SlideShare a Scribd company logo
THE FOUR-HINGE METHOD OF
ANALYSIS OF MASONRY ARCHES
STUDENT: PAVEL TROFIMOV
D08118499 DT024/4
SUMMARY OF WORK CARRIED
OUT
I. Preliminary design
Figure 3 Segmental masonry arch
Figure 1 Force diagram Figure 2 Line of thrust
Table 1 Stresses in the arch
Due to self-weight
fm.min = 0.035 (N/mm2
) , Tension
fm.max = 0.068 (N/mm2
) , Compression
Allowable
ft.bond.MIN = 0.091 (N/mm2
), Tension
fm.k = 10.7 (N/mm2
), Compression
SUMMARY OF WORK CARRIED
OUT
II. Theoretical analysis
Results
Model 1 (Unreinforced) P = 2.4 kN
αB=64.97˚
βC=70.44˚
Model 2 (Reinforced) P = 68.4 kN
αB=64.97˚
βC=57.39˚
Figure 6 Angles to hinges B&C
Figure 5 Collapse load Model 2Figure 4 Collapse load Model 1
SUMMARY OF WORK CARRIED
OUT
III. Experimental
Figure 7 Experimental setup
Figure 8 Arch contruction
Figure 9 Abutment model 2 Figure 11 Model 1 test setupFigure 10 Abutment model
PROJECT FINDINGS
Figure 12 Failure mode, Model 1 Figure 13 Failure mode, Model 2
Table 2 Collapse load
Name kN
Model 1Exp. 9.58
Model 2Exp. 35.88
Model 1Theor. 2.36
Model 2Theor. 68.42
Figure 15 Tension zone
Figure 16 Compression zoneFigure 14 Load vs. displacement
SUMMARY OF WORK CARRIED
OUT
IV. LUSAS Finite Element Analysis
Applied actions:
PMODEL 1 = 5.7 kN
PMODEL 2 = 20.0 kN
Figure 17 Isometric view, LUSAS model Figure 18 Maximum principal stresses (Model 2)
Table 3 Stresses LUSAS vs. allowable, Compression ‘-‘, Tension ‘+’
Name N/mm2
ShearEpoxy ShearMasonry FlexureMasonry TensionSteel TensionEpoxy
Model 1LUSAS 0.24 (B) 0.78 / -0.92 (B)
Model 2LUSAS 2.91 (A-B) 0.84 (B) 2.70 / -3.50 (B) 8.99 (B) 0.01 (B)
Allowable 2.03 1.82 0.091 / -10.7 154 0.12
PROJECT FINDINGS
• The formation of four-hinge mechanism does not necessarily lead to ultimate collapse but rather to SLS failure in
unreinforced masonry arches.
• In masonry arches reinforced with the near surface reinforcement, as examined, it’s likely to get a failure via debonding of
reinforcement.
• Strengthening of the arch on the soffit with near surface reinforcement proves to provide a stiffer structure. It reduces
deflections and, prevents crack formation and propogation.
• This form of strenghtening of masonry arches proves to inefficient, as it difficult to utilize the tensile properties of
reinforcement at the hinges where it expected to be in tension.
• The four-hinge mechanism of failure is the mode of failure most likely to occur in the arch with a quarter-span point load,
however, it has been shown in leterature that in 90% of the cases the presence of the fill responsible for the stability of the
arch, thus it can result in a different mode of failure.
• Based on the limited models tested, the method of analysis to predict the collapse load for masonry arches must be treated
with caution as it heavily relies on the assumptions such as: abutments are rigid and the four-hinge mechanism of failure is
the only mode of failure allowed to develop.
Figure 19 Debonded reinforcement, tension zone. Figure 20 Debonded reinforcement, compression zone.
SUGGESTIONS FOR THE FUTURE
RESEARCH
• The assumptions that abutments are rigid must be strictly adhered to, this can be done by ensuring no rotation is allowed
in the reaction frame e.g. by providing spikes welded to the reaction frame to prevent the rotation of concrete abutment
inside the casing.
• To investigate the behaviuor and the mode of failure of the arches further, presence of the fill must be considered.
• Different method of reinforcing the arch may be concidered in aim to achieve a full composite action between steel and
masonry. This can be done by cutting grooves in the masonry and embedding steel bars inside the grooves which can
provide for a larger contact area between steel and brick. Also, mechanical ancors may be considered either insitu or
drilled to hold the steel in place.
• Provision of strain gauges on the reinforcing steel to record the stresses in the reinforcement during the testing. The
attempt must be made to place the gauges where hinges are expected to form on the intrados.
• Different finite element modelling techniques may by investigated to approximate the real structure. Finite element model
to simulate the cracked section can give more accurate results on the behaviour of the arch under load.
Figure 21 Abutment rotation.
THANK YOU
772-1:2011, I. S. E. 2011. Methods of test for masonry units- Part 1: Determination of compressive strength. NSAI.
1015-11:2000, I. S. E. 2000. Methods of test for mortar for masonry-part 11: determination of flexural and compressive strength of hardened mortar. NSAI.
1992-1-1:2005, I. S. E. 2005. Eurocode 2: Design of concrete structures. NSAI.
1993-1-1:2005, B. E. 2005. Eurocode 3: Design of steel structures. BSI.
12390-3:2009, I. S. E. 2009. Testing hardened concrete-Part 3: Compressive strength of test specimens. NSAI.
A.J., C. M. A. P. 1987. A mechanism program for computing the strength of masonry arch bridges. research report 124. Transport and road research laboratory.
AMRHEIN, J. E. 1972. Masonry design manual, Masonry Industry Advancement Committee.
BAKER, P. A. J. A. 1936. The Analysis of Engineering Structures. The voussoir Arch. Second Edition ed. London.
BSI 2000. BSI Code of practice for the use of masonry-part2 : The structural use of reinforced and prestrerssed masonry. BS 5628-2:2000.2000.
COLIN, C. 2011. Plastic Analysis. http://www.colincaprani.com/
CANCELLIERE, I., IMBIMBO, M. & SACCO, E. 2010. Experimental tests and numerical modelling of reinforced masonry arches. Engineering Structures, 32, 776-792.
CHEN Y., A. A. F., GARRITTY S.W. 2006. Modified four-hinge mechanism method for masonry arches strengthened with near-surface reinforcement. Engineering Structures.
COLIN, C. 2011. Virtual Work. http://www.colincaprani.com/
CURTIN, W. G., EASTERBROOK, D. & CURTINS CONSULTING ENGINEERS. 2006. Structural masonry designers' manual, Oxford ; Malden, MA, Blackwell Science.
GERE, J. M. 2009. Mechanics of materials, London, Cengage Learning.
HENDRY, A. W., SINHA, B. P. & DAVIES, S. R. Design of masonry structures, London, E. & F. N. Spoon.
HEYMAN, J. 1995. The stone skeleton : structural engineering of masonry architecture, Cambridge, Cambridge University Press.
HEYMAN, J. 1999. The science of structural engineering, London, Imperial College Press.
HEYMAN, J. 2008. Basic structural theory, Cambridge ; New York, Cambridge University Press.
KHARAB, A. & GUENTHER, R. B. 2006. An introduction to numerical methods : a MATLAB approach, Boca Raton, Fla. ; London, Chapman & Hall/CRC.
LUSAS 2011a. 'Element Reference Manual'. LUSAS Version 14 ed.
LUSAS 2011b. 'Introduction to LUSAS'. LUSAS Version 14 ed.
LUSAS 2011c. 'Theory Manual'. LUSAS Version 14 ed.
MELBOURNE, C. 1995. Arch bridges : proceedings of the First International Conference on Arch Bridges held at Bolton, UK on 3-6 September 1995, London, Thomas Telford.
MOSS, R. 1995. Guidance for engineers conducting static load tests on building structures. BRE information paper.
MOY, S. S. J. 1996. Plastic methods for steel and concrete structures, Basingstoke, Macmillan.
PAGE, J. & TRANSPORT RESEARCH LABORATORY (GREAT BRITAIN) 1993. Masonry arch bridges, London, HMSO.
TEYCHENNE, D. C., FRANKLIN, R. E., ERNTROY, H. C., MARSH, B. K. & BUILDING RESEARCH ESTABLISHMENT. 1997. Design of normal concrete mixes, Watford,
Construction Research Communications.
References

More Related Content

PPTX
Design of Concrete Structure 1
PPTX
STUDY ON BOND MECHANISM OF PSWC BARS WITH CONCRETE
PPTX
STUDY ON INFLUENCE OF RIB CONFIGURATION ON BOND STRENGTH DEVELOPMENT BETWEEN ...
PPT
Short Composite Columns - thesis
PPTX
Design and Detailing of RC structures
PDF
Design of reinforced concrete beam
PDF
Mechanism of load transfored...PRC-I
PPTX
RCC design using Abaqus software
Design of Concrete Structure 1
STUDY ON BOND MECHANISM OF PSWC BARS WITH CONCRETE
STUDY ON INFLUENCE OF RIB CONFIGURATION ON BOND STRENGTH DEVELOPMENT BETWEEN ...
Short Composite Columns - thesis
Design and Detailing of RC structures
Design of reinforced concrete beam
Mechanism of load transfored...PRC-I
RCC design using Abaqus software

What's hot (20)

PDF
Civil Engineering : Rcc & steel structures, THE GATE ACADEMY
PDF
Lec03 Flexural Behavior of RC Beams (Reinforced Concrete Design I & Prof. Abd...
PPTX
Beams and columns
PPTX
Rcc design by working stress method
PPT
introduction to concrete design
PDF
Lec.1 introduction
PPTX
Building Structure Project 1
PPT
Beam column connections
PPTX
Brief Study about Prestressed Steel Concrete Composite Girder
PDF
Chapter1
PDF
Reinforced concrete beams
PPTX
CONCRETE FILLED STEEL TUBULAR COLUMNS USING GS SHEET
PDF
Ch7 Box Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metw...
PDF
Shear connector 081281000409
PDF
Ch3 Design Considerations (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. M...
PDF
Design of rcc structures
PDF
Building Structure Project 1
PDF
An Overview On Box Girder Bridges
PDF
Reinforced Concrete
PDF
Pt slab design philosophy with slides and pictures showing benefit
Civil Engineering : Rcc & steel structures, THE GATE ACADEMY
Lec03 Flexural Behavior of RC Beams (Reinforced Concrete Design I & Prof. Abd...
Beams and columns
Rcc design by working stress method
introduction to concrete design
Lec.1 introduction
Building Structure Project 1
Beam column connections
Brief Study about Prestressed Steel Concrete Composite Girder
Chapter1
Reinforced concrete beams
CONCRETE FILLED STEEL TUBULAR COLUMNS USING GS SHEET
Ch7 Box Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metw...
Shear connector 081281000409
Ch3 Design Considerations (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. M...
Design of rcc structures
Building Structure Project 1
An Overview On Box Girder Bridges
Reinforced Concrete
Pt slab design philosophy with slides and pictures showing benefit
Ad

Viewers also liked (14)

PDF
GESTIÓN DE PROCESOS PARA UN LIDERAZGO PEDAGÓGICO
PDF
Foto 9
DOCX
Planificación lenguaje visual ultimo
PDF
ผลการดำเนินการจัดซื้อจัดจ้างในรอบเดือน ตุลาคม 2559
PDF
Turbo jam guidebook 10
PPSX
Cb08 lara perez_lizet_gimena
PDF
Motivación al éxito: Lucoski y el fortalecimiento cultural
PDF
Proyecto COLPA para Organizar una Biblioteca Escolar
PDF
ประกาศเทศบาลตำบลท่าเสา เรื่อง ให้ผู้รับประเมินซึ่งมีกรรมสิทธิ์ในทรัพย์สินที่ต...
DOCX
Actividad elaboración de una historieta
DOCX
Fórmula de lectura gevlprr
GESTIÓN DE PROCESOS PARA UN LIDERAZGO PEDAGÓGICO
Foto 9
Planificación lenguaje visual ultimo
ผลการดำเนินการจัดซื้อจัดจ้างในรอบเดือน ตุลาคม 2559
Turbo jam guidebook 10
Cb08 lara perez_lizet_gimena
Motivación al éxito: Lucoski y el fortalecimiento cultural
Proyecto COLPA para Organizar una Biblioteca Escolar
ประกาศเทศบาลตำบลท่าเสา เรื่อง ให้ผู้รับประเมินซึ่งมีกรรมสิทธิ์ในทรัพย์สินที่ต...
Actividad elaboración de una historieta
Fórmula de lectura gevlprr
Ad

Similar to Thesis presentation (20)

PDF
Lesson9 2nd Part
PDF
gazepidisf_masonry
PDF
Analysis, Design, and Estimation of Multi-Storied Institutional Building by u...
PDF
A brief comparison between mechanical aspects and construction of Arch Bridge...
PDF
Masonry structures behavior and design
PPTX
Seismic Design of Masonry Structure.pptx
PPTX
Modelling masonry structures using discrete element method
PPT
Arches - Form Active Structure System
PDF
“Analysis and design of multi storeyed load bearing reinforced masonry struct...
PDF
Design masonry walls for gravity loads.pdf
PDF
Comparison of Mesh Type Seismic Retrofitting for Masonry Structures
PDF
Large span structures_new
PDF
2000 magenes a method for pushover analysis in seismic asesment of masonry bu...
PPTX
Earthquake Resistant Masonry Buildings
PPTX
Masonry Arch Bridges_May_2021.pptx
PPT
Design of Reinforced Masonry
PDF
Lecture 4 5 Urm Shear Walls
PDF
UNIT 1 Construction of Reinforced Masonry Walls, Pillars and Lintels.pdf
PPTX
Improve Earthquake Resistivity of Stone masonry Buildings
PPT
Arch System
Lesson9 2nd Part
gazepidisf_masonry
Analysis, Design, and Estimation of Multi-Storied Institutional Building by u...
A brief comparison between mechanical aspects and construction of Arch Bridge...
Masonry structures behavior and design
Seismic Design of Masonry Structure.pptx
Modelling masonry structures using discrete element method
Arches - Form Active Structure System
“Analysis and design of multi storeyed load bearing reinforced masonry struct...
Design masonry walls for gravity loads.pdf
Comparison of Mesh Type Seismic Retrofitting for Masonry Structures
Large span structures_new
2000 magenes a method for pushover analysis in seismic asesment of masonry bu...
Earthquake Resistant Masonry Buildings
Masonry Arch Bridges_May_2021.pptx
Design of Reinforced Masonry
Lecture 4 5 Urm Shear Walls
UNIT 1 Construction of Reinforced Masonry Walls, Pillars and Lintels.pdf
Improve Earthquake Resistivity of Stone masonry Buildings
Arch System

Thesis presentation

  • 1. THE FOUR-HINGE METHOD OF ANALYSIS OF MASONRY ARCHES STUDENT: PAVEL TROFIMOV D08118499 DT024/4
  • 2. SUMMARY OF WORK CARRIED OUT I. Preliminary design Figure 3 Segmental masonry arch Figure 1 Force diagram Figure 2 Line of thrust Table 1 Stresses in the arch Due to self-weight fm.min = 0.035 (N/mm2 ) , Tension fm.max = 0.068 (N/mm2 ) , Compression Allowable ft.bond.MIN = 0.091 (N/mm2 ), Tension fm.k = 10.7 (N/mm2 ), Compression
  • 3. SUMMARY OF WORK CARRIED OUT II. Theoretical analysis Results Model 1 (Unreinforced) P = 2.4 kN αB=64.97˚ βC=70.44˚ Model 2 (Reinforced) P = 68.4 kN αB=64.97˚ βC=57.39˚ Figure 6 Angles to hinges B&C Figure 5 Collapse load Model 2Figure 4 Collapse load Model 1
  • 4. SUMMARY OF WORK CARRIED OUT III. Experimental Figure 7 Experimental setup Figure 8 Arch contruction Figure 9 Abutment model 2 Figure 11 Model 1 test setupFigure 10 Abutment model
  • 5. PROJECT FINDINGS Figure 12 Failure mode, Model 1 Figure 13 Failure mode, Model 2 Table 2 Collapse load Name kN Model 1Exp. 9.58 Model 2Exp. 35.88 Model 1Theor. 2.36 Model 2Theor. 68.42 Figure 15 Tension zone Figure 16 Compression zoneFigure 14 Load vs. displacement
  • 6. SUMMARY OF WORK CARRIED OUT IV. LUSAS Finite Element Analysis Applied actions: PMODEL 1 = 5.7 kN PMODEL 2 = 20.0 kN Figure 17 Isometric view, LUSAS model Figure 18 Maximum principal stresses (Model 2) Table 3 Stresses LUSAS vs. allowable, Compression ‘-‘, Tension ‘+’ Name N/mm2 ShearEpoxy ShearMasonry FlexureMasonry TensionSteel TensionEpoxy Model 1LUSAS 0.24 (B) 0.78 / -0.92 (B) Model 2LUSAS 2.91 (A-B) 0.84 (B) 2.70 / -3.50 (B) 8.99 (B) 0.01 (B) Allowable 2.03 1.82 0.091 / -10.7 154 0.12
  • 7. PROJECT FINDINGS • The formation of four-hinge mechanism does not necessarily lead to ultimate collapse but rather to SLS failure in unreinforced masonry arches. • In masonry arches reinforced with the near surface reinforcement, as examined, it’s likely to get a failure via debonding of reinforcement. • Strengthening of the arch on the soffit with near surface reinforcement proves to provide a stiffer structure. It reduces deflections and, prevents crack formation and propogation. • This form of strenghtening of masonry arches proves to inefficient, as it difficult to utilize the tensile properties of reinforcement at the hinges where it expected to be in tension. • The four-hinge mechanism of failure is the mode of failure most likely to occur in the arch with a quarter-span point load, however, it has been shown in leterature that in 90% of the cases the presence of the fill responsible for the stability of the arch, thus it can result in a different mode of failure. • Based on the limited models tested, the method of analysis to predict the collapse load for masonry arches must be treated with caution as it heavily relies on the assumptions such as: abutments are rigid and the four-hinge mechanism of failure is the only mode of failure allowed to develop. Figure 19 Debonded reinforcement, tension zone. Figure 20 Debonded reinforcement, compression zone.
  • 8. SUGGESTIONS FOR THE FUTURE RESEARCH • The assumptions that abutments are rigid must be strictly adhered to, this can be done by ensuring no rotation is allowed in the reaction frame e.g. by providing spikes welded to the reaction frame to prevent the rotation of concrete abutment inside the casing. • To investigate the behaviuor and the mode of failure of the arches further, presence of the fill must be considered. • Different method of reinforcing the arch may be concidered in aim to achieve a full composite action between steel and masonry. This can be done by cutting grooves in the masonry and embedding steel bars inside the grooves which can provide for a larger contact area between steel and brick. Also, mechanical ancors may be considered either insitu or drilled to hold the steel in place. • Provision of strain gauges on the reinforcing steel to record the stresses in the reinforcement during the testing. The attempt must be made to place the gauges where hinges are expected to form on the intrados. • Different finite element modelling techniques may by investigated to approximate the real structure. Finite element model to simulate the cracked section can give more accurate results on the behaviour of the arch under load. Figure 21 Abutment rotation.
  • 10. 772-1:2011, I. S. E. 2011. Methods of test for masonry units- Part 1: Determination of compressive strength. NSAI. 1015-11:2000, I. S. E. 2000. Methods of test for mortar for masonry-part 11: determination of flexural and compressive strength of hardened mortar. NSAI. 1992-1-1:2005, I. S. E. 2005. Eurocode 2: Design of concrete structures. NSAI. 1993-1-1:2005, B. E. 2005. Eurocode 3: Design of steel structures. BSI. 12390-3:2009, I. S. E. 2009. Testing hardened concrete-Part 3: Compressive strength of test specimens. NSAI. A.J., C. M. A. P. 1987. A mechanism program for computing the strength of masonry arch bridges. research report 124. Transport and road research laboratory. AMRHEIN, J. E. 1972. Masonry design manual, Masonry Industry Advancement Committee. BAKER, P. A. J. A. 1936. The Analysis of Engineering Structures. The voussoir Arch. Second Edition ed. London. BSI 2000. BSI Code of practice for the use of masonry-part2 : The structural use of reinforced and prestrerssed masonry. BS 5628-2:2000.2000. COLIN, C. 2011. Plastic Analysis. http://www.colincaprani.com/ CANCELLIERE, I., IMBIMBO, M. & SACCO, E. 2010. Experimental tests and numerical modelling of reinforced masonry arches. Engineering Structures, 32, 776-792. CHEN Y., A. A. F., GARRITTY S.W. 2006. Modified four-hinge mechanism method for masonry arches strengthened with near-surface reinforcement. Engineering Structures. COLIN, C. 2011. Virtual Work. http://www.colincaprani.com/ CURTIN, W. G., EASTERBROOK, D. & CURTINS CONSULTING ENGINEERS. 2006. Structural masonry designers' manual, Oxford ; Malden, MA, Blackwell Science. GERE, J. M. 2009. Mechanics of materials, London, Cengage Learning. HENDRY, A. W., SINHA, B. P. & DAVIES, S. R. Design of masonry structures, London, E. & F. N. Spoon. HEYMAN, J. 1995. The stone skeleton : structural engineering of masonry architecture, Cambridge, Cambridge University Press. HEYMAN, J. 1999. The science of structural engineering, London, Imperial College Press. HEYMAN, J. 2008. Basic structural theory, Cambridge ; New York, Cambridge University Press. KHARAB, A. & GUENTHER, R. B. 2006. An introduction to numerical methods : a MATLAB approach, Boca Raton, Fla. ; London, Chapman & Hall/CRC. LUSAS 2011a. 'Element Reference Manual'. LUSAS Version 14 ed. LUSAS 2011b. 'Introduction to LUSAS'. LUSAS Version 14 ed. LUSAS 2011c. 'Theory Manual'. LUSAS Version 14 ed. MELBOURNE, C. 1995. Arch bridges : proceedings of the First International Conference on Arch Bridges held at Bolton, UK on 3-6 September 1995, London, Thomas Telford. MOSS, R. 1995. Guidance for engineers conducting static load tests on building structures. BRE information paper. MOY, S. S. J. 1996. Plastic methods for steel and concrete structures, Basingstoke, Macmillan. PAGE, J. & TRANSPORT RESEARCH LABORATORY (GREAT BRITAIN) 1993. Masonry arch bridges, London, HMSO. TEYCHENNE, D. C., FRANKLIN, R. E., ERNTROY, H. C., MARSH, B. K. & BUILDING RESEARCH ESTABLISHMENT. 1997. Design of normal concrete mixes, Watford, Construction Research Communications. References