SlideShare a Scribd company logo
FACTORISING QUADRATICS
   Difference of 2 squares and Perfect Squares
DIFFERENCE OF 2 SQUARES

• Investigate   (expand):

      (x − 5)(x + 5) =
      (x + 2)(x − 2) =
      (3x − 6)(3x + 6) =
DIFFERENCE OF 2 SQUARES

• Investigate   (expand):

(x − 5)(x + 5) =
(x + 2)(x − 2) =
(3x − 6)(3x + 6) =
DIFFERENCE OF 2 SQUARES

• Investigate   (expand):

                            2       2
(x − 5)(x + 5) = x − 5x + 5x − 25 = x − 25
(x + 2)(x − 2) =
(3x − 6)(3x + 6) =
DIFFERENCE OF 2 SQUARES

• Investigate   (expand):

                            2          2
(x − 5)(x + 5) = x − 5x + 5x − 25 = x − 25
                            2      2
(x + 2)(x − 2) = x + 2x − 2x − 4 = x − 4
(3x − 6)(3x + 6) =
DIFFERENCE OF 2 SQUARES

• Investigate   (expand):

                            2              2
(x − 5)(x + 5) = x − 5x + 5x − 25 = x − 25
                            2          2
(x + 2)(x − 2) = x + 2x − 2x − 4 = x − 4
                                2
(3x − 6)(3x + 6) = 9x + 18x − 18x − 36
                                2
                            = x − 36
DIFFERENCE OF 2 SQUARES

                 2       2
(a + b)(a − b) = a − b
FACTORISING USING
   DIFFERENCE OF 2 SQUARES

• Factorise
         2
      x −36
FACTORISING USING
   DIFFERENCE OF 2 SQUARES
                               2       2
              (a + b)(a − b) = a − b

• Factorise
         2
      x −36
FACTORISING USING
   DIFFERENCE OF 2 SQUARES
                              2   2
              (a + b)(a − b) = a − b
               2    2
              a − b = (a + b)(a − b)
• Factorise
         2
      x −36
FACTORISING USING
   DIFFERENCE OF 2 SQUARES
                              2   2
              (a + b)(a − b) = a − b
               2    2
              a − b = (a + b)(a − b)
• Factorise
         2
      x −36
 a=x
FACTORISING USING
   DIFFERENCE OF 2 SQUARES
                               2   2
               (a + b)(a − b) = a − b
                2    2
               a − b = (a + b)(a − b)
• Factorise
         2
      x −36
 a=x          b=6
FACTORISING USING
   DIFFERENCE OF 2 SQUARES
                               2   2
               (a + b)(a − b) = a − b
                2    2
               a − b = (a + b)(a − b)
• Factorise
         2
      x −36          = (x + 6)(x − 6)
 a=x          b=6
FACTORISING USING
   DIFFERENCE OF 2 SQUARES
                                  2   2
                  (a + b)(a − b) = a − b
                   2    2
                  a − b = (a + b)(a − b)
• Factorise
              2
      4x −25
FACTORISING USING
   DIFFERENCE OF 2 SQUARES
                                  2   2
                  (a + b)(a − b) = a − b
                   2    2
                  a − b = (a + b)(a − b)
• Factorise
              2
      4x −25
     ( 2x ) −5
           2   2
FACTORISING USING
   DIFFERENCE OF 2 SQUARES
                                  2   2
                  (a + b)(a − b) = a − b
                   2    2
                  a − b = (a + b)(a − b)
• Factorise
              2
      4x −25
     ( 2x ) −5
           2   2


a = 2x
FACTORISING USING
   DIFFERENCE OF 2 SQUARES
                                  2   2
                  (a + b)(a − b) = a − b
                   2    2
                  a − b = (a + b)(a − b)
• Factorise
              2
      4x −25
     ( 2x ) −5
           2   2


a = 2x            b=5
FACTORISING USING
   DIFFERENCE OF 2 SQUARES
                                  2   2
                  (a + b)(a − b) = a − b
                   2    2
                  a − b = (a + b)(a − b)
• Factorise
              2
      4x −25            = (2x + 5)(2x − 5)
     ( 2x ) −5
           2   2


a = 2x            b=5
FACTORISING USING
   DIFFERENCE OF 2 SQUARES
                                  2   2
                  (a + b)(a − b) = a − b
                   2    2
                  a − b = (a + b)(a − b)
• Factorise
              2
      3x −15
FACTORISING USING
   DIFFERENCE OF 2 SQUARES
                                  2   2
                  (a + b)(a − b) = a − b
                   2    2
                  a − b = (a + b)(a − b)
• Factorise
              2
     3x −15              2
( ) ( ) 2
     3x − 15
FACTORISING USING
   DIFFERENCE OF 2 SQUARES
                                  2   2
                  (a + b)(a − b) = a − b
                   2    2
                  a − b = (a + b)(a − b)
• Factorise
              2
     3x −15              2
( ) ( ) 2
     3x − 15
a = 3x
FACTORISING USING
   DIFFERENCE OF 2 SQUARES
                                  2   2
                  (a + b)(a − b) = a − b
                   2    2
                  a − b = (a + b)(a − b)
• Factorise
              2
     3x −15              2
( ) ( ) 2
     3x − 15
a = 3x
                   b = 15
FACTORISING USING
   DIFFERENCE OF 2 SQUARES
                                  2   2
                  (a + b)(a − b) = a − b
                   2    2
                  a − b = (a + b)(a − b)
• Factorise
              2
     3x −15 = ( 3x + 15 )( 3x − 15 )
              2
( ) ( ) 2
     3x − 15
a = 3x
                   b = 15
PERFECT SQUARES
• Investigate   (expand):
                     2
       (x − 5) = (x − 5)(x − 5)
PERFECT SQUARES
• Investigate   (expand):
                     2
       (x − 5) = (x − 5)(x − 5)
PERFECT SQUARES
• Investigate   (expand):
                     2
       (x − 5) = (x − 5)(x − 5)




                               2   2             2
                         (a + b) = a + 2ab + b
                               2   2             2
                         (a − b) = a − 2ab + b
PERFECT SQUARES
• Investigate   (expand):
                     2
       (x − 5) = (x − 5)(x − 5)


                         a=x

                               2   2             2
                         (a + b) = a + 2ab + b
                               2   2             2
                         (a − b) = a − 2ab + b
PERFECT SQUARES
• Investigate   (expand):
                     2
       (x − 5) = (x − 5)(x − 5)


                         a=x             b = −5

                               2   2             2
                         (a + b) = a + 2ab + b
                               2   2             2
                         (a − b) = a − 2ab + b
PERFECT SQUARES
• Investigate   (expand):
                     2
       (x − 5) = (x − 5)(x − 5)


                         a=x              b = −5
                           2ab = 2 × x × (−5)
                                2   2             2
                          (a + b) = a + 2ab + b
                                2   2             2
                          (a − b) = a − 2ab + b
PERFECT SQUARES
• Factorise

          2
       x − 8x + 16
PERFECT SQUARES
• Factorise

          2
       x − 8x + 16




                      2   2             2
                (a + b) = a + 2ab + b
                      2   2             2
                (a − b) = a − 2ab + b
PERFECT SQUARES
• Factorise

          2
       x − 8x + 16
   a=x



                      2   2             2
                (a + b) = a + 2ab + b
                      2   2             2
                (a − b) = a − 2ab + b
PERFECT SQUARES
• Factorise

          2
       x − 8x + 16
   a=x             b = −4



                      2     2           2
                (a + b) = a + 2ab + b
                      2     2           2
                (a − b) = a − 2ab + b
PERFECT SQUARES
• Factorise

          2
       x − 8x + 16
   a=x              b = −4
      2ab = 2 × x × (−4)

                       2     2          2
                (a + b) = a + 2ab + b
                       2     2          2
                (a − b) = a − 2ab + b
PERFECT SQUARES
• Factorise

          2                              2
       x − 8x + 16           = (x − 4)
   a=x              b = −4
      2ab = 2 × x × (−4)

                       2     2               2
                (a + b) = a + 2ab + b
                       2     2               2
                (a − b) = a − 2ab + b
PERFECT SQUARES
• Factorise

          2
       x + 2 5x + 5
PERFECT SQUARES
• Factorise

          2
       x + 2 5x + 5




                      2   2             2
                (a + b) = a + 2ab + b
                      2   2             2
                (a − b) = a − 2ab + b
PERFECT SQUARES
• Factorise

          2
       x + 2 5x + 5
   a=x



                      2   2             2
                (a + b) = a + 2ab + b
                      2   2             2
                (a − b) = a − 2ab + b
PERFECT SQUARES
• Factorise

          2
       x + 2 5x + 5
   a=x               b= 5



                      2   2             2
                (a + b) = a + 2ab + b
                      2   2             2
                (a − b) = a − 2ab + b
PERFECT SQUARES
• Factorise

          2
       x + 2 5x + 5
   a=x                  b= 5
      2ab = 2 × x × 5

                        2   2           2
                (a + b) = a + 2ab + b
                        2   2           2
                (a − b) = a − 2ab + b
PERFECT SQUARES
• Factorise

          2                                 2
       x + 2 5x + 5         = (x + 5 )
   a=x                  b= 5
      2ab = 2 × x × 5

                        2   2           2
                (a + b) = a + 2ab + b
                        2   2           2
                (a − b) = a − 2ab + b

More Related Content

PDF
Sect3 7
PPTX
CIMT543VisualPrinciples
PDF
Quadratic functions and models
PDF
SPECIAL PRODUCTS
PPTX
Special Product ( Binomial And Trinomial Squaring)
PDF
Add Maths 2
PPTX
SPECIAL PRODUCTS
PPT
Function graphs
Sect3 7
CIMT543VisualPrinciples
Quadratic functions and models
SPECIAL PRODUCTS
Special Product ( Binomial And Trinomial Squaring)
Add Maths 2
SPECIAL PRODUCTS
Function graphs

What's hot (20)

PDF
Form 4 formulae and note
PDF
04 quadratic equations
PPTX
Second Quarter Group F Math Peta - Special Products (Sq. of Bi, Sq. of Tri, S...
PPTX
April 9, 2015
PPTX
Lecture 03 special products and factoring
DOC
Konsep Bilangan Berpangkat
PDF
Pc12 sol c04_4-4
PPT
Composite functions
PDF
Solucionario c.t. álgebra 5°
PPT
Teknik menjawab-percubaan-pmr-melaka-2010
PDF
Bt0063 mathematics fot it
PDF
Spm Add Maths Formula List Form4
PDF
MODULE 4- Quadratic Expression and Equations
KEY
Module 10 Topic 3 factoring perfect square & difference of square
KEY
Week 2 - Trigonometry
PDF
Chapter 1 functions
PDF
鳳山高級中學 B1 3 3---ans
PPT
Completing the square
PPT
Spm add math 2009 paper 1extra222
KEY
Week 3 - Trigonometry
Form 4 formulae and note
04 quadratic equations
Second Quarter Group F Math Peta - Special Products (Sq. of Bi, Sq. of Tri, S...
April 9, 2015
Lecture 03 special products and factoring
Konsep Bilangan Berpangkat
Pc12 sol c04_4-4
Composite functions
Solucionario c.t. álgebra 5°
Teknik menjawab-percubaan-pmr-melaka-2010
Bt0063 mathematics fot it
Spm Add Maths Formula List Form4
MODULE 4- Quadratic Expression and Equations
Module 10 Topic 3 factoring perfect square & difference of square
Week 2 - Trigonometry
Chapter 1 functions
鳳山高級中學 B1 3 3---ans
Completing the square
Spm add math 2009 paper 1extra222
Week 3 - Trigonometry
Ad

Viewers also liked (7)

PDF
Factorising quadratic expressions 1
PPTX
Factorising Common Factors
PPTX
Factorising
PPT
Factorising
PPTX
Factorising grade a (nisar's method)
PDF
11 X1 T01 03 factorising (2010)
PPTX
PMR Form 3 Mathematics Algebraic Fractions
Factorising quadratic expressions 1
Factorising Common Factors
Factorising
Factorising
Factorising grade a (nisar's method)
11 X1 T01 03 factorising (2010)
PMR Form 3 Mathematics Algebraic Fractions
Ad

Similar to Factorising quads diff 2 squares perfect squares (20)

PPTX
PDF
Productos notables
PPT
Factoring pst
PPT
Slide share
PPT
Solving quadratic equations by completing a square
KEY
1114 ch 11 day 14
PPTX
Algebric identities
PPTX
Algebra 6 Point 10
PPT
Math project
PPTX
4 multiplication formulas x
PPT
Factoring quadratic expressions
PDF
Algebra formulas
PPTX
Week-6-SPECIAL-PRODUCTS.pptx
PPT
Chapter 6 algebraic expressions iii
DOC
09 Trial Penang S1
KEY
0207 ch 2 day 7
KEY
1003 ch 10 day 3
PPTX
Product of a binomial and a trinomial involving
PDF
March 9 Quadratic Formula
PDF
March 9 Quadratic Formula
Productos notables
Factoring pst
Slide share
Solving quadratic equations by completing a square
1114 ch 11 day 14
Algebric identities
Algebra 6 Point 10
Math project
4 multiplication formulas x
Factoring quadratic expressions
Algebra formulas
Week-6-SPECIAL-PRODUCTS.pptx
Chapter 6 algebraic expressions iii
09 Trial Penang S1
0207 ch 2 day 7
1003 ch 10 day 3
Product of a binomial and a trinomial involving
March 9 Quadratic Formula
March 9 Quadratic Formula

More from Simon Borgert (20)

PDF
Voic ed presentationPrBl
PPT
Collaborative programming ppt
PDF
General 2 HSC Credit and Borrowing - Future Value
PPT
Country maths comes to the city
PPT
Term 2 2013 rich tasks etc
PPT
Koinsburg bridge
KEY
Effective feedback with bonus rich tasks
KEY
Teach meet anywhere anytime learning
KEY
Exponential growth and decay
PPT
Lesson 2 like terms
PPT
Topic 1 algebra lesson 1
KEY
Trig products as sum and differecnes
KEY
Using Facebook, Connect, Moodle and Youtube for Teaching Mathematics
KEY
Trig identities
KEY
Special angles
KEY
Unit Circle - Trigonometry
KEY
Angle between 2 lines
KEY
Supporting the DER with Moodle
KEY
DER Info night 2011
KEY
Perms and combs lesson 1
Voic ed presentationPrBl
Collaborative programming ppt
General 2 HSC Credit and Borrowing - Future Value
Country maths comes to the city
Term 2 2013 rich tasks etc
Koinsburg bridge
Effective feedback with bonus rich tasks
Teach meet anywhere anytime learning
Exponential growth and decay
Lesson 2 like terms
Topic 1 algebra lesson 1
Trig products as sum and differecnes
Using Facebook, Connect, Moodle and Youtube for Teaching Mathematics
Trig identities
Special angles
Unit Circle - Trigonometry
Angle between 2 lines
Supporting the DER with Moodle
DER Info night 2011
Perms and combs lesson 1

Recently uploaded (20)

PDF
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
PPTX
BOWEL ELIMINATION FACTORS AFFECTING AND TYPES
PPTX
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
PPTX
Microbial diseases, their pathogenesis and prophylaxis
PDF
Complications of Minimal Access Surgery at WLH
PDF
Computing-Curriculum for Schools in Ghana
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PDF
O7-L3 Supply Chain Operations - ICLT Program
PPTX
PPH.pptx obstetrics and gynecology in nursing
PDF
Classroom Observation Tools for Teachers
PDF
FourierSeries-QuestionsWithAnswers(Part-A).pdf
PDF
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
PPTX
Renaissance Architecture: A Journey from Faith to Humanism
PDF
Basic Mud Logging Guide for educational purpose
PDF
Abdominal Access Techniques with Prof. Dr. R K Mishra
PDF
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
PPTX
master seminar digital applications in india
PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PPTX
Pharma ospi slides which help in ospi learning
PDF
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
BOWEL ELIMINATION FACTORS AFFECTING AND TYPES
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
Microbial diseases, their pathogenesis and prophylaxis
Complications of Minimal Access Surgery at WLH
Computing-Curriculum for Schools in Ghana
Final Presentation General Medicine 03-08-2024.pptx
O7-L3 Supply Chain Operations - ICLT Program
PPH.pptx obstetrics and gynecology in nursing
Classroom Observation Tools for Teachers
FourierSeries-QuestionsWithAnswers(Part-A).pdf
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
Renaissance Architecture: A Journey from Faith to Humanism
Basic Mud Logging Guide for educational purpose
Abdominal Access Techniques with Prof. Dr. R K Mishra
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
master seminar digital applications in india
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
Pharma ospi slides which help in ospi learning
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx

Factorising quads diff 2 squares perfect squares

  • 1. FACTORISING QUADRATICS Difference of 2 squares and Perfect Squares
  • 2. DIFFERENCE OF 2 SQUARES • Investigate (expand): (x − 5)(x + 5) = (x + 2)(x − 2) = (3x − 6)(3x + 6) =
  • 3. DIFFERENCE OF 2 SQUARES • Investigate (expand): (x − 5)(x + 5) = (x + 2)(x − 2) = (3x − 6)(3x + 6) =
  • 4. DIFFERENCE OF 2 SQUARES • Investigate (expand): 2 2 (x − 5)(x + 5) = x − 5x + 5x − 25 = x − 25 (x + 2)(x − 2) = (3x − 6)(3x + 6) =
  • 5. DIFFERENCE OF 2 SQUARES • Investigate (expand): 2 2 (x − 5)(x + 5) = x − 5x + 5x − 25 = x − 25 2 2 (x + 2)(x − 2) = x + 2x − 2x − 4 = x − 4 (3x − 6)(3x + 6) =
  • 6. DIFFERENCE OF 2 SQUARES • Investigate (expand): 2 2 (x − 5)(x + 5) = x − 5x + 5x − 25 = x − 25 2 2 (x + 2)(x − 2) = x + 2x − 2x − 4 = x − 4 2 (3x − 6)(3x + 6) = 9x + 18x − 18x − 36 2 = x − 36
  • 7. DIFFERENCE OF 2 SQUARES 2 2 (a + b)(a − b) = a − b
  • 8. FACTORISING USING DIFFERENCE OF 2 SQUARES • Factorise 2 x −36
  • 9. FACTORISING USING DIFFERENCE OF 2 SQUARES 2 2 (a + b)(a − b) = a − b • Factorise 2 x −36
  • 10. FACTORISING USING DIFFERENCE OF 2 SQUARES 2 2 (a + b)(a − b) = a − b 2 2 a − b = (a + b)(a − b) • Factorise 2 x −36
  • 11. FACTORISING USING DIFFERENCE OF 2 SQUARES 2 2 (a + b)(a − b) = a − b 2 2 a − b = (a + b)(a − b) • Factorise 2 x −36 a=x
  • 12. FACTORISING USING DIFFERENCE OF 2 SQUARES 2 2 (a + b)(a − b) = a − b 2 2 a − b = (a + b)(a − b) • Factorise 2 x −36 a=x b=6
  • 13. FACTORISING USING DIFFERENCE OF 2 SQUARES 2 2 (a + b)(a − b) = a − b 2 2 a − b = (a + b)(a − b) • Factorise 2 x −36 = (x + 6)(x − 6) a=x b=6
  • 14. FACTORISING USING DIFFERENCE OF 2 SQUARES 2 2 (a + b)(a − b) = a − b 2 2 a − b = (a + b)(a − b) • Factorise 2 4x −25
  • 15. FACTORISING USING DIFFERENCE OF 2 SQUARES 2 2 (a + b)(a − b) = a − b 2 2 a − b = (a + b)(a − b) • Factorise 2 4x −25 ( 2x ) −5 2 2
  • 16. FACTORISING USING DIFFERENCE OF 2 SQUARES 2 2 (a + b)(a − b) = a − b 2 2 a − b = (a + b)(a − b) • Factorise 2 4x −25 ( 2x ) −5 2 2 a = 2x
  • 17. FACTORISING USING DIFFERENCE OF 2 SQUARES 2 2 (a + b)(a − b) = a − b 2 2 a − b = (a + b)(a − b) • Factorise 2 4x −25 ( 2x ) −5 2 2 a = 2x b=5
  • 18. FACTORISING USING DIFFERENCE OF 2 SQUARES 2 2 (a + b)(a − b) = a − b 2 2 a − b = (a + b)(a − b) • Factorise 2 4x −25 = (2x + 5)(2x − 5) ( 2x ) −5 2 2 a = 2x b=5
  • 19. FACTORISING USING DIFFERENCE OF 2 SQUARES 2 2 (a + b)(a − b) = a − b 2 2 a − b = (a + b)(a − b) • Factorise 2 3x −15
  • 20. FACTORISING USING DIFFERENCE OF 2 SQUARES 2 2 (a + b)(a − b) = a − b 2 2 a − b = (a + b)(a − b) • Factorise 2 3x −15 2 ( ) ( ) 2 3x − 15
  • 21. FACTORISING USING DIFFERENCE OF 2 SQUARES 2 2 (a + b)(a − b) = a − b 2 2 a − b = (a + b)(a − b) • Factorise 2 3x −15 2 ( ) ( ) 2 3x − 15 a = 3x
  • 22. FACTORISING USING DIFFERENCE OF 2 SQUARES 2 2 (a + b)(a − b) = a − b 2 2 a − b = (a + b)(a − b) • Factorise 2 3x −15 2 ( ) ( ) 2 3x − 15 a = 3x b = 15
  • 23. FACTORISING USING DIFFERENCE OF 2 SQUARES 2 2 (a + b)(a − b) = a − b 2 2 a − b = (a + b)(a − b) • Factorise 2 3x −15 = ( 3x + 15 )( 3x − 15 ) 2 ( ) ( ) 2 3x − 15 a = 3x b = 15
  • 24. PERFECT SQUARES • Investigate (expand): 2 (x − 5) = (x − 5)(x − 5)
  • 25. PERFECT SQUARES • Investigate (expand): 2 (x − 5) = (x − 5)(x − 5)
  • 26. PERFECT SQUARES • Investigate (expand): 2 (x − 5) = (x − 5)(x − 5) 2 2 2 (a + b) = a + 2ab + b 2 2 2 (a − b) = a − 2ab + b
  • 27. PERFECT SQUARES • Investigate (expand): 2 (x − 5) = (x − 5)(x − 5) a=x 2 2 2 (a + b) = a + 2ab + b 2 2 2 (a − b) = a − 2ab + b
  • 28. PERFECT SQUARES • Investigate (expand): 2 (x − 5) = (x − 5)(x − 5) a=x b = −5 2 2 2 (a + b) = a + 2ab + b 2 2 2 (a − b) = a − 2ab + b
  • 29. PERFECT SQUARES • Investigate (expand): 2 (x − 5) = (x − 5)(x − 5) a=x b = −5 2ab = 2 × x × (−5) 2 2 2 (a + b) = a + 2ab + b 2 2 2 (a − b) = a − 2ab + b
  • 30. PERFECT SQUARES • Factorise 2 x − 8x + 16
  • 31. PERFECT SQUARES • Factorise 2 x − 8x + 16 2 2 2 (a + b) = a + 2ab + b 2 2 2 (a − b) = a − 2ab + b
  • 32. PERFECT SQUARES • Factorise 2 x − 8x + 16 a=x 2 2 2 (a + b) = a + 2ab + b 2 2 2 (a − b) = a − 2ab + b
  • 33. PERFECT SQUARES • Factorise 2 x − 8x + 16 a=x b = −4 2 2 2 (a + b) = a + 2ab + b 2 2 2 (a − b) = a − 2ab + b
  • 34. PERFECT SQUARES • Factorise 2 x − 8x + 16 a=x b = −4 2ab = 2 × x × (−4) 2 2 2 (a + b) = a + 2ab + b 2 2 2 (a − b) = a − 2ab + b
  • 35. PERFECT SQUARES • Factorise 2 2 x − 8x + 16 = (x − 4) a=x b = −4 2ab = 2 × x × (−4) 2 2 2 (a + b) = a + 2ab + b 2 2 2 (a − b) = a − 2ab + b
  • 37. PERFECT SQUARES • Factorise 2 x + 2 5x + 5 2 2 2 (a + b) = a + 2ab + b 2 2 2 (a − b) = a − 2ab + b
  • 38. PERFECT SQUARES • Factorise 2 x + 2 5x + 5 a=x 2 2 2 (a + b) = a + 2ab + b 2 2 2 (a − b) = a − 2ab + b
  • 39. PERFECT SQUARES • Factorise 2 x + 2 5x + 5 a=x b= 5 2 2 2 (a + b) = a + 2ab + b 2 2 2 (a − b) = a − 2ab + b
  • 40. PERFECT SQUARES • Factorise 2 x + 2 5x + 5 a=x b= 5 2ab = 2 × x × 5 2 2 2 (a + b) = a + 2ab + b 2 2 2 (a − b) = a − 2ab + b
  • 41. PERFECT SQUARES • Factorise 2 2 x + 2 5x + 5 = (x + 5 ) a=x b= 5 2ab = 2 × x × 5 2 2 2 (a + b) = a + 2ab + b 2 2 2 (a − b) = a − 2ab + b

Editor's Notes