SlideShare a Scribd company logo
http://simonborgert.com          http://onlinemaths.net   © Simon Borgert 2011




                          Further Trig Formulae
http://simonborgert.com http://onlinemaths.net                         © Simon Borgert 2011


                           Products as Sums or
                               Differences
                               sin(A + B) = sin A cos B + cos Asin B
                               sin(A − B) = sin A cos B − cos Asin B
                                      Add the two together
http://simonborgert.com http://onlinemaths.net                            © Simon Borgert 2011


                           Products as Sums or
                               Differences
                               sin(A + B) = sin A cos B + cos Asin B
                               sin(A − B) = sin A cos B − cos Asin B
                                      Add the two together
                                 2sin A cos B = sin(A + B) + sin(A − B)
                                                  or
http://simonborgert.com http://onlinemaths.net                               © Simon Borgert 2011


                           Products as Sums or
                               Differences
                               sin(A + B) = sin A cos B + cos Asin B
                               sin(A − B) = sin A cos B − cos Asin B
                                      Add the two together
                                 2sin A cos B = sin(A + B) + sin(A − B)
                                                  or
                                 2sin A cos B = sin(sum) + sin(difference)
http://simonborgert.com http://onlinemaths.net                               © Simon Borgert 2011


                           Products as Sums or
                               Differences
                               sin(A + B) = sin A cos B + cos Asin B
                               sin(A − B) = sin A cos B − cos Asin B
                                      Add the two together
                                 2sin A cos B = sin(A + B) + sin(A − B)
                                                  or
                                 2sin A cos B = sin(sum) + sin(difference)
                                             1          1
                                sin A cos B = sin(sum) + sin(difference)
                                             2          2
http://simonborgert.com http://onlinemaths.net                               © Simon Borgert 2011


                           Products as Sums or
                               Differences
                               sin(A + B) = sin A cos B + cos Asin B
                               sin(A − B) = sin A cos B − cos Asin B
                                Subtract the second from the first
                                 2 cos Asin B = sin(A + B) − sin(A − B)
                                                  or
                                 2 cos Asin B = sin(sum) − sin(difference)
                                              1          1
                                  cos Asin B = sin(sum) − sin(difference)
                                              2          2
http://simonborgert.com http://onlinemaths.net                           © Simon Borgert 2011


                           Products as Sums or
                               Differences
                               cos(A + B) = cos A cos B − sin Asin B
                               cos(A − B) = cos A cos B + sin Asin B
                                     Add the two together
                                2 cos A cos B = cos(A + B) + cos(A − B)
                                                  or
                                2 cos A cos B = cos(sum) + cos(difference)
                                             1          1
                                cos A cos B = cos(sum) + cos(difference)
                                             2          2
http://simonborgert.com http://onlinemaths.net                             © Simon Borgert 2011


                           Products as Sums or
                               Differences
                               cos(A + B) = cos A cos B − sin Asin B
                               cos(A − B) = cos A cos B + sin Asin B
                                Subtract the first from the second
                                2sin Asin B = cos(A − B) − cos(A + B)
                                                or
                                2sin Asin B = cos(difference) − cos(sum)
                                           1                 1
                               sin Asin B = cos(difference) − cos(sum)
                                           2                 2
http://simonborgert.com http://onlinemaths.net                      © Simon Borgert 2011



                                             Summary
                        2sin A cos B = sin(sum) + sin(difference)


                        2 cos Asin B = sin(sum) − sin(difference)

                       2 cos A cos B = cos(sum) + cos(difference)


                        2sin Asin B = cos(difference) − cos(sum)
http://simonborgert.com http://onlinemaths.net                     © Simon Borgert 2011




                                                 or...
                                     1          1
                        sin A cos B = sin(sum) + sin(difference)
                                     2          2
                                    1          1
                        cos Asin B = sin(sum) − sin(difference)
                                    2          2
                                    1          1
                       cos A cos B = cos(sum) + cos(difference)
                                    2          2
                                    1                 1
                        sin Asin B = cos(difference) − cos(sum)
                                    2                 2
http://simonborgert.com http://onlinemaths.net                         © Simon Borgert 2011




                                            Example 1
          Express the product of cos 5x sin 3x as a sum of trigonometric functions
http://simonborgert.com http://onlinemaths.net                         © Simon Borgert 2011




                                            Example 1
          Express the product of cos 5x sin 3x as a sum of trigonometric functions
   Step 1: Identify the product to sum formula
http://simonborgert.com http://onlinemaths.net                         © Simon Borgert 2011




                                            Example 1
          Express the product of cos 5x sin 3x as a sum of trigonometric functions
   Step 1: Identify the product to sum formula
                          1          1
              cos Asin B = sin(sum) − sin(difference)
                          2          2
http://simonborgert.com http://onlinemaths.net                         © Simon Borgert 2011




                                            Example 1
          Express the product of cos 5x sin 3x as a sum of trigonometric functions
  Step 1: Identify the product to sum formula
                         1          1
             cos Asin B = sin(sum) − sin(difference)
                         2          2
  Step 2: Apply it to the given product
http://simonborgert.com http://onlinemaths.net                         © Simon Borgert 2011




                                            Example 1
          Express the product of cos 5x sin 3x as a sum of trigonometric functions
  Step 1: Identify the product to sum formula
                           1           1
             cos Asin B = sin(sum) − sin(difference)
                           2           2
  Step 2: Apply it to the given product
                           1              1
            cos 5x sin 3x = sin(5x + 3x) − sin(5x − 3x)
                           2              2
http://simonborgert.com http://onlinemaths.net                         © Simon Borgert 2011




                                            Example 1
          Express the product of cos 5x sin 3x as a sum of trigonometric functions
  Step 1: Identify the product to sum formula
                           1           1
             cos Asin B = sin(sum) − sin(difference)
                           2           2
  Step 2: Apply it to the given product
                           1              1
            cos 5x sin 3x = sin(5x + 3x) − sin(5x − 3x)
                           2              2
                                             1         1
                                            = sin(8x) − sin(2x)
                                             2         2
http://simonborgert.com http://onlinemaths.net                         © Simon Borgert 2011




                                            Example 2
       Express the product of 2sin3x sin 2x as a difference of trigonometric functions
   Step 1: Identify the product to sum formula
http://simonborgert.com http://onlinemaths.net                         © Simon Borgert 2011




                                            Example 2
       Express the product of 2sin3x sin 2x as a difference of trigonometric functions
   Step 1: Identify the product to sum formula
                         2sin Asin B = cos(difference) − cos(sum)
http://simonborgert.com http://onlinemaths.net                         © Simon Borgert 2011




                                            Example 2
       Express the product of 2sin3x sin 2x as a difference of trigonometric functions
   Step 1: Identify the product to sum formula
                         2sin Asin B = cos(difference) − cos(sum)

  Step 2: Apply it to the given product
http://simonborgert.com http://onlinemaths.net                         © Simon Borgert 2011




                                            Example 2
       Express the product of 2sin3x sin 2x as a difference of trigonometric functions
   Step 1: Identify the product to sum formula
                         2sin Asin B = cos(difference) − cos(sum)

  Step 2: Apply it to the given product
                      2sin 3x sin 2x = cos(3x − 2x) − cos(3x + 2x)
http://simonborgert.com http://onlinemaths.net                         © Simon Borgert 2011




                                            Example 2
       Express the product of 2sin3x sin 2x as a difference of trigonometric functions
   Step 1: Identify the product to sum formula
                         2sin Asin B = cos(difference) − cos(sum)

  Step 2: Apply it to the given product
                      2sin 3x sin 2x = cos(3x − 2x) − cos(3x + 2x)

                                                 = cos x − cos 5x
http://simonborgert.com http://onlinemaths.net   © Simon Borgert 2011


 Sums and Differences as Products
      2sin A cos B = sin(A + B) + sin(A − B)

     2 cos Asin B = sin(A + B) − sin(A − B)

     2 cos A cos B = cos(A + B) + cos(A − B)

      2sin Asin B = cos(A − B) − cos(A + B)
http://simonborgert.com http://onlinemaths.net                         © Simon Borgert 2011



   Sums and Differences as Products
                                                 Let U = A + B and V = A − B
      2sin A cos B = sin(A + B) + sin(A − B)
                                                      U +V           U −V
     2 cos Asin B = sin(A + B) − sin(A − B)      ∴A =        and B =
     2 cos A cos B = cos(A + B) + cos(A − B)
                                                         2             2
      2sin Asin B = cos(A − B) − cos(A + B)
http://simonborgert.com http://onlinemaths.net                         © Simon Borgert 2011



   Sums and Differences as Products
                                                 Let U = A + B and V = A − B
      2sin A cos B = sin(A + B) + sin(A − B)
                                                      U +V           U −V
     2 cos Asin B = sin(A + B) − sin(A − B)      ∴A =        and B =
     2 cos A cos B = cos(A + B) + cos(A − B)
                                                         2             2
      2sin Asin B = cos(A − B) − cos(A + B)
http://simonborgert.com http://onlinemaths.net                         © Simon Borgert 2011



   Sums and Differences as Products
                                                 Let U = A + B and V = A − B
      2sin A cos B = sin(A + B) + sin(A − B)
                                                      U +V           U −V
     2 cos Asin B = sin(A + B) − sin(A − B)      ∴A =        and B =
     2 cos A cos B = cos(A + B) + cos(A − B)
                                                         2             2
      2sin Asin B = cos(A − B) − cos(A + B)




            so the formulas become
http://simonborgert.com http://onlinemaths.net                                      © Simon Borgert 2011



   Sums and Differences as Products
                                                 Let U = A + B and V = A − B
      2sin A cos B = sin(A + B) + sin(A − B)
                                                      U +V           U −V
     2 cos Asin B = sin(A + B) − sin(A − B)      ∴A =        and B =
     2 cos A cos B = cos(A + B) + cos(A − B)
                                                         2             2
                                                                        U +V      U −V 
                                                     sinU + sinV = 2sin       cos 
      2sin Asin B = cos(A − B) − cos(A + B)                              2         2  
                                                                         U +V  U −V 
                                                     sinU − sinV = 2 cos       sin 
                                                                          2   2    
                                                                         U +V      U −V 
                                                     cosU + cosV = 2 cos       cos 
            so the formulas become                                        2         2  
                                                                        U +V  U −V 
                                                     cosV − cosU = 2sin       sin 
                                                                         2   2    
                                                                         U +V  U −V 
                                                     cosU − cosV = −2sin       sin 
                                                                          2   2    
http://simonborgert.com http://onlinemaths.net                              © Simon Borgert 2011



   Sums and Differences as Products
                      U +V      U −V 
   sinU + sinV = 2sin       cos                              1         1          
                       2         2           sin+ sin = 2sin  sum  cos  difference
                                                                 2         2          
                       U +V  U −V 
   sinU − sinV = 2 cos       sin 
                        2   2                                1     1              
                                                 sin− sin = 2 cos  sum  sin  difference
                                                                  2     2              
                       U +V      U −V 
   cosU + cosV = 2 cos       cos 
                        2         2                          1         1          
                                                 cos+ cos = 2 cos  sum  cos  difference
                                                                  2         2          
                      U +V  U −V 
   cosV − cosU = 2sin       sin                               1     1              
                       2   2                 cos− cos = −2sin  sum  sin  difference
                                                                  2     2              
                       U +V  U −V 
   cosU − cosV = −2sin       sin  
                        2   2 
http://simonborgert.com http://onlinemaths.net                             © Simon Borgert 2011


                                            Example 3
                                    Express cos 3x + cos 7x as a product
http://simonborgert.com http://onlinemaths.net                             © Simon Borgert 2011


                                            Example 3
                                    Express cos 3x + cos 7x as a product


   Step 1: Identify the sum to product formula
http://simonborgert.com http://onlinemaths.net                                © Simon Borgert 2011


                                            Example 3
                                    Express cos 3x + cos 7x as a product


   Step 1: Identify the sum to product formula
                                                  1         1          
                                 cos+ cos = 2 cos  sum  cos  difference
                                                  2         2          
http://simonborgert.com http://onlinemaths.net                                © Simon Borgert 2011


                                            Example 3
                                    Express cos 3x + cos 7x as a product


   Step 1: Identify the sum to product formula
                                                  1         1          
                                 cos+ cos = 2 cos  sum  cos  difference
                                                  2         2          

  Step 2: Apply it to the given product
http://simonborgert.com http://onlinemaths.net                                  © Simon Borgert 2011


                                            Example 3
                                    Express cos 3x + cos 7x as a product


   Step 1: Identify the sum to product formula
                                                  1         1          
                                 cos+ cos = 2 cos  sum  cos  difference
                                                  2         2          

  Step 2: Apply it to the given product
                                                1              1         
                        cos 3x + cos 7x = 2 cos  (3x + 7x) cos  (3x − 7x)
                                                2              2         
http://simonborgert.com http://onlinemaths.net                                  © Simon Borgert 2011


                                            Example 3
                                    Express cos 3x + cos 7x as a product


   Step 1: Identify the sum to product formula
                                                  1         1          
                                 cos+ cos = 2 cos  sum  cos  difference
                                                  2         2          

  Step 2: Apply it to the given product
                                                1              1         
                        cos 3x + cos 7x = 2 cos  (3x + 7x) cos  (3x − 7x)
                                                2              2         
                                            = 2 cos ( 5x ) cos ( −4x )
http://simonborgert.com http://onlinemaths.net                                      © Simon Borgert 2011


                                            Example 3
                                    Express cos 3x + cos 7x as a product


   Step 1: Identify the sum to product formula
                                                  1         1          
                                 cos+ cos = 2 cos  sum  cos  difference
                                                  2         2          

  Step 2: Apply it to the given product
                                                1              1         
                        cos 3x + cos 7x = 2 cos  (3x + 7x) cos  (3x − 7x)
                                                2              2         
                                            = 2 cos ( 5x ) cos ( −4x )

                                            = 2 cos ( 5x ) cos ( 4x )           as cos(−x) = cos x

More Related Content

PDF
PDF
Inverse trigonometric functions
PPT
Rectangular Coordinate System & Graphs
PPTX
1 lesson 7 introduction to complex numbers
PPTX
Inscribed Angle and Intercepted Arc
PDF
2.2 Linear Equations in One Variable
KEY
Remainder & Factor Theorems
PDF
Arc length, area of a sector and segments of a circle
Inverse trigonometric functions
Rectangular Coordinate System & Graphs
1 lesson 7 introduction to complex numbers
Inscribed Angle and Intercepted Arc
2.2 Linear Equations in One Variable
Remainder & Factor Theorems
Arc length, area of a sector and segments of a circle

What's hot (20)

PPT
Properties of a parallelogram
PDF
2.5.6 Perpendicular and Angle Bisectors
PPT
properties of exponents
PPTX
Rectangular coordinate system
PPTX
Area of a sector and arc length intro
PDF
Lesson 27: Lagrange Multipliers I
PDF
Pre-Cal 40S Trigonometric Identities Math Dictionary
PPT
Sector circle
PPT
Properties of straight lines
PPTX
solving quadratic equations by graphing
PPT
3 1 Quadratic Functions
PPT
Systems of Linear Equations Graphing
PPTX
Arc Length And Area of a Sector
PPT
Factoring quadratic expressions
KEY
Special angles
PPT
Expanding two brackets
PPTX
Polynomials
PPSX
Introduction to Function, Domain and Range - Mohd Noor
PPTX
7.7 Solving Radical Equations
PDF
7.4 Triangle Proportionality Theorems
Properties of a parallelogram
2.5.6 Perpendicular and Angle Bisectors
properties of exponents
Rectangular coordinate system
Area of a sector and arc length intro
Lesson 27: Lagrange Multipliers I
Pre-Cal 40S Trigonometric Identities Math Dictionary
Sector circle
Properties of straight lines
solving quadratic equations by graphing
3 1 Quadratic Functions
Systems of Linear Equations Graphing
Arc Length And Area of a Sector
Factoring quadratic expressions
Special angles
Expanding two brackets
Polynomials
Introduction to Function, Domain and Range - Mohd Noor
7.7 Solving Radical Equations
7.4 Triangle Proportionality Theorems
Ad

Similar to Trig products as sum and differecnes (20)

PPT
11 X1 T04 14 Products To Sums Etc
PPTX
t4 sum and double half-angle formulas
PPTX
Trigono
KEY
0706 ch 7 day 6
PDF
Copy of appendices
PDF
Identidades
DOC
Math34 Trigonometric Formulas
PDF
Class 11_Chapter 3_Lecture_4.pdf
PDF
TRIGONOMETRY RATIOS
PPTX
9. sum and double half-angle formulas-x
PPTX
13. sum and double half-angle formulas-x
PDF
11ext1 t08 08 products to sums etc (2013)
PPTX
SodaPDF-converted-My-Report-on-Trigonometry.pptx
DOC
Math34 Trigonometric Formulas
DOCX
AM11 Trigonometry
PDF
Formulario%20trigonometria%5 b1%5d
PDF
Xi maths ch3_trigo_func_formulae
DOC
mathematics formulas
11 X1 T04 14 Products To Sums Etc
t4 sum and double half-angle formulas
Trigono
0706 ch 7 day 6
Copy of appendices
Identidades
Math34 Trigonometric Formulas
Class 11_Chapter 3_Lecture_4.pdf
TRIGONOMETRY RATIOS
9. sum and double half-angle formulas-x
13. sum and double half-angle formulas-x
11ext1 t08 08 products to sums etc (2013)
SodaPDF-converted-My-Report-on-Trigonometry.pptx
Math34 Trigonometric Formulas
AM11 Trigonometry
Formulario%20trigonometria%5 b1%5d
Xi maths ch3_trigo_func_formulae
mathematics formulas
Ad

More from Simon Borgert (20)

PDF
Voic ed presentationPrBl
PPT
Collaborative programming ppt
PDF
General 2 HSC Credit and Borrowing - Future Value
PPT
Country maths comes to the city
PPT
Term 2 2013 rich tasks etc
PPT
Koinsburg bridge
KEY
Effective feedback with bonus rich tasks
KEY
Teach meet anywhere anytime learning
KEY
Exponential growth and decay
PPT
Lesson 2 like terms
PPT
Topic 1 algebra lesson 1
KEY
Using Facebook, Connect, Moodle and Youtube for Teaching Mathematics
KEY
Trig identities
KEY
Unit Circle - Trigonometry
KEY
Angle between 2 lines
KEY
Supporting the DER with Moodle
KEY
DER Info night 2011
KEY
Factorising quads diff 2 squares perfect squares
KEY
Perms and combs lesson 1
KEY
Assignment and quiz no videos
Voic ed presentationPrBl
Collaborative programming ppt
General 2 HSC Credit and Borrowing - Future Value
Country maths comes to the city
Term 2 2013 rich tasks etc
Koinsburg bridge
Effective feedback with bonus rich tasks
Teach meet anywhere anytime learning
Exponential growth and decay
Lesson 2 like terms
Topic 1 algebra lesson 1
Using Facebook, Connect, Moodle and Youtube for Teaching Mathematics
Trig identities
Unit Circle - Trigonometry
Angle between 2 lines
Supporting the DER with Moodle
DER Info night 2011
Factorising quads diff 2 squares perfect squares
Perms and combs lesson 1
Assignment and quiz no videos

Recently uploaded (20)

PDF
STATICS OF THE RIGID BODIES Hibbelers.pdf
PDF
Computing-Curriculum for Schools in Ghana
PDF
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
PPTX
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
PPTX
PPH.pptx obstetrics and gynecology in nursing
PPTX
Institutional Correction lecture only . . .
PDF
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
PDF
TR - Agricultural Crops Production NC III.pdf
PPTX
Cell Types and Its function , kingdom of life
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PPTX
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PPTX
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PDF
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
PPTX
Microbial diseases, their pathogenesis and prophylaxis
PDF
2.FourierTransform-ShortQuestionswithAnswers.pdf
PPTX
Pharmacology of Heart Failure /Pharmacotherapy of CHF
PPTX
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
PPTX
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
STATICS OF THE RIGID BODIES Hibbelers.pdf
Computing-Curriculum for Schools in Ghana
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
PPH.pptx obstetrics and gynecology in nursing
Institutional Correction lecture only . . .
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
TR - Agricultural Crops Production NC III.pdf
Cell Types and Its function , kingdom of life
Final Presentation General Medicine 03-08-2024.pptx
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
Module 4: Burden of Disease Tutorial Slides S2 2025
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
Microbial diseases, their pathogenesis and prophylaxis
2.FourierTransform-ShortQuestionswithAnswers.pdf
Pharmacology of Heart Failure /Pharmacotherapy of CHF
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...

Trig products as sum and differecnes

Editor's Notes