SlideShare a Scribd company logo
1/40
Tools for Research Plotting
01
Mrs. Nimrita Koul
School of Computing & IT
Contents
• Python Plots - matplotlib
• R Plots
3
Download Options for Python
• www.python.org/downloads
• https://www.anaconda.com/download/
• Installing Matplotlib
• python -m pip install -U matplotlib
• conda install -c conda-forge matplotlib
4
matplotlib Dependencies
• Python (>= 3.5)
• FreeType (>= 2.3)
• libpng (>= 1.2)
• NumPy (>= 1.10.0)
• setuptools
• cycler (>= 0.10.0)
• dateutil (>= 2.1)
• kiwisolver (>= 1.0.0)
• pyparsing
5
6
matplotlip
Most used Python
package for 2D-
graphics
pyplot provides a
convenient interface
to the matplotlib
very quick
Publication-
quality figures
in many formats
7
8
Examples
9
10
11
12
13
14
15
16
Other Types of Plots in matplotlib
17
18
R Plots
19
Installing R
20
Installing R-Studio
21
R Studio
22
• An IDE for R
• Runs on Windows, Mac OS X and Linux
• RStudio project has following folders for default content
types:
 code: source code
 data: raw data, cleaned data
 figures: charts and graphs
 docs: documents and reports
 models: analytics models
R Plots
• > cars <- c(1, 3, 6, 4, 9)
• > plot(cars)
23
• cars <- c(1, 3, 6, 4, 9)
• # Graph cars using blue points overlayed by a
line
• plot(cars, type="o", col="blue")
• # Create a title with a red, bold/italic font
• title(main="Autos", col.main="red", font.main=4)
24
• # Define 2 vectors
• cars <- c(1, 3, 6, 4, 9)
• trucks <- c(2, 5, 4, 5, 12)
• # Graph cars using a y axis that ranges from 0 to 12
• plot(cars, type="o", col="blue", ylim=c(0,12))
• # Graph trucks with red dashed line and square points
• lines(trucks, type="o", pch=22, lty=2, col="red")
• # Create a title with a red, bold/italic font
• title(main="Autos", col.main="red", font.main=4)
25
26
• # Define 2 vectors
• cars <- c(1, 3, 6, 4, 9)
• trucks <- c(2, 5, 4, 5, 12)
• # Calculate range from 0 to max value of cars and trucks
• g_range <- range(0, cars, trucks)
• # Graph autos using y axis that ranges from 0 to max value in cars or trucks vector.
#Turn off axes and annotations (axis labels) so we can specify them our self
• plot(cars, type="o", col="blue", ylim=g_range, axes=FALSE, ann=FALSE)
• # Make x axis using Mon-Fri labels
• axis(1, at=1:5, lab=c("Mon","Tue","Wed","Thu","Fri"))
• # Make y axis with horizontal labels that display ticks at every 4 marks.
#4*0:g_range[2] is equivalent to c(0,4,8,12).
• axis(2, las=1, at=4*0:g_range[2])
27
• # Create box around plot
• box()
• # Graph trucks with red dashed line and square points
• lines(trucks, type="o", pch=22, lty=2, col="red")
• # Create a title with a red, bold/italic font
• title(main="Autos", col.main="red", font.main=4)
• # Label the x and y axes with dark green text
• title(xlab="Days", col.lab=rgb(0,0.5,0))
• title(ylab="Total", col.lab=rgb(0,0.5,0))
• # Create a legend at (1, g_range[2]) that is slightly smaller # (cex) and uses the same
#line colors and points used by the actual plots
• legend(1, g_range[2], c("cars","trucks"), cex=0.8,
• col=c("blue","red"), pch=21:22, lty=1:2);
28
Result
29
Plotting from a file• # Read car and truck values from tab-delimited autos.dat
• autos_data <- read.table("C:/R/autos.dat", header=T, sep="t")
• # Compute the largest y value used in the data (or we could # just use range again)
• max_y <- max(autos_data)
• # Define colors to be used for cars, trucks, suvs
• plot_colors <- c("blue","red","forestgreen")
• # Start PNG device driver to save output to figure.png
• png(filename="C:/R/figure.png", height=295, width=300, bg="white")
• # Graph autos using y axis that ranges from 0 to max_y. # Turn off axes and annotations (axis labels) so we can
• # specify them ourself
• plot(autos_data$cars, type="o", col=plot_colors[1], ylim=c(0,max_y), axes=FALSE, ann=FALSE)
• # Make x axis using Mon-Fri labels
• axis(1, at=1:5, lab=c("Mon", "Tue", "Wed", "Thu", "Fri"))
• # Make y axis with horizontal labels that display ticks at every 4 marks. 4*0:max_y is equivalent to c(0,4,8,12).
• axis(2, las=1, at=4*0:max_y)
30
• # Create box around plot
• box()
• # Graph trucks with red dashed line and square points
• lines(autos_data$trucks, type="o", pch=22, lty=2, col=plot_colors[2])
• # Graph suvs with green dotted line and diamond points
• lines(autos_data$suvs, type="o", pch=23, lty=3, col=plot_colors[3])
• # Create a title with a red, bold/italic font
• title(main="Autos", col.main="red", font.main=4)
• # Label the x and y axes with dark green text
• title(xlab= "Days", col.lab=rgb(0,0.5,0))
• title(ylab= "Total", col.lab=rgb(0,0.5,0))
• # Create a legend at (1, max_y) that is slightly smaller # (cex) and uses the same line colors and points used by
• # the actual plots
• legend(1, max_y, names(autos_data), cex=0.8, col=plot_colors, pch=21:23, lty=1:3);
•
• # Turn off device driver (to flush output to png)
• dev.off()
31
Plot from data in auto.dat
32
Bar charts
• # Read values from tab-delimited autos.dat
• autos_data <- read.table("C:/R/autos.dat", header=T,
sep="t")
• # Graph cars with specified labels for axes. Use blue
• # borders and diagnal lines in bars.
• barplot(autos_data$cars, main="Cars", xlab="Days",
• ylab="Total", names.arg=
c("Mon","Tue","Wed","Thu","Fri"),
• border="blue", density=c(10,20,30,40,50))
33
34
Other Plots in R
35
36
37
38
39
40
Tools for research plotting

More Related Content

KEY
Proga 0608
PPTX
Visualization team presentation
PPT
Thesis PPT
PPTX
Python at 10.1
PDF
sin cos & tan (Plot using MATLAB)
KEY
Proga 0518
PPT
Clojure
PPTX
A* Algorithm
Proga 0608
Visualization team presentation
Thesis PPT
Python at 10.1
sin cos & tan (Plot using MATLAB)
Proga 0518
Clojure
A* Algorithm

What's hot (18)

PDF
Chapter13 two-dimensional-array
PPT
4.5 sec and csc worked 3rd
PPT
4.5 tan and cot.ppt worked
DOCX
R forecasting Example
PPTX
IGraph a tool to analyze your network
PPT
Module 2 topic 2 notes
KEY
Kwp2 091217
PPTX
RBootcamp Day 4
PDF
10 - Scala. Co-product type (sum type)
PDF
Examplelf flowchart
PPTX
Butterfly Counting in Bipartite Networks
PDF
[TechPlayConf]Rekognition導入事例
PDF
Loom at Clojure/West
PPTX
Loom & Functional Graphs in Clojure @ LambdaConf 2015
PDF
Loom and Graphs in Clojure
PDF
Scalaエンジニアのためのモナド入門
PPTX
RBootcam Day 2
PPTX
La R Users Group Survey Of R Graphics
Chapter13 two-dimensional-array
4.5 sec and csc worked 3rd
4.5 tan and cot.ppt worked
R forecasting Example
IGraph a tool to analyze your network
Module 2 topic 2 notes
Kwp2 091217
RBootcamp Day 4
10 - Scala. Co-product type (sum type)
Examplelf flowchart
Butterfly Counting in Bipartite Networks
[TechPlayConf]Rekognition導入事例
Loom at Clojure/West
Loom & Functional Graphs in Clojure @ LambdaConf 2015
Loom and Graphs in Clojure
Scalaエンジニアのためのモナド入門
RBootcam Day 2
La R Users Group Survey Of R Graphics
Ad

Similar to Tools for research plotting (20)

PDF
M4_DAR_part1. module part 4 analystics with r
PPT
R graphics
DOCX
Week-3 – System RSupplemental material1Recap •.docx
DOCX
Data visualization with R and ggplot2.docx
PPT
A Survey Of R Graphics
PDF
Data Visualization With R
PDF
R programming for data science
PDF
R training5
PDF
Presentation: Plotting Systems in R
PDF
Introduction to R for data science
PPTX
a9bf73_Introduction to Matplotlib01.pptx
PPTX
UNIT_4_data visualization.pptx
PPTX
An implementation of the grammar of graphics: ggplot
PDF
Data Visualization in R (Graph, Trend, etc)
PPT
R studio
PPTX
Exploratory data analysis using r
PPTX
Exploratory Data Analysis
PPTX
Tech talk ggplot2
PDF
Ggplot2 ch2
PDF
Introduction to R Graphics with ggplot2
M4_DAR_part1. module part 4 analystics with r
R graphics
Week-3 – System RSupplemental material1Recap •.docx
Data visualization with R and ggplot2.docx
A Survey Of R Graphics
Data Visualization With R
R programming for data science
R training5
Presentation: Plotting Systems in R
Introduction to R for data science
a9bf73_Introduction to Matplotlib01.pptx
UNIT_4_data visualization.pptx
An implementation of the grammar of graphics: ggplot
Data Visualization in R (Graph, Trend, etc)
R studio
Exploratory data analysis using r
Exploratory Data Analysis
Tech talk ggplot2
Ggplot2 ch2
Introduction to R Graphics with ggplot2
Ad

Recently uploaded (20)

PPTX
The Effect of Human Resource Management Practice on Organizational Performanc...
DOCX
ENGLISH PROJECT FOR BINOD BIHARI MAHTO KOYLANCHAL UNIVERSITY
PPTX
Learning-Plan-5-Policies-and-Practices.pptx
PPTX
Hydrogel Based delivery Cancer Treatment
PPTX
An Unlikely Response 08 10 2025.pptx
PPTX
Non-Verbal-Communication .mh.pdf_110245_compressed.pptx
PDF
Presentation1 [Autosaved].pdf diagnosiss
DOCX
"Project Management: Ultimate Guide to Tools, Techniques, and Strategies (2025)"
PPTX
Anesthesia and it's stage with mnemonic and images
PDF
oil_refinery_presentation_v1 sllfmfls.pdf
PPTX
Human Mind & its character Characteristics
PPT
The Effect of Human Resource Management Practice on Organizational Performanc...
PPTX
Intro to ISO 9001 2015.pptx wareness raising
PPTX
Effective_Handling_Information_Presentation.pptx
PPTX
PHIL.-ASTRONOMY-AND-NAVIGATION of ..pptx
PPT
First Aid Training Presentation Slides.ppt
PDF
Nykaa-Strategy-Case-Fixing-Retention-UX-and-D2C-Engagement (1).pdf
PPTX
Primary and secondary sources, and history
PDF
Instagram's Product Secrets Unveiled with this PPT
PPTX
Relationship Management Presentation In Banking.pptx
The Effect of Human Resource Management Practice on Organizational Performanc...
ENGLISH PROJECT FOR BINOD BIHARI MAHTO KOYLANCHAL UNIVERSITY
Learning-Plan-5-Policies-and-Practices.pptx
Hydrogel Based delivery Cancer Treatment
An Unlikely Response 08 10 2025.pptx
Non-Verbal-Communication .mh.pdf_110245_compressed.pptx
Presentation1 [Autosaved].pdf diagnosiss
"Project Management: Ultimate Guide to Tools, Techniques, and Strategies (2025)"
Anesthesia and it's stage with mnemonic and images
oil_refinery_presentation_v1 sllfmfls.pdf
Human Mind & its character Characteristics
The Effect of Human Resource Management Practice on Organizational Performanc...
Intro to ISO 9001 2015.pptx wareness raising
Effective_Handling_Information_Presentation.pptx
PHIL.-ASTRONOMY-AND-NAVIGATION of ..pptx
First Aid Training Presentation Slides.ppt
Nykaa-Strategy-Case-Fixing-Retention-UX-and-D2C-Engagement (1).pdf
Primary and secondary sources, and history
Instagram's Product Secrets Unveiled with this PPT
Relationship Management Presentation In Banking.pptx

Tools for research plotting

  • 2. Tools for Research Plotting 01 Mrs. Nimrita Koul School of Computing & IT
  • 3. Contents • Python Plots - matplotlib • R Plots 3
  • 4. Download Options for Python • www.python.org/downloads • https://www.anaconda.com/download/ • Installing Matplotlib • python -m pip install -U matplotlib • conda install -c conda-forge matplotlib 4
  • 5. matplotlib Dependencies • Python (>= 3.5) • FreeType (>= 2.3) • libpng (>= 1.2) • NumPy (>= 1.10.0) • setuptools • cycler (>= 0.10.0) • dateutil (>= 2.1) • kiwisolver (>= 1.0.0) • pyparsing 5
  • 6. 6 matplotlip Most used Python package for 2D- graphics pyplot provides a convenient interface to the matplotlib very quick Publication- quality figures in many formats
  • 7. 7
  • 9. 9
  • 10. 10
  • 11. 11
  • 12. 12
  • 13. 13
  • 14. 14
  • 15. 15
  • 16. 16 Other Types of Plots in matplotlib
  • 17. 17
  • 18. 18
  • 22. R Studio 22 • An IDE for R • Runs on Windows, Mac OS X and Linux • RStudio project has following folders for default content types:  code: source code  data: raw data, cleaned data  figures: charts and graphs  docs: documents and reports  models: analytics models
  • 23. R Plots • > cars <- c(1, 3, 6, 4, 9) • > plot(cars) 23
  • 24. • cars <- c(1, 3, 6, 4, 9) • # Graph cars using blue points overlayed by a line • plot(cars, type="o", col="blue") • # Create a title with a red, bold/italic font • title(main="Autos", col.main="red", font.main=4) 24
  • 25. • # Define 2 vectors • cars <- c(1, 3, 6, 4, 9) • trucks <- c(2, 5, 4, 5, 12) • # Graph cars using a y axis that ranges from 0 to 12 • plot(cars, type="o", col="blue", ylim=c(0,12)) • # Graph trucks with red dashed line and square points • lines(trucks, type="o", pch=22, lty=2, col="red") • # Create a title with a red, bold/italic font • title(main="Autos", col.main="red", font.main=4) 25
  • 26. 26
  • 27. • # Define 2 vectors • cars <- c(1, 3, 6, 4, 9) • trucks <- c(2, 5, 4, 5, 12) • # Calculate range from 0 to max value of cars and trucks • g_range <- range(0, cars, trucks) • # Graph autos using y axis that ranges from 0 to max value in cars or trucks vector. #Turn off axes and annotations (axis labels) so we can specify them our self • plot(cars, type="o", col="blue", ylim=g_range, axes=FALSE, ann=FALSE) • # Make x axis using Mon-Fri labels • axis(1, at=1:5, lab=c("Mon","Tue","Wed","Thu","Fri")) • # Make y axis with horizontal labels that display ticks at every 4 marks. #4*0:g_range[2] is equivalent to c(0,4,8,12). • axis(2, las=1, at=4*0:g_range[2]) 27
  • 28. • # Create box around plot • box() • # Graph trucks with red dashed line and square points • lines(trucks, type="o", pch=22, lty=2, col="red") • # Create a title with a red, bold/italic font • title(main="Autos", col.main="red", font.main=4) • # Label the x and y axes with dark green text • title(xlab="Days", col.lab=rgb(0,0.5,0)) • title(ylab="Total", col.lab=rgb(0,0.5,0)) • # Create a legend at (1, g_range[2]) that is slightly smaller # (cex) and uses the same #line colors and points used by the actual plots • legend(1, g_range[2], c("cars","trucks"), cex=0.8, • col=c("blue","red"), pch=21:22, lty=1:2); 28
  • 30. Plotting from a file• # Read car and truck values from tab-delimited autos.dat • autos_data <- read.table("C:/R/autos.dat", header=T, sep="t") • # Compute the largest y value used in the data (or we could # just use range again) • max_y <- max(autos_data) • # Define colors to be used for cars, trucks, suvs • plot_colors <- c("blue","red","forestgreen") • # Start PNG device driver to save output to figure.png • png(filename="C:/R/figure.png", height=295, width=300, bg="white") • # Graph autos using y axis that ranges from 0 to max_y. # Turn off axes and annotations (axis labels) so we can • # specify them ourself • plot(autos_data$cars, type="o", col=plot_colors[1], ylim=c(0,max_y), axes=FALSE, ann=FALSE) • # Make x axis using Mon-Fri labels • axis(1, at=1:5, lab=c("Mon", "Tue", "Wed", "Thu", "Fri")) • # Make y axis with horizontal labels that display ticks at every 4 marks. 4*0:max_y is equivalent to c(0,4,8,12). • axis(2, las=1, at=4*0:max_y) 30
  • 31. • # Create box around plot • box() • # Graph trucks with red dashed line and square points • lines(autos_data$trucks, type="o", pch=22, lty=2, col=plot_colors[2]) • # Graph suvs with green dotted line and diamond points • lines(autos_data$suvs, type="o", pch=23, lty=3, col=plot_colors[3]) • # Create a title with a red, bold/italic font • title(main="Autos", col.main="red", font.main=4) • # Label the x and y axes with dark green text • title(xlab= "Days", col.lab=rgb(0,0.5,0)) • title(ylab= "Total", col.lab=rgb(0,0.5,0)) • # Create a legend at (1, max_y) that is slightly smaller # (cex) and uses the same line colors and points used by • # the actual plots • legend(1, max_y, names(autos_data), cex=0.8, col=plot_colors, pch=21:23, lty=1:3); • • # Turn off device driver (to flush output to png) • dev.off() 31
  • 32. Plot from data in auto.dat 32
  • 33. Bar charts • # Read values from tab-delimited autos.dat • autos_data <- read.table("C:/R/autos.dat", header=T, sep="t") • # Graph cars with specified labels for axes. Use blue • # borders and diagnal lines in bars. • barplot(autos_data$cars, main="Cars", xlab="Days", • ylab="Total", names.arg= c("Mon","Tue","Wed","Thu","Fri"), • border="blue", density=c(10,20,30,40,50)) 33
  • 34. 34
  • 36. 36
  • 37. 37
  • 38. 38
  • 39. 39
  • 40. 40