SlideShare a Scribd company logo
PMR Form 3 Mathematics Algebraic Fractions
Expanding single brackets              Remember to multiply all the terms
                                         inside the bracket by the term
           x                           immediately in front of the bracket



        4(2a + 3) = 8a + 12                              If there is no term in
                                                         front of the bracket,
                x                                          multiply by 1 or -1

 Expand these brackets and simplify wherever possible:

   1.   3(a - 4) =                          7.   4r(2r + 3) =

   2.   6(2c + 5) =                         8.   - (4a + 2) =

   3.   -2(d + g) =                         9.   8 - 2(t + 5) =

   4.   c(d + 4) =
                                            10. 2(2a + 4) + 4(3a + 6) =
   5.   -5(2a - 3) =
                                            11. 2p(3p + 2) - 5(2p - 1) =
   6.   a(a - 6) =
Expanding double brackets
                                        Split the double brackets into 2
                                       single brackets and then expand
                                          each bracket and simplify

     (3a + 4)(2a – 5)
                                                      “3a lots of 2a – 5
                                                     and 4 lots of 2a – 5”

= 6a2 – 15a + 8a – 20
                                         If a single bracket is squared
                                         (a + 5)2 change it into double
= 6a2 – 7a – 20                               brackets (a + 5)(a + 5)

Expand these brackets and simplify :

1.    (c + 2)(c + 6) =                      4.   (p + 2)(7p – 3) =

2.    (2a + 1)(3a – 4) =                    5.   (c + 7)2 =

3.    (3a – 4)(5a + 7) =                    6.   (4g – 1)2 =
Factorising – common factors
                                               Factorising is basically the
            Factorising
                                             reverse of expanding brackets.
                                              Instead of removing brackets
5x2 + 10xy = 5x(x + 2y)                        you are putting them in and
                                             placing all the common factors
                                                          in front.
            Expanding
Factorise the following (and check by expanding):


   15 – 3x =                                10pq + 2p =
   2a + 10 =                                20xy – 16x =
   ab – 5a =                                24ab + 16a2 =
   a2 + 6a =                                r2 + 2 r =
   8x2 – 4x =                               3a2 – 9a3 =
Factorising – quadratic expressions

 a 2  2ab  b 2               a 2  b2 




a 2  2ab  b 2               ax  by  cx  dy 
Factorising – grouping and difference of two squares

Grouping into pairs                  Difference of two squares

Fully factorise this expression:     Fully factorise this expression:
6ab + 9ad – 2bc – 3cd                4x2 – 25

Factorise in 2 parts                 Look for 2 square numbers
                                     separated by a minus. Simply
                                     Use the square root of each
Rewrite as double brackets           and a “+” and a “–” to get:


 Fully factorise these:              Fully factorise these:
 (a) wx + xz + wy + yz               (a) 81x2 – 1
 (b) 2wx – 2xz – wy + yz             (b) 4 – t2
 (c) 8fh – 20fm + 6gh – 15gm         (c) 16y2 - 64
 Answers:                            Answers:
 (a) (x + y)(w + z)                  (a) (9x + 1)(9x – 1)
 (b) (2x – y)(w – z)                 (b) (2 + t)(2 – t)
 (c) (4f + 3g)(2h – 5m)              (c) 16(y2 + 4)
Factorise each of the following


x  6m  9
 2
                     3r  6rp  3 p
                        2             2
                                          25 x  120 xy  100 y
                                              2                   2
Factorise each of the following


( x  5)  9
       2
                                  4(m  1) 2  25
Simplifying Algebraic Fractions

    Reduce this fraction

       12         43        Factorise the numerator and

                            denominator, cancel the

                  53
                             common factors
       15
Simplify by factorising
1                           Cancel the common factors
      6c  2
           32 c c
         
      2c     2c
                                       Factorise
                                      first before
                                       cancelling
Simplify by factorising
     5                    6 p 4m6
                                 
    15m                        5
                          15 p m
Simplify
                Cancel the common factors        Write down what’s left
2
     7(c  1)          7(c  1)
                  
     (c  1)2       (c  1)(c  1)
                Let’s do one that isn’t already factorised

3                          Cancel the common factors          write down what’s left

     2 x  10     2( x  5)
                                                                        Grade A
     3 x  15     3( x  5)

                                             factorise the numerator first


                                             factorise the denominator
Factorise and Simplify
                         Cancel the common factors        Write down what’s left
4

       ( x2  9)  ( x  3)( x  3)                                            Grade A*

     x2  7 x  12 ( x  3)( x  4)
     Factorise the numerator first      Factorise the denominator


Simplify the expressions fully
1)     2x  6                                        4)   x2  16
         2x                                               x2  4 x
2)     5 x  10                                      5)     2 x2  8
       3x  6                                             x2  6 x  8
       x2  2 x                                           x2  5 x  6
3)
                                                     6)
       8 x  16                                            x2  x  6
Check your answers!!

1)   2 x  6  2( x  3)          
                                      x3
                                       x              Factorise the numerator
       2x         2x
     5 x  10  5( x  2)
2)                                      5             Factorise the denominator
                                      
     3x  6     3( x  2)               3             Cancel the common factors
                                                      Write down what’s left
     x2  2 x         x( x  2)         x
3)                                   
     8 x  16         8( x  2)         2

4)   x2  16      ( x  4)( x  4)
                                           x4
     x  4x
      2               x ( x  4)
5)     2 x2  8                2( x 2  4 )     2( x  2)( x  2)       2( x  2)
                                                                  
     x2  6 x  8           ( x  4)( x  2)    ( x  4)( x  2)         x4

     x2  5 x  6           ( x  3)( x  2)     
                                                     x2
6)                                                  x2
      x2  x  6            ( x  3)( x  2)
Factorise the numerator first
 Factorise and Simplify
                                     Factorise the denominator
k 2  36          (a  b) 2  9b 2   Cancel the common factors
(k  6) 2            a 2  2ab       Write down what’s left
Algebraic fractions – Addition and subtraction

   Like ordinary fractions you can only add or subtract algebraic
            fractions if their denominators are the same

 Simplify     3     +   4_
              x         y

                                                        Addition
                                                    a c ad  bc
                                                      
                                                    b d   bd

                                                    Multiply the top
                                                     and bottom of
                                                    each fraction by
                                                   the same amount
Test yourself!!

Simplify.
    x 3x
1)           =
   10 10
    5     2
2)           =
   7x 7x
   4m 2m  1
3)             =
    5       5
Simplify   x   –   x-5
           2        6
Simplify
            Addition
1   3      a c ad  bc
            
x 2 x     b d   bd
Simplify
              Addition
  3    2    a c ad  bc
             
 x y yx   b d   bd
Simplify
            Subtraction
 2   3p     a c ad  bc
 2
     2       
p qr pr     b d   bd
Simplify
              Subtraction
 2 x 3x  3
             a c ad  bc
  2    4        
              b d   bd
Algebraic fractions – Multiplication and division

                      Again just use normal fractions principles
 Simplify:


   x                        x 5y       2
      5t                       2
   y                       10 y 4 x




                                                    a c ac
                                                      
                                                    b d bd
                                           Multiplication
Simplify
                    Multiplication
  2x  y    5x
                         a c ac
    y      3x  y           
                          b d bd
Test yourself!!!
2x 9 y             5a 2b 3c
                      2
                         
3 10 x             6c      10 ab




            3y                      a
                                     2
             5                     4b c
Test yourself!!!

x  4 6x
2       2                 9x  4 y
                            2     2
                                       3y
                                  
 3x    x2                  6y 3
                                     6x  4 y
Simplify
           Division
2x 4 y
          a c ad
7 14         
           b d bc
Simplify

x y
 2    2
        4( x  y )
    4
      
 3y      9x3 y 2
Simplify

x2  y2 2x  2 y
      3
        
 3 xy     x2 y

More Related Content

PDF
LINEAR INEQUALITIES IN TWO VARIABLES
PDF
F4 03 Sets
PDF
MATHEMATICS FORM 4 KSSM CHAPTER 6 LINEAR INEQUALITIES IN TWO VARIABLES
DOCX
Paper 1 form 4 mid year (complete)
PPT
Spm add math 2009 paper 1extra222
PDF
Form 4 Add Maths Note
PDF
Form 4 formulae and note
DOCX
Ujian 1 bab 2 graf fungsi
LINEAR INEQUALITIES IN TWO VARIABLES
F4 03 Sets
MATHEMATICS FORM 4 KSSM CHAPTER 6 LINEAR INEQUALITIES IN TWO VARIABLES
Paper 1 form 4 mid year (complete)
Spm add math 2009 paper 1extra222
Form 4 Add Maths Note
Form 4 formulae and note
Ujian 1 bab 2 graf fungsi

What's hot (20)

PDF
Form 4 add maths note
PDF
NOTA-MATEMATIK-SPM-2021-1-1.pdf
PDF
Additional Mathematics form 4 (formula)
PDF
Add maths complete f4 & f5 Notes
DOCX
Latihan mempermudahkan ungkapan algebra dengan betul
DOCX
Binomial distribution SPM
PPTX
MM Tingkatan 5, 3.1.3 masalah melibatkan insurans
PDF
Latihan ungkapan algebra
PDF
Chapter 10 solution of triangles
PDF
Latihan Ithink and kbat math form 2
PDF
Chem juj k1+k2+k3 (skema jawapan) [set 1]
PDF
Matematik tambahan spm tingkatan 4 geometri koordinat {add maths form 4 coord...
PDF
Spm Add Maths Formula List Form4
PDF
Chapter 9- Differentiation Add Maths Form 4 SPM
PDF
Chemistry paper 3
DOC
latihan topikal-garis-dan-sudut-ii serta jawapan
DOC
mid term mathematics exam form 1
PDF
JAWAPAN BUKU PEPERIKSAAN MATEMATIK SPM.pdf
PDF
Rumus matematik-tambahan
PPTX
MM Tingkatan 5, 3.1.2 mengira premium
Form 4 add maths note
NOTA-MATEMATIK-SPM-2021-1-1.pdf
Additional Mathematics form 4 (formula)
Add maths complete f4 & f5 Notes
Latihan mempermudahkan ungkapan algebra dengan betul
Binomial distribution SPM
MM Tingkatan 5, 3.1.3 masalah melibatkan insurans
Latihan ungkapan algebra
Chapter 10 solution of triangles
Latihan Ithink and kbat math form 2
Chem juj k1+k2+k3 (skema jawapan) [set 1]
Matematik tambahan spm tingkatan 4 geometri koordinat {add maths form 4 coord...
Spm Add Maths Formula List Form4
Chapter 9- Differentiation Add Maths Form 4 SPM
Chemistry paper 3
latihan topikal-garis-dan-sudut-ii serta jawapan
mid term mathematics exam form 1
JAWAPAN BUKU PEPERIKSAAN MATEMATIK SPM.pdf
Rumus matematik-tambahan
MM Tingkatan 5, 3.1.2 mengira premium
Ad

Similar to PMR Form 3 Mathematics Algebraic Fractions (20)

PPTX
Lecture 03 special products and factoring
PPTX
lecture03specialproductsandfactoring-141110052759-conversion-gate01.pptx
PPTX
Operations on Polynomials
PPT
Algebra Revision.ppt
KEY
Module 9 Topic 1 - Adding & Subtracting polynomials
DOC
A2 ch6sg
DOC
A2 Chapter 6 Study Guide
PPT
Stacks image 1721_36
PPT
Factorising for 3um
PPT
New stack
PDF
Algebra review
PDF
Factoring
PPT
Unit 4 Review
DOCX
สมการเชิงเส้นตัวแปรเดียว
PDF
Topic 1 adding & subtracting polynomials
PPT
Factorisation 140814105901-phpapp02
KEY
Notes 12.1 identifying, adding & subtracting polynomials
PPTX
Factorising grade a (nisar's method)
PDF
Int Math 2 Section 2-5 1011
PDF
Day 5 mult poly by mono
Lecture 03 special products and factoring
lecture03specialproductsandfactoring-141110052759-conversion-gate01.pptx
Operations on Polynomials
Algebra Revision.ppt
Module 9 Topic 1 - Adding & Subtracting polynomials
A2 ch6sg
A2 Chapter 6 Study Guide
Stacks image 1721_36
Factorising for 3um
New stack
Algebra review
Factoring
Unit 4 Review
สมการเชิงเส้นตัวแปรเดียว
Topic 1 adding & subtracting polynomials
Factorisation 140814105901-phpapp02
Notes 12.1 identifying, adding & subtracting polynomials
Factorising grade a (nisar's method)
Int Math 2 Section 2-5 1011
Day 5 mult poly by mono
Ad

More from Sook Yen Wong (20)

PPTX
Telco Churn Rate Analysis - AEDA Capstone
PPTX
McDonalds
PPTX
Mandarin Oriental "Fan Campaign"
PDF
Media Planning with Marketing Mix Consideration
PDF
Google 2013-my-en-mobile planet
PDF
LINs AD 2014 - CSR
PPTX
LINs AD 2014-CSR Media Team
PDF
Free Radicals - Mandarin Version
PDF
Alibaba Vision and Mission
PDF
Alibaba Culture
DOCX
The evolution of molecular hydrogen - A summary
DOCX
Curcumin Chinese
DOCX
Glutathione English
DOCX
Hydrogen Stick Chinese
DOCX
Glutathione Chinese
DOCX
Curcumin Eng
DOCX
Hydrogen Stick English Mode of Action
DOCX
Hydrogen Stick English
PDF
Cello fix english product catalogue
PDF
I mist green_eng
Telco Churn Rate Analysis - AEDA Capstone
McDonalds
Mandarin Oriental "Fan Campaign"
Media Planning with Marketing Mix Consideration
Google 2013-my-en-mobile planet
LINs AD 2014 - CSR
LINs AD 2014-CSR Media Team
Free Radicals - Mandarin Version
Alibaba Vision and Mission
Alibaba Culture
The evolution of molecular hydrogen - A summary
Curcumin Chinese
Glutathione English
Hydrogen Stick Chinese
Glutathione Chinese
Curcumin Eng
Hydrogen Stick English Mode of Action
Hydrogen Stick English
Cello fix english product catalogue
I mist green_eng

Recently uploaded (20)

PDF
Microbial disease of the cardiovascular and lymphatic systems
PPTX
Pharma ospi slides which help in ospi learning
PDF
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
PPTX
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
PPTX
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
PDF
O7-L3 Supply Chain Operations - ICLT Program
PPTX
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
PDF
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
PPTX
Cell Structure & Organelles in detailed.
PDF
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
PDF
Pre independence Education in Inndia.pdf
PDF
VCE English Exam - Section C Student Revision Booklet
PDF
STATICS OF THE RIGID BODIES Hibbelers.pdf
PPTX
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
PDF
Basic Mud Logging Guide for educational purpose
PPTX
Lesson notes of climatology university.
PDF
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
PDF
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
PDF
RMMM.pdf make it easy to upload and study
PPTX
GDM (1) (1).pptx small presentation for students
Microbial disease of the cardiovascular and lymphatic systems
Pharma ospi slides which help in ospi learning
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
O7-L3 Supply Chain Operations - ICLT Program
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
Cell Structure & Organelles in detailed.
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
Pre independence Education in Inndia.pdf
VCE English Exam - Section C Student Revision Booklet
STATICS OF THE RIGID BODIES Hibbelers.pdf
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
Basic Mud Logging Guide for educational purpose
Lesson notes of climatology university.
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
RMMM.pdf make it easy to upload and study
GDM (1) (1).pptx small presentation for students

PMR Form 3 Mathematics Algebraic Fractions

  • 2. Expanding single brackets Remember to multiply all the terms inside the bracket by the term x immediately in front of the bracket 4(2a + 3) = 8a + 12 If there is no term in front of the bracket, x multiply by 1 or -1 Expand these brackets and simplify wherever possible: 1. 3(a - 4) = 7. 4r(2r + 3) = 2. 6(2c + 5) = 8. - (4a + 2) = 3. -2(d + g) = 9. 8 - 2(t + 5) = 4. c(d + 4) = 10. 2(2a + 4) + 4(3a + 6) = 5. -5(2a - 3) = 11. 2p(3p + 2) - 5(2p - 1) = 6. a(a - 6) =
  • 3. Expanding double brackets Split the double brackets into 2 single brackets and then expand each bracket and simplify (3a + 4)(2a – 5) “3a lots of 2a – 5 and 4 lots of 2a – 5” = 6a2 – 15a + 8a – 20 If a single bracket is squared (a + 5)2 change it into double = 6a2 – 7a – 20 brackets (a + 5)(a + 5) Expand these brackets and simplify : 1. (c + 2)(c + 6) = 4. (p + 2)(7p – 3) = 2. (2a + 1)(3a – 4) = 5. (c + 7)2 = 3. (3a – 4)(5a + 7) = 6. (4g – 1)2 =
  • 4. Factorising – common factors Factorising is basically the Factorising reverse of expanding brackets. Instead of removing brackets 5x2 + 10xy = 5x(x + 2y) you are putting them in and placing all the common factors in front. Expanding Factorise the following (and check by expanding):  15 – 3x =  10pq + 2p =  2a + 10 =  20xy – 16x =  ab – 5a =  24ab + 16a2 =  a2 + 6a =  r2 + 2 r =  8x2 – 4x =  3a2 – 9a3 =
  • 5. Factorising – quadratic expressions a 2  2ab  b 2  a 2  b2  a 2  2ab  b 2  ax  by  cx  dy 
  • 6. Factorising – grouping and difference of two squares Grouping into pairs Difference of two squares Fully factorise this expression: Fully factorise this expression: 6ab + 9ad – 2bc – 3cd 4x2 – 25 Factorise in 2 parts Look for 2 square numbers separated by a minus. Simply Use the square root of each Rewrite as double brackets and a “+” and a “–” to get: Fully factorise these: Fully factorise these: (a) wx + xz + wy + yz (a) 81x2 – 1 (b) 2wx – 2xz – wy + yz (b) 4 – t2 (c) 8fh – 20fm + 6gh – 15gm (c) 16y2 - 64 Answers: Answers: (a) (x + y)(w + z) (a) (9x + 1)(9x – 1) (b) (2x – y)(w – z) (b) (2 + t)(2 – t) (c) (4f + 3g)(2h – 5m) (c) 16(y2 + 4)
  • 7. Factorise each of the following x  6m  9 2 3r  6rp  3 p 2 2 25 x  120 xy  100 y 2 2
  • 8. Factorise each of the following ( x  5)  9 2 4(m  1) 2  25
  • 9. Simplifying Algebraic Fractions Reduce this fraction 12 43 Factorise the numerator and  denominator, cancel the 53 common factors 15 Simplify by factorising 1 Cancel the common factors 6c 2 32 c c  2c 2c Factorise first before cancelling
  • 10. Simplify by factorising 5 6 p 4m6   15m 5 15 p m
  • 11. Simplify Cancel the common factors Write down what’s left 2 7(c  1) 7(c  1)  (c  1)2 (c  1)(c  1) Let’s do one that isn’t already factorised 3 Cancel the common factors write down what’s left 2 x  10 2( x  5)  Grade A 3 x  15 3( x  5) factorise the numerator first factorise the denominator
  • 12. Factorise and Simplify Cancel the common factors Write down what’s left 4 ( x2  9)  ( x  3)( x  3) Grade A* x2  7 x  12 ( x  3)( x  4) Factorise the numerator first Factorise the denominator Simplify the expressions fully 1) 2x  6 4) x2  16 2x x2  4 x 2) 5 x  10 5) 2 x2  8 3x  6 x2  6 x  8 x2  2 x x2  5 x  6 3) 6) 8 x  16 x2  x  6
  • 13. Check your answers!! 1) 2 x  6  2( x  3)  x3 x Factorise the numerator 2x 2x 5 x  10  5( x  2) 2) 5 Factorise the denominator  3x  6 3( x  2) 3 Cancel the common factors Write down what’s left x2  2 x x( x  2) x 3)   8 x  16 8( x  2) 2 4) x2  16 ( x  4)( x  4)   x4 x  4x 2 x ( x  4) 5) 2 x2  8 2( x 2  4 ) 2( x  2)( x  2) 2( x  2)    x2  6 x  8 ( x  4)( x  2) ( x  4)( x  2) x4 x2  5 x  6 ( x  3)( x  2)  x2 6)  x2 x2  x  6 ( x  3)( x  2)
  • 14. Factorise the numerator first Factorise and Simplify Factorise the denominator k 2  36 (a  b) 2  9b 2 Cancel the common factors (k  6) 2 a 2  2ab Write down what’s left
  • 15. Algebraic fractions – Addition and subtraction Like ordinary fractions you can only add or subtract algebraic fractions if their denominators are the same Simplify 3 + 4_ x y Addition a c ad  bc   b d bd Multiply the top and bottom of each fraction by the same amount
  • 16. Test yourself!! Simplify. x 3x 1)  = 10 10 5 2 2)  = 7x 7x 4m 2m  1 3)  = 5 5
  • 17. Simplify x – x-5 2 6
  • 18. Simplify Addition 1 3 a c ad  bc    x 2 x b d bd
  • 19. Simplify Addition 3 2 a c ad  bc    x y yx b d bd
  • 20. Simplify Subtraction 2 3p a c ad  bc 2  2   p qr pr b d bd
  • 21. Simplify Subtraction 2 x 3x  3  a c ad  bc 2 4   b d bd
  • 22. Algebraic fractions – Multiplication and division Again just use normal fractions principles Simplify: x x 5y 2  5t  2 y 10 y 4 x a c ac   b d bd Multiplication
  • 23. Simplify Multiplication 2x  y 5x  a c ac y 3x  y   b d bd
  • 24. Test yourself!!! 2x 9 y 5a 2b 3c  2  3 10 x 6c 10 ab 3y a 2 5 4b c
  • 25. Test yourself!!! x  4 6x 2 2 9x  4 y 2 2 3y   3x x2 6y 3 6x  4 y
  • 26. Simplify Division 2x 4 y  a c ad 7 14   b d bc
  • 27. Simplify x y 2 2 4( x  y ) 4  3y 9x3 y 2
  • 28. Simplify x2  y2 2x  2 y 3  3 xy x2 y