual de requisitos de inscripcion de informacion leagl, tecnica...
KEY
Device deployment
PDF
Can cafa white paper
PDF
EDAW Pamphlet
PDF
Libro nicaragua y el fsln-marti puig close-libre
PDF
Csharp Intsight
KEY
SEO - It Works Even if You Don’t Know How or Why
PDF
Content exchanges for_trailblazers
PDF
Fiestaru07 2003
Les polynômes formels à une indéterminée à coefficients dans un corps K
Who was william shakespeare ?
Curso de leitura
[Harvard CS264] 04 - Intermediate-level CUDA Programming
Massive device deployment - EclipseCon 2011
York, "Delivering Digital Content For New Generations of Research: Strategies...
Max Niederhofer, Qwerly
Instructivo manual de requisitos de inscripcion de informacion leagl, tecnica...
Device deployment
Can cafa white paper
EDAW Pamphlet
Libro nicaragua y el fsln-marti puig close-libre
Csharp Intsight
SEO - It Works Even if You Don’t Know How or Why
Content exchanges for_trailblazers
Fiestaru07 2003
Ad

Similar to Theoretical Linear Convergence of Unfolded ISTA and its Practical Weights and Thresholds (20)

PDF
Functional Gradient Boosting based on Residual Network Perception
PDF
الفروقات الفردية بين الطلاب كيف نفهمها
PDF
الفروقات الفردية بين الطلاب كيف نفهمها
PDF
Наибольшая общая мера: 2500 лет
PDF
8 tonnes sustainable_household_consumption
PDF
Slownik
PDF
Arquitetura da Informação em Repositórios Digitais
PDF
الجزء الثالث أسئلة تنفيذية مهندس محمد زكى إسماعيل
PDF
Toan pt.de075.2012
PDF
The Colbert Report. La satire politique qui réveille l'Amérique
PDF
PCon 2016: Advanced Attribution & Predictive Customer Interaction (Dr. Alwin ...
PDF
Concurso de relatos qué es un libro para ti
PDF
Janusz Korczak - wykaz książek i artykułów w zbiorach BP Cieszyn
PDF
Groupes
PDF
La ideologia anarquista angel cappelletti
PDF
بهینه سازی استفاده از آنزیمهای پروتئاز...
PDF
Lte 3 g 2g convergence 20120202
PDF
Oceans 2019 tutorial-geophysical-nav_7-updated
PDF
Vortrag alternativkonzept geothermie
PDF
Attention-Based Adaptive Selection of Operations for Image Restoration in the...
Functional Gradient Boosting based on Residual Network Perception
الفروقات الفردية بين الطلاب كيف نفهمها
الفروقات الفردية بين الطلاب كيف نفهمها
Наибольшая общая мера: 2500 лет
8 tonnes sustainable_household_consumption
Slownik
Arquitetura da Informação em Repositórios Digitais
الجزء الثالث أسئلة تنفيذية مهندس محمد زكى إسماعيل
Toan pt.de075.2012
The Colbert Report. La satire politique qui réveille l'Amérique
PCon 2016: Advanced Attribution & Predictive Customer Interaction (Dr. Alwin ...
Concurso de relatos qué es un libro para ti
Janusz Korczak - wykaz książek i artykułów w zbiorach BP Cieszyn
Groupes
La ideologia anarquista angel cappelletti
بهینه سازی استفاده از آنزیمهای پروتئاز...
Lte 3 g 2g convergence 20120202
Oceans 2019 tutorial-geophysical-nav_7-updated
Vortrag alternativkonzept geothermie
Attention-Based Adaptive Selection of Operations for Image Restoration in the...
Ad

More from Satoshi Hara (12)

PDF
Explanation in Machine Learning and Its Reliability
PDF
“機械学習の説明”の信頼性
PDF
【論文調査】XAI技術の効能を ユーザ実験で評価する研究
PDF
機械学習で嘘をつく話
PDF
機械学習モデルの判断根拠の説明(Ver.2)
PDF
異常の定義と推定
PDF
Convex Hull Approximation of Nearly Optimal Lasso Solutions
PDF
Maximally Invariant Data Perturbation as Explanation
PDF
アンサンブル木モデル解釈のためのモデル簡略化法
PDF
機械学習モデルの列挙
PDF
KDD'17読み会:Anomaly Detection with Robust Deep Autoencoders
PDF
特徴選択のためのLasso解列挙
Explanation in Machine Learning and Its Reliability
“機械学習の説明”の信頼性
【論文調査】XAI技術の効能を ユーザ実験で評価する研究
機械学習で嘘をつく話
機械学習モデルの判断根拠の説明(Ver.2)
異常の定義と推定
Convex Hull Approximation of Nearly Optimal Lasso Solutions
Maximally Invariant Data Perturbation as Explanation
アンサンブル木モデル解釈のためのモデル簡略化法
機械学習モデルの列挙
KDD'17読み会:Anomaly Detection with Robust Deep Autoencoders
特徴選択のためのLasso解列挙

Recently uploaded (20)

PDF
Agricultural_Statistics_at_a_Glance_2022_0.pdf
PDF
1 - Historical Antecedents, Social Consideration.pdf
PDF
project resource management chapter-09.pdf
PDF
MIND Revenue Release Quarter 2 2025 Press Release
PDF
August Patch Tuesday
PDF
Getting Started with Data Integration: FME Form 101
PDF
Accuracy of neural networks in brain wave diagnosis of schizophrenia
PDF
Assigned Numbers - 2025 - Bluetooth® Document
PDF
Transform Your ITIL® 4 & ITSM Strategy with AI in 2025.pdf
PDF
Microsoft Solutions Partner Drive Digital Transformation with D365.pdf
PDF
Hybrid model detection and classification of lung cancer
PDF
Video forgery: An extensive analysis of inter-and intra-frame manipulation al...
PPTX
TLE Review Electricity (Electricity).pptx
PDF
Building Integrated photovoltaic BIPV_UPV.pdf
PDF
From MVP to Full-Scale Product A Startup’s Software Journey.pdf
PDF
WOOl fibre morphology and structure.pdf for textiles
PPTX
Tartificialntelligence_presentation.pptx
PDF
Approach and Philosophy of On baking technology
PDF
A comparative analysis of optical character recognition models for extracting...
PPTX
A Presentation on Touch Screen Technology
Agricultural_Statistics_at_a_Glance_2022_0.pdf
1 - Historical Antecedents, Social Consideration.pdf
project resource management chapter-09.pdf
MIND Revenue Release Quarter 2 2025 Press Release
August Patch Tuesday
Getting Started with Data Integration: FME Form 101
Accuracy of neural networks in brain wave diagnosis of schizophrenia
Assigned Numbers - 2025 - Bluetooth® Document
Transform Your ITIL® 4 & ITSM Strategy with AI in 2025.pdf
Microsoft Solutions Partner Drive Digital Transformation with D365.pdf
Hybrid model detection and classification of lung cancer
Video forgery: An extensive analysis of inter-and intra-frame manipulation al...
TLE Review Electricity (Electricity).pptx
Building Integrated photovoltaic BIPV_UPV.pdf
From MVP to Full-Scale Product A Startup’s Software Journey.pdf
WOOl fibre morphology and structure.pdf for textiles
Tartificialntelligence_presentation.pptx
Approach and Philosophy of On baking technology
A comparative analysis of optical character recognition models for extracting...
A Presentation on Touch Screen Technology

Theoretical Linear Convergence of Unfolded ISTA and its Practical Weights and Thresholds

  • 1. 1
  • 2. n • ~2013.3, PhD@ , • 2013.4~2016.3, @IBM • 2016.4~2017.8, @ ERATO, NII • 2017.9~, @ , n • ECML’11 AISTATS’15,17 • AISTATS’18 AAAI’17,18 2
  • 4. Cont. n • ℓ" n • Lasso min & 1 2 ) − +, - + / , " n • Lasso 4
  • 5. n • Sparse Coding Learned ISTA (LISTA) n Sparse Coding • Lasso n LISTA ISTA • ISTA: Iterative Soft-Threshold Algorithm proximal gradient descent 5 [Gregor and LeCun, ICML’10]
  • 6. Sparse Coding ISTA n / n ISTA Lasso 6 ISTA
  • 7. Sparse Coding ISTA n / n ISTA Lasso 7 ISTA
  • 8. Sparse Coding Learned ISTA n Learned ISTA (LISTA) [Gregor and LeCun, ICML’10] ISTA n LISTA • • • 8 MNIST LISTA
  • 9. n n • ISTA • Learned ISTA (LISTA) n n LISTA n n 9
  • 10. Iterative Soft-Thresholding Algorithm (ISTA) n • !∗ ∈ ℝ% ← n • & ∈ ℝ' ← • / ( ∈ ℝ'×% ← !∗ & = (!∗ + , • !∗ n Lasso -! = argmin 4 1 2 & − (! 8 + 9 ! : 10
  • 11. Iterative Soft-Thresholding Algorithm (ISTA) n !" = argmin * 1 2 - − /" 0 + 2 " 3 n ISTA Lasso • " ← 06 • " 3 0 - − /" 0 " • " ← " − 7 /8/" − /8- = 96 − 7/8/ " + 7/8- " • " ← ℎ;< " = sign " ⊙ max {0, abs " − 72} 11→
  • 12. Learned ISTA (LISTA) [Gregor and LeCun, ICML’10] n ISTA • !" = ℎ%& '() → !+ = ℎ%, -"!" + '") → !/ = ℎ%0 -+!+ + '+) → … n ISTA 12 -2 = 34 − 6787 '2 = 678 92 = :; !" ) !+ !/-" ℎ%, -+ ℎ%0 '( '" '+ ← ↑ ℎ%& ISTA 3 4 DNN
  • 13. Learned ISTA (LISTA) [Gregor and LeCun, ICML’10] n LISTA • !" = $"(&; (, *, +) K+1 DNN • ISTA -! DNN !" (, *, + DNN 13 -! (, *, + DNN !. / !0 !1(. ℎ34 (0 ℎ35 *6 *. *0 ← ↑ ℎ37
  • 14. Learned ISTA (LISTA) [Gregor and LeCun, ICML’10] n LISTA - • ! "# { !%, "#% }%() * • K+1 DNN #+ = -+(!; 0, 1, 2) • min 7,8,9 1 2 <=, "> "# − -+(!; 0, 1, 2) @ n LISTA - • #+ = -+(!; 0, 1, 2) DNN 14 SGD MNIST LISTA
  • 15. n n • ISTA • Learned ISTA (LISTA) n n LISTA n n 15
  • 16. Research Question LISTA n 10~20 n • ! = #$∗ + ' (($∗, ') • (($∗ , ') !′ ISTA -$′ 16 ISTA 100
  • 17. n • !∗ # !∗ $ ≤ &, !∗ ( ≤ ), # * ≤ + n • ,- = / − 1-2 i.e. !-3* = ℎ56 !- + 1- 8 − 2!- • s 9 !- :, ; > 0 1-, >- !- − !∗ ? ≤ )&exp −:9 + ;+ 17 s 8 = 2!∗ + # !-3* = ℎ56 ,!- + 1-8
  • 18. n • !∗ # !∗ $ ≤ &, !∗ ( ≤ ), # * ≤ + n • ,- = / − 12- i.e. !34* = ℎ67 !3 + 2- 9 − 1!3 • : !3 ;, < > 0 2-, ?- !3 − !∗ @ ≤ )&exp −;: + <+ s 9 = 1!∗ + # 18 LISTA DNN
  • 19. n • !" = $ − &"' i.e. (")* = ℎ,- (" + &" / − '(" • s 0 (" 1, 3 > 0 &", 6" (" − (∗ 8 ≤ :;exp −10 + 3? n @ = supp (∗ • @ = supp (∗ : = D: (E ∗ ≠ 0 n 2 • &E, 6E 1. (" E = 0, ∀D ∉ @, ∀0 2. (" − (∗ * 0 19
  • 20. n Notation • ! ! " # ! $ % • & &"' (#, *) &",: # &:,' * &:,$ % • -. = 01 sup 5∗,7 8. − 8∗ : + <=> 01: = max "B' C. ",:D:,' <=: = max ",' C. "' 20
  • 21. 1. n DNN • !"#$ = ℎ'( !" + *" + − -!" n !" . = 0, ∀2 ∉ 4 • + = -!∗ + 6 ∀2 ∉ 4 !"#$ . = ℎ'( !" . + *" .,:- !∗ − !" + *" .,:6 = ℎ'( *" .,:-:,8 !∗ − !" 8 + *" .,:6 n 9" = :; sup ?∗,@ !" − !∗ $ + ABC • :;: = max .GH *" .,:-:,H AB: = max .,H *" .H *" .,:-:,8 !∗ − !" 8 + *" .,:6 ≤ 9" ⇒ !"#$ . = 0 21≤ :; sup ?∗,@ !" − !∗ $ ≤ ABC
  • 22. 2. !" − !∗ % & n ' ∈ ) !"*% + = ℎ./ !" + + 1" +,:4:,5 !∗ − !" 5 + 1" +,:6 n 1" +,:4:,+ = 1 1" !" + + 1" +,:4:,5 !∗ − !" 5 = !" + + 1" +,:4:,5∖+ !∗ − !" 5∖+ + !∗ − !" + = !∗ + + 1" +,:4:,5∖+ !∗ − !" 5∖+ !"*% + − !∗ + − 1" +,:4:,5∖+ !∗ − !" 5∖+ − 1" +,:6 ≤ :" !"*% + − !∗ + ≤ 1" +,:4:,5∖+ !∗ − !" 5∖+ + 1" +,:6 + :" ≤ ;< !∗ − !" 5∖+ % + =>? + :" 22 ℎ./ :" shrink
  • 23. 2. !" − !∗ % & n !"'% − !∗ % !"'% − !∗ % ≤ ∑*∈, !"'% * − !∗ * ≤ ∑*∈, -. !∗ − !" ,∖* % + 123 + 4" ≤ -. 5 − 1 !∗ − !" % + 5 4" + 5 123 n sup sup :∗,< !"'% − !∗ % ≤ 2-.> − -. sup :∗,< !∗ − !" % + 2>123 ≤ 2-.> − -. "'%sup :∗,< !∗ − !? % + 2>123 ∑@A? "'% 2-.> − -. @ ≤ 2-.> − -. ">B + 13 ≤ >Bexp −E& + 13 23 E = −log 2-.> − -. 1 = JKLM %'NOPJNOK2 -.> − -. < 1 = !* R = 0, ∀U ∉ 5 4" = -. sup :∗,< !" − !∗ % + 123
  • 24. n LISTA-CP (LISTA with weights coupling) • LISTA !"#$ = ℎ'( )"!" + +", • LISTA-CP !"#$ = ℎ'( !" + +" , − .!" n • LISTA-CP +", 0" !" − !∗ 2 ≤ 45exp −9: + ;< n LISTA-CP LISTA LISTA )", +", 0" 24
  • 25. n !∗ !# − !∗ % n LISTA ISTA &! !∗ !# − !∗ % n !# − &! % • !# − &! % % ≤ !∗ − &! % % + !# − !∗ % % !# − &! % tight 25
  • 26. n n • ISTA • Learned ISTA (LISTA) n n LISTA n n 26
  • 27. LISTA n ℎ" • ℎ" # $ = sign #$ ⊙ max #$ − / n Support Selection ℎ" 0 • #1 #1 → shrink • ℎ" 0 # $ = 2 #$ ℎ" # $ 27 # shrink #1 3% shrink shrink
  • 28. LISTA n LISTA-CPSS • s ! "# $%% ≥ $, (%% ≤ ( *#, +# "# − "∗ . ≤ /0exp −$%%! + (%%5 28 Weights Coupling Weights Coupling Support Selection LISTA "#67 = ℎ:; <#"# + *#= LISTA-CP "#67 = ℎ:; "# + *#(= − ?"#) Support Selection LISTA-SS "#67 = ℎ:; A <#"# + *#= LISTA-CPSS "#67 = ℎ:; A "# + *#(= − ?"#) LIST-CP
  • 29. n n • ISTA • Learned ISTA (LISTA) n n LISTA n n 29
  • 30. n • !∗ 500 • # 250 • $ n LISTA-CP 30 NMSE / ISTA, FISTA AMP LISTA LISTA-CP NMSE / ISTA, FISTA AMP LISTA LISTA-CP LIST-CP https://github.com/xchen-tamu/linear-lista-cpss
  • 31. n • !∗ 500 • # 250 • $ n LISTA-CPSS 31 LIST-CPSS NMSE / LISTA-CPSS NMSE LISTA-CPSS / https://github.com/xchen-tamu/linear-lista-cpss
  • 32. n Research Question • Learned ISTA (LISTA) n • LISTA • LISTA weights coupling (CP), support selection (SS) n LISTA-CPSS 32