SlideShare a Scribd company logo
additionalmathematicstrigonometricf
unctionsadditionalmathematicstrigo
nometricfunctionsadditionalmathem
aticstrigonometricfunctionsadditiona
lmathematicstrigonometricfunctions
additionalmathematicstrigonometricf
unctionsadditionalmathematicstrigo
nometricfunctionsadditionalmathem
aticstrigonometricfunctionsadditiona
lmathematicstrigonometricfunctions
additionalmathematicstrigonometricf
unctionsadditionalmathematicstrigo
nometricfunctionsadditionalmathem
aticstrigonometricfunctionsadditiona
lmathematicstrigonometricfunctions
additionalmathematicstrigonometricf
unctionsadditionalmathematicstrigo
nometricfunctionsadditionalmathem
aticstrigonometricfunctionsadditiona
lmathematicstrigonometricfunctions
TRIGONOMETRIC
FUNCTIONS
Name
........................................................................................
zefry@sas.edu.my 2
TRIGONOMETRIC FUNCTIONS
5.1 Positive Angle and Negative Angle
Positive Angle Negative Angle
Represent each of the following angles in a Cartesian plane and state the quadrant of the angle.
Example
60
Quadrant 1
1(a) 70 (b) 150
Example
215
Quadrant III
2(a) 195 (b) 345
Example
395
Quadrant I
3(a) 415 (b) 480
Example
5
4

Quadrant III
4(a)
3
4
 (b)
5
3

Example
45
Quadrant IV
5(a) 130
(b)
1
3
 
2 radian = 360
 radian = 180
60
y
xO
y
xO
y
xO
Quadrant
II
Quadrant
I
Quadrant
III
Quadrant
IV
y
x
90
2
 
 
 
0
360 (2)
180 ()
270
3
2
 
 
 
215
y
xO
y
xO
y
xO
A positive angle is measured
in an anticlockwise direction
from the positive x-axis.
45
y
xO
y
xO
y
xO
y
xO
y
xO
5
4

y
xO
y
xO
y
xO
60
y
xO
Anticlockwise
direction
45
y
xO
Clockwise
direction
395
y
xO
35
360
A negative angle is measured
in a clockwise direction
from the positive x-axis.
zefry@sas.edu.my 3
5.2 Six Trigonometric Functions of any Angle (1)
5.2.1 Define sine, cosine and tangent of any angle in a Cartesian plane
1  
 
 
 
 
 
sin
cos
tan

 

Conclusion :
2
r2
= 32
+ 42
r = 2 2
3 4
r = 5
Conclusion :
Pythagoras’ Theorem :
2 2 2 2 2
2 2 2 2 2
2 2 2 2 2
c a b c a b
a c b a c b
b c a b c a
    
    
    
3. Find the length of OA and the values of sine, cosine and tangent of .
(a)  in quadrant I
OP =
=
sin  =
 
5
cos  =
 
12
tan  =
 
5
(b)  in quadrant II
OP =
=
sin  =
 
6
=
cos  =
 
8
=
tan  =
 
6
=

x
r
y
Opposite
sin
Hypotenuse
Adjacent
cos
Hypotenuse
Opposite
tan
Adjacent
 
 
 

3
r
4
b
ca
P (12, 5)
5
12O x
y

P (8, 6)
x
y
O

8
6
Opposite to 
Hypotenuse
Adjacent to 

zefry@sas.edu.my 4
(c)  in quadrant III
OP =
=
sin  =
 
3
cos  =
 
4
tan  =
 
3
=
(d)  in quadrant IV
OP =
=
sin  =
 
12
cos  =
 
5
tan  =
 
12
(e) Conclusion:
Sin  is positive for  in quadrant ……. and …….
Cos  is positive for  in quadrant ……. and …….
Tan  is positive for  in quadrant ……. and …….
Sin  is negative for  in quadrant ……. and …….
Cos  is negative for  in quadrant ……. and …….
Tan  is negative for  in quadrant ……. and …….
4. Find the corresponding reference angle of .
(a)
Reference angle = 55
(b)
Reference angle =  110
= 70
(c)
Reference angle = 215 
= 35
(d)
Reference angle =  300
= 60
y
x
90
0
360
180
270
Sin 
Cos 
Tan 
Sin 
Cos 
Tan 
Sin 
Cos 
Tan 
+
Sin 
Cos 
Tan 
P (4, 3)
x
y
4
O

3
P (5, 12)
x
y
5
O 
12
55
y
x
Fill in with  or + sign.
110
y
x180 360
215
y
x180 360
300
y
x180 360
zefry@sas.edu.my 5
(e) Conclusion:
Reference angle (RA) is the acute angle formed between the rotating ray of the angle and the
______________________________
In Quadrant II: In Quadrant III In Quadrant IV
sin  = sin (180  ) sin  = sin (  180) sin  = sin (360  )
cos  = cos (180  ) cos  = cos (  180) cos  = cos (360  )
tan  = tan (180  ) tan  = tan (  180) tan  = tan (360  )
5. Given that cos 51 = 0.6293, find the trigonometric ratios of cos 231 without using a calculator or
mathematical tables.
Reference angle of 231 = 231 
=
cos 231 =
=
6. Given that sin 70 = 0.9397, find the trigonometric ratios of sin 610 without using a calculator or
mathematical tables.
Reference angle of 610 = 610  
=
sin 610 =
=
7. Given that tan 25 = 0.4663, find the trigonometric ratios of tan 335 without using a calculator or
mathematical tables.
Reference angle of 335 =  335
=
tan 335 =
=
R.A = R.A =  
R.A =   R.A =  
y
x
y
xO 180

y
xO
180   
y
x
O
360  

y
x
y
x
y
x
zefry@sas.edu.my 6
5.2.2 Define cotangent, secant and cosecant of any angle in a Cartesian plane.
1
 
 
 
 
 
 
sin
cos
tan
 
 
 
2
 
 
 
 
 
 
 
 
 
 
1 1 r
sin y
1 1
cos
1 1
tan
 

 

 

3. Definition of cotangent , secant  and cosecant .
1
cosec
sin
1
sec
cos
1
cot
tan
 

 

 

4. Since
sin
tan
cos

 

, then
cot  
5.
 
 
 
sin sin 90
cos cos 90
tan tan 90
y x
r r
x y
r r
y x
x y
    
    
    
6.
Complementary angles:
sin  = cos (90  )
cos  = sin (90  )
tan  = cot (90  )
cosec  = sec (90  )
sec  = cosec (90  )
cot  = tan (90  )
7. Given that sin 48 = 0.7431, cos 48 = 0.6991 and tan 48 = 1.1106, evaluate the value of cos 42.
cos 42 =
= =
8. Given that sin 67 = 0.9205, cos 67 = 0.3907 and tan 67 = 2.3559, evaluate the value of cot 23.
cot 23 =
= =
9. Given that sin 37 = 0.6018, cos 37 = 0.7986 and tan 37 = 0.7536, evaluate the value of sec 53.
sec 53 =
= =

x
r
y

x
r
y
90 

x
r
y
48
90  48
67
90  67
37
90  37
zefry@sas.edu.my 7
5.2.3 Find values of six trigonometric functions of any angle
1. Complete the table below.
30 45 60
sin 
1
2
cos 
1
2
tan  1
2. Use the values of trigonometric ratio for the special angles, 30, 45 and 60, to find the value of the
trigonometric functions below
Example: Evaluate sin 210 a. Evaluate tan 300
Draw diagram to determine positive or negative
 sin
Draw diagram to determine positive or negative
Find reference angle
Reference angle of 210 = 210  180
= 30
Find reference angle
Solve
sin 210 =  sin 30
=
1
2

Solve
b. Evaluate cos 150 c. Evaluate sec 135
Draw diagram to determine positive or negative Draw diagram to determine positive or negative
Find reference angle Find reference angle
Solve Solve
60 60
60
2
2
2
60
30 2
1
2 2
2 1
3


1
1
2 2
1 1
2


45
45
1 1
1
1
y
x180 360
cos ( ) = cos 
sin ( ) =  sin 
tan ( ) =  tan 
y
x
O
 
zefry@sas.edu.my 8
5.2.4 Solve trigonometric equations
A. Steps to solve trigonometric equation
1. Determine the range of the angle.
2. Find the reference angle using tables or calculator.
3. Determine the quadrant where the angle of the trigonometric function is placed.
4. Determine the values of angles in the respective quadrants.
1. Solve the following equation for 0    360.
Example: sin  = 0.6428 a. cos  = 0.3420
Range :
0    360 0    360
Reference angle :
 = sin1
0.6428
 = 40
Quadrant :
Quadrant I Quadrant II Quadrant ____ Quadrant ____
Actual angles
 = 40 ,  = 180  40
 = 40 , 140
b. tan  = 1.192 c. cos  =  0.7660
Range :
Reference angle :
Quadrant :
Quadrant ___ Quadrant ___ Quadrant ___ Quadrant ___
Actual angles
y
x
y
x
y
x180 360
S A
T C
y
x180 360
S A
T C
y
x
y
x
y
x180 360
40
S A
T C
y
x180 360
40
S A
T C
zefry@sas.edu.my 9
d. sin  =  0.9397 e. tan  =  0.3640
Range :
Reference angle :
Quadrant :
Quadrant ___ Quadrant ___ Quadrant ___ Quadrant ___
Actual angles
f. cot  =  1.4826 g. cosec  =  2.2027
Range :
Reference angle :
Quadrant :
Quadrant ___ Quadrant ___ Quadrant ___ Quadrant ___
Actual angles
2. Solve the following equation for 0    360.
example : sec 2 = 2 a. 2 sin 2 = 1.6248
Range : 0    360
0  2  720
Reference angle :
1
2
2
1
2
2
2 60
cos
cos


 
  
Quadrant :
Actual angles
2 = 60, 360  60, 60 + 360, (36060) + 360
 = 60, 300, 420, 660
y
x
y
x
y
x
y
x
y
x
y
x
y
x
y
x
y
x180 360,720
S A
T C
60
60
zefry@sas.edu.my 10
b. cos 3 =  0.9781
c. tan
2

=  2.05
Range
Reference angle :
Quadrant :
Actual angles
d. sin ( + 10) = 0.7660 e. cos ( + 40) = 0.7071
f. tan ( + 15) = 1 g. cos (  20) = 0.5
h. tan (2  10) =  2.082 i. sin (2  30) = 0.5
zefry@sas.edu.my 11
j. sin  = cos 20 k. cos  =  sin 55
Example : 2 sin x cos x = cos x
2 sin x cos x  cos x = 0
cos x ( 2 sin x  1) = 0
cos x = 0 , 2 sin x  1 = 0
sin x =
1
2
x = 30
x = 90 , 270
x = 30, 150
 x = 30, 90, 150, 270
m. 2sin x cos x = sin x
n. 2 cos 2
 + 3 cos  =  1 o. 2 sin2
 + 5 sin  = 3
p. tan2
 = tan  q. 3 sin  = 2 + cosec 
y
x360
y
x180 360
S A
T C
zefry@sas.edu.my 12
3. Given that px sin and 00
< x < 900
.
Express each of the following trigonometric ratios in terms of p.
(a) sec x = (b) cosec x =
(c) tan x = (d) cot x =
(e) sin ( 900
- x) = (f) cos (900
- x) =
(g) sec (900
- x) = (h) cosec (900
– x) =
(i) tan ( 90o
- x) = (j) cot ( 90o
– x ) =
(k) sin(-x) = (l) cos (-x) =
x
zefry@sas.edu.my 13
4. Given that
17
8
sin x and 2700
< x < 3600
.
Without using tables or calculator, find the values
of.
5. Given that
17
8
-cos x and 1800
< x < 2700
.
Without using tables or calculator, find the values
of
(a) cos x = (a) sin x =
(b) tan x = (b) tan x =
(c) cosec x = (c) cosec x =
(d) sec x = (d) sec x =
(e) cos (900
– x) = (e) sec (900
– x) =
(f) sin ( 900
– x ) = (f) cot ( 900
– x ) =
(g) sin (-x) = (g) sin (-x) =
(h) tan (-x) = (h) cos (-x) =
x x
zefry@sas.edu.my 14
5.4 Basic Identities
5.4.1 Prove Trigonometric Identities using Basic Identities
Three basic trigonometric identities :
sin 2
 + cos 2
 = 1
1 + tan 2
 = sec 2

1 + cot 2
 = cosec 2

Formula of compound angle :
sin (A  B) = sin A cos B  cos A sin B
cos (A  B) = cos A cos B Ŧ sin A sin B
tan (A  B) =
tan tan
1 tan tan
A B
A B

Formula of double angle :
sin 2A = 2 sin A cos A
cos 2A = cos2
A − sin2
A
= 2 cos2
A − 1
= 1 − 2sin2
A
tan 2A =
A
A
2
tan1
tan2

Formula of half angle :
sin A = 2 sin
2
A
cos
2
A
cos A = cos2
2
A
− sin2
2
A
= 2 kos2
2
A
− 1
= 1 − 2sin2
2
A
tan 2A =
2
2
2
1
2
A
tan
A
tan
1. Prove the following identities
Example: cot  + tan  = cosec  sec 
2 2
1
cos sin
cot tan
sin cos
cos sin
sin cos
sin cos
cosec sec
 
   
 
  

 

 
  
a. tan2
 (1  sin2
) = sin2

b.
2
1
1
sin
cos
cos

  
 
c. sin2
 + cot2
 = cosec2
  cos2

cos2
 = 1 – sin2

sin2
 = 1 – cos2

zefry@sas.edu.my 15
d.  2 1
1
sin
sec tan
sin
 
   
 
e.
1
2
1
sin x cos x
sec x
cos x sin x

 

2. Solve the following equations for 0  x  360.
a. 3 sin x + 2 = cosec x
b. 2 cot2
x  5 cot x + 2 = 0 c. cos2
x  3 sin2
x + 3 = 0
d. cot2
x= 1 + cosec x e. 2 tan 2
x = 4 + sec x
zefry@sas.edu.my 16
ANSWERS
5.2.1
5. cos 51= 0.6293
5.2.4
2a. 0  2  720 , 54.33
 = 27.17, 62.83, 207.17, 242.83
3(a)
2
1
1
p
5.(a) 
17
15
6. sin 70= 0.9397 b. 0  3  1080 , 12.01
 = 56, 64, 176, 184, 296, 304
(b)
p
1
(b)
15
8
7. tan 25= 0.4663
c. 0 
2

 180 , 64
 = 232
(c)
2
1 p
p

(c)  17
15
5.2.2
7. sin 48 = 0.7431
d.  = 40, 120
(d)
p
p2
1 (d) 
17
8
8. tan 67 = 2.3559 e.  = 5, 275 (e) 2
1 p (e) 
17
15
9. cosec 37 = 1.6617 f.  = 30, 210 (f) p
(f)
8
15
5.2.3
2a. tan 300 = 3
g.  = 80, 320 (g)
p
1 (g) 15
17
b. cos 150 =
3
2

h.  = 62.83, 152.83, 242.83, 332.83
(h)
2
1
1
p
(h)
17
8

c. sec 135 =
1
2

i.  = 30, 90, 210, 270
(i)
p
p2
1
5.2.4
1a.70 , Quadrant I, IV
 = 70, 290
j.  = 70, 110
(j)
2
1 p
p

b. 0    360 , 50 ,
Quadrant I, IV
 = 30, 330
k.  = 145, 215 (k) -p
c. 0    360 , 40 ,
Quadrant II, III
 = 140, 220
m.  = 60, 180, 300 (l) 2
1 p
d. 0    360 , 70
Quadrant III, IV
 = 250, 290
n.  = 120, 180, 240 4.(a)
17
15
e. 0    360 , 20.01
Quadrant II, IV
 = 159.99, 339.99
o.  = 30, 150
(b) 
15
8
f. 0    360 , 34
Quadrant II, IV
 = 146, 326
p.  = 0, 45, 225 (c) 
17
8
g. 0    360 , 27
Quadrant III, IV
 = 207, 333
q.  = 90, 199.47, 350.53
(d)
15
17
(e)
17
8

(f)
17
15
(g)
17
8
(h)
8
15
zefry@sas.edu.my 17

More Related Content

PDF
Restaurant Revenue Prediction using Machine Learning
PDF
Typesetting Mathematics with LaTeX - Day 2
PPTX
PPTX
16 partial fraction decompositions x
PPTX
19 trig substitutions-x
PPT
mathematical induction
PPTX
Continuation chain rule and derivative of trigo functions
PPTX
Automating Business Processes for Trigo Group with Cherwell Service Management
Restaurant Revenue Prediction using Machine Learning
Typesetting Mathematics with LaTeX - Day 2
16 partial fraction decompositions x
19 trig substitutions-x
mathematical induction
Continuation chain rule and derivative of trigo functions
Automating Business Processes for Trigo Group with Cherwell Service Management

Similar to Trigo functions (20)

PDF
PDF
Correlation: Powerpoint 2- Trigonometry (1).pdf
PPT
Trigonometric_Functions_on_the_Unit_Circle.ppt
PPTX
Trigonometric function
PPT
Lecture 14 section 5.3 trig fcts of any angle
PPT
Section 4.3 MA.pptSection 4.3 MA.pptSection 4.3 MA.ppt
PPT
Trigonometric ratios and identities 1
DOC
All in one page trigo
PPTX
Trigfinal
PDF
Arihant NEET Objective Physics Volume 1 By DC Pandey 2022 Edition.pdf
PPT
Sine, cosine, tangent and cotangent of an angle and their measure.ppt
PPTX
Trigonometry Cheat Sheet
PPT
Hprec6 4
PPTX
Trigonometric Function of General Angles Lecture
PPT
Precalculus 05 Analytic Trigonometry (1).pptx
PPT
Trigonometric-Functions-of-Any-Angle (2).ppt
PDF
trigonometric-functions-of-any-angle.pdf
PPT
Larson 4.3
PDF
Trigonometry 10th edition larson solutions manual
DOCX
TRIGONOMETRY
Correlation: Powerpoint 2- Trigonometry (1).pdf
Trigonometric_Functions_on_the_Unit_Circle.ppt
Trigonometric function
Lecture 14 section 5.3 trig fcts of any angle
Section 4.3 MA.pptSection 4.3 MA.pptSection 4.3 MA.ppt
Trigonometric ratios and identities 1
All in one page trigo
Trigfinal
Arihant NEET Objective Physics Volume 1 By DC Pandey 2022 Edition.pdf
Sine, cosine, tangent and cotangent of an angle and their measure.ppt
Trigonometry Cheat Sheet
Hprec6 4
Trigonometric Function of General Angles Lecture
Precalculus 05 Analytic Trigonometry (1).pptx
Trigonometric-Functions-of-Any-Angle (2).ppt
trigonometric-functions-of-any-angle.pdf
Larson 4.3
Trigonometry 10th edition larson solutions manual
TRIGONOMETRY
Ad

Recently uploaded (20)

PDF
Zenith AI: Advanced Artificial Intelligence
PDF
August Patch Tuesday
PPTX
1. Introduction to Computer Programming.pptx
PPTX
TechTalks-8-2019-Service-Management-ITIL-Refresh-ITIL-4-Framework-Supports-Ou...
PDF
From MVP to Full-Scale Product A Startup’s Software Journey.pdf
PDF
Enhancing emotion recognition model for a student engagement use case through...
PPT
What is a Computer? Input Devices /output devices
PDF
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
PDF
1 - Historical Antecedents, Social Consideration.pdf
PPTX
TLE Review Electricity (Electricity).pptx
PPTX
Tartificialntelligence_presentation.pptx
PDF
A novel scalable deep ensemble learning framework for big data classification...
PPTX
Chapter 5: Probability Theory and Statistics
PPTX
The various Industrial Revolutions .pptx
PPTX
Programs and apps: productivity, graphics, security and other tools
PPTX
O2C Customer Invoices to Receipt V15A.pptx
PDF
A contest of sentiment analysis: k-nearest neighbor versus neural network
PDF
Getting Started with Data Integration: FME Form 101
PPTX
OMC Textile Division Presentation 2021.pptx
PDF
TrustArc Webinar - Click, Consent, Trust: Winning the Privacy Game
Zenith AI: Advanced Artificial Intelligence
August Patch Tuesday
1. Introduction to Computer Programming.pptx
TechTalks-8-2019-Service-Management-ITIL-Refresh-ITIL-4-Framework-Supports-Ou...
From MVP to Full-Scale Product A Startup’s Software Journey.pdf
Enhancing emotion recognition model for a student engagement use case through...
What is a Computer? Input Devices /output devices
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
1 - Historical Antecedents, Social Consideration.pdf
TLE Review Electricity (Electricity).pptx
Tartificialntelligence_presentation.pptx
A novel scalable deep ensemble learning framework for big data classification...
Chapter 5: Probability Theory and Statistics
The various Industrial Revolutions .pptx
Programs and apps: productivity, graphics, security and other tools
O2C Customer Invoices to Receipt V15A.pptx
A contest of sentiment analysis: k-nearest neighbor versus neural network
Getting Started with Data Integration: FME Form 101
OMC Textile Division Presentation 2021.pptx
TrustArc Webinar - Click, Consent, Trust: Winning the Privacy Game
Ad

Trigo functions

  • 1. additionalmathematicstrigonometricf unctionsadditionalmathematicstrigo nometricfunctionsadditionalmathem aticstrigonometricfunctionsadditiona lmathematicstrigonometricfunctions additionalmathematicstrigonometricf unctionsadditionalmathematicstrigo nometricfunctionsadditionalmathem aticstrigonometricfunctionsadditiona lmathematicstrigonometricfunctions additionalmathematicstrigonometricf unctionsadditionalmathematicstrigo nometricfunctionsadditionalmathem aticstrigonometricfunctionsadditiona lmathematicstrigonometricfunctions additionalmathematicstrigonometricf unctionsadditionalmathematicstrigo nometricfunctionsadditionalmathem aticstrigonometricfunctionsadditiona lmathematicstrigonometricfunctions TRIGONOMETRIC FUNCTIONS Name ........................................................................................
  • 2. zefry@sas.edu.my 2 TRIGONOMETRIC FUNCTIONS 5.1 Positive Angle and Negative Angle Positive Angle Negative Angle Represent each of the following angles in a Cartesian plane and state the quadrant of the angle. Example 60 Quadrant 1 1(a) 70 (b) 150 Example 215 Quadrant III 2(a) 195 (b) 345 Example 395 Quadrant I 3(a) 415 (b) 480 Example 5 4  Quadrant III 4(a) 3 4  (b) 5 3  Example 45 Quadrant IV 5(a) 130 (b) 1 3   2 radian = 360  radian = 180 60 y xO y xO y xO Quadrant II Quadrant I Quadrant III Quadrant IV y x 90 2       0 360 (2) 180 () 270 3 2       215 y xO y xO y xO A positive angle is measured in an anticlockwise direction from the positive x-axis. 45 y xO y xO y xO y xO y xO 5 4  y xO y xO y xO 60 y xO Anticlockwise direction 45 y xO Clockwise direction 395 y xO 35 360 A negative angle is measured in a clockwise direction from the positive x-axis.
  • 3. zefry@sas.edu.my 3 5.2 Six Trigonometric Functions of any Angle (1) 5.2.1 Define sine, cosine and tangent of any angle in a Cartesian plane 1             sin cos tan     Conclusion : 2 r2 = 32 + 42 r = 2 2 3 4 r = 5 Conclusion : Pythagoras’ Theorem : 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 c a b c a b a c b a c b b c a b c a                3. Find the length of OA and the values of sine, cosine and tangent of . (a)  in quadrant I OP = = sin  =   5 cos  =   12 tan  =   5 (b)  in quadrant II OP = = sin  =   6 = cos  =   8 = tan  =   6 =  x r y Opposite sin Hypotenuse Adjacent cos Hypotenuse Opposite tan Adjacent        3 r 4 b ca P (12, 5) 5 12O x y  P (8, 6) x y O  8 6 Opposite to  Hypotenuse Adjacent to  
  • 4. zefry@sas.edu.my 4 (c)  in quadrant III OP = = sin  =   3 cos  =   4 tan  =   3 = (d)  in quadrant IV OP = = sin  =   12 cos  =   5 tan  =   12 (e) Conclusion: Sin  is positive for  in quadrant ……. and ……. Cos  is positive for  in quadrant ……. and ……. Tan  is positive for  in quadrant ……. and ……. Sin  is negative for  in quadrant ……. and ……. Cos  is negative for  in quadrant ……. and ……. Tan  is negative for  in quadrant ……. and ……. 4. Find the corresponding reference angle of . (a) Reference angle = 55 (b) Reference angle =  110 = 70 (c) Reference angle = 215  = 35 (d) Reference angle =  300 = 60 y x 90 0 360 180 270 Sin  Cos  Tan  Sin  Cos  Tan  Sin  Cos  Tan  + Sin  Cos  Tan  P (4, 3) x y 4 O  3 P (5, 12) x y 5 O  12 55 y x Fill in with  or + sign. 110 y x180 360 215 y x180 360 300 y x180 360
  • 5. zefry@sas.edu.my 5 (e) Conclusion: Reference angle (RA) is the acute angle formed between the rotating ray of the angle and the ______________________________ In Quadrant II: In Quadrant III In Quadrant IV sin  = sin (180  ) sin  = sin (  180) sin  = sin (360  ) cos  = cos (180  ) cos  = cos (  180) cos  = cos (360  ) tan  = tan (180  ) tan  = tan (  180) tan  = tan (360  ) 5. Given that cos 51 = 0.6293, find the trigonometric ratios of cos 231 without using a calculator or mathematical tables. Reference angle of 231 = 231  = cos 231 = = 6. Given that sin 70 = 0.9397, find the trigonometric ratios of sin 610 without using a calculator or mathematical tables. Reference angle of 610 = 610   = sin 610 = = 7. Given that tan 25 = 0.4663, find the trigonometric ratios of tan 335 without using a calculator or mathematical tables. Reference angle of 335 =  335 = tan 335 = = R.A = R.A =   R.A =   R.A =   y x y xO 180  y xO 180    y x O 360    y x y x y x
  • 6. zefry@sas.edu.my 6 5.2.2 Define cotangent, secant and cosecant of any angle in a Cartesian plane. 1             sin cos tan       2                     1 1 r sin y 1 1 cos 1 1 tan          3. Definition of cotangent , secant  and cosecant . 1 cosec sin 1 sec cos 1 cot tan          4. Since sin tan cos     , then cot   5.       sin sin 90 cos cos 90 tan tan 90 y x r r x y r r y x x y                6. Complementary angles: sin  = cos (90  ) cos  = sin (90  ) tan  = cot (90  ) cosec  = sec (90  ) sec  = cosec (90  ) cot  = tan (90  ) 7. Given that sin 48 = 0.7431, cos 48 = 0.6991 and tan 48 = 1.1106, evaluate the value of cos 42. cos 42 = = = 8. Given that sin 67 = 0.9205, cos 67 = 0.3907 and tan 67 = 2.3559, evaluate the value of cot 23. cot 23 = = = 9. Given that sin 37 = 0.6018, cos 37 = 0.7986 and tan 37 = 0.7536, evaluate the value of sec 53. sec 53 = = =  x r y  x r y 90   x r y 48 90  48 67 90  67 37 90  37
  • 7. zefry@sas.edu.my 7 5.2.3 Find values of six trigonometric functions of any angle 1. Complete the table below. 30 45 60 sin  1 2 cos  1 2 tan  1 2. Use the values of trigonometric ratio for the special angles, 30, 45 and 60, to find the value of the trigonometric functions below Example: Evaluate sin 210 a. Evaluate tan 300 Draw diagram to determine positive or negative  sin Draw diagram to determine positive or negative Find reference angle Reference angle of 210 = 210  180 = 30 Find reference angle Solve sin 210 =  sin 30 = 1 2  Solve b. Evaluate cos 150 c. Evaluate sec 135 Draw diagram to determine positive or negative Draw diagram to determine positive or negative Find reference angle Find reference angle Solve Solve 60 60 60 2 2 2 60 30 2 1 2 2 2 1 3   1 1 2 2 1 1 2   45 45 1 1 1 1 y x180 360 cos ( ) = cos  sin ( ) =  sin  tan ( ) =  tan  y x O  
  • 8. zefry@sas.edu.my 8 5.2.4 Solve trigonometric equations A. Steps to solve trigonometric equation 1. Determine the range of the angle. 2. Find the reference angle using tables or calculator. 3. Determine the quadrant where the angle of the trigonometric function is placed. 4. Determine the values of angles in the respective quadrants. 1. Solve the following equation for 0    360. Example: sin  = 0.6428 a. cos  = 0.3420 Range : 0    360 0    360 Reference angle :  = sin1 0.6428  = 40 Quadrant : Quadrant I Quadrant II Quadrant ____ Quadrant ____ Actual angles  = 40 ,  = 180  40  = 40 , 140 b. tan  = 1.192 c. cos  =  0.7660 Range : Reference angle : Quadrant : Quadrant ___ Quadrant ___ Quadrant ___ Quadrant ___ Actual angles y x y x y x180 360 S A T C y x180 360 S A T C y x y x y x180 360 40 S A T C y x180 360 40 S A T C
  • 9. zefry@sas.edu.my 9 d. sin  =  0.9397 e. tan  =  0.3640 Range : Reference angle : Quadrant : Quadrant ___ Quadrant ___ Quadrant ___ Quadrant ___ Actual angles f. cot  =  1.4826 g. cosec  =  2.2027 Range : Reference angle : Quadrant : Quadrant ___ Quadrant ___ Quadrant ___ Quadrant ___ Actual angles 2. Solve the following equation for 0    360. example : sec 2 = 2 a. 2 sin 2 = 1.6248 Range : 0    360 0  2  720 Reference angle : 1 2 2 1 2 2 2 60 cos cos        Quadrant : Actual angles 2 = 60, 360  60, 60 + 360, (36060) + 360  = 60, 300, 420, 660 y x y x y x y x y x y x y x y x y x180 360,720 S A T C 60 60
  • 10. zefry@sas.edu.my 10 b. cos 3 =  0.9781 c. tan 2  =  2.05 Range Reference angle : Quadrant : Actual angles d. sin ( + 10) = 0.7660 e. cos ( + 40) = 0.7071 f. tan ( + 15) = 1 g. cos (  20) = 0.5 h. tan (2  10) =  2.082 i. sin (2  30) = 0.5
  • 11. zefry@sas.edu.my 11 j. sin  = cos 20 k. cos  =  sin 55 Example : 2 sin x cos x = cos x 2 sin x cos x  cos x = 0 cos x ( 2 sin x  1) = 0 cos x = 0 , 2 sin x  1 = 0 sin x = 1 2 x = 30 x = 90 , 270 x = 30, 150  x = 30, 90, 150, 270 m. 2sin x cos x = sin x n. 2 cos 2  + 3 cos  =  1 o. 2 sin2  + 5 sin  = 3 p. tan2  = tan  q. 3 sin  = 2 + cosec  y x360 y x180 360 S A T C
  • 12. zefry@sas.edu.my 12 3. Given that px sin and 00 < x < 900 . Express each of the following trigonometric ratios in terms of p. (a) sec x = (b) cosec x = (c) tan x = (d) cot x = (e) sin ( 900 - x) = (f) cos (900 - x) = (g) sec (900 - x) = (h) cosec (900 – x) = (i) tan ( 90o - x) = (j) cot ( 90o – x ) = (k) sin(-x) = (l) cos (-x) = x
  • 13. zefry@sas.edu.my 13 4. Given that 17 8 sin x and 2700 < x < 3600 . Without using tables or calculator, find the values of. 5. Given that 17 8 -cos x and 1800 < x < 2700 . Without using tables or calculator, find the values of (a) cos x = (a) sin x = (b) tan x = (b) tan x = (c) cosec x = (c) cosec x = (d) sec x = (d) sec x = (e) cos (900 – x) = (e) sec (900 – x) = (f) sin ( 900 – x ) = (f) cot ( 900 – x ) = (g) sin (-x) = (g) sin (-x) = (h) tan (-x) = (h) cos (-x) = x x
  • 14. zefry@sas.edu.my 14 5.4 Basic Identities 5.4.1 Prove Trigonometric Identities using Basic Identities Three basic trigonometric identities : sin 2  + cos 2  = 1 1 + tan 2  = sec 2  1 + cot 2  = cosec 2  Formula of compound angle : sin (A  B) = sin A cos B  cos A sin B cos (A  B) = cos A cos B Ŧ sin A sin B tan (A  B) = tan tan 1 tan tan A B A B  Formula of double angle : sin 2A = 2 sin A cos A cos 2A = cos2 A − sin2 A = 2 cos2 A − 1 = 1 − 2sin2 A tan 2A = A A 2 tan1 tan2  Formula of half angle : sin A = 2 sin 2 A cos 2 A cos A = cos2 2 A − sin2 2 A = 2 kos2 2 A − 1 = 1 − 2sin2 2 A tan 2A = 2 2 2 1 2 A tan A tan 1. Prove the following identities Example: cot  + tan  = cosec  sec  2 2 1 cos sin cot tan sin cos cos sin sin cos sin cos cosec sec                     a. tan2  (1  sin2 ) = sin2  b. 2 1 1 sin cos cos       c. sin2  + cot2  = cosec2   cos2  cos2  = 1 – sin2  sin2  = 1 – cos2 
  • 15. zefry@sas.edu.my 15 d.  2 1 1 sin sec tan sin         e. 1 2 1 sin x cos x sec x cos x sin x     2. Solve the following equations for 0  x  360. a. 3 sin x + 2 = cosec x b. 2 cot2 x  5 cot x + 2 = 0 c. cos2 x  3 sin2 x + 3 = 0 d. cot2 x= 1 + cosec x e. 2 tan 2 x = 4 + sec x
  • 16. zefry@sas.edu.my 16 ANSWERS 5.2.1 5. cos 51= 0.6293 5.2.4 2a. 0  2  720 , 54.33  = 27.17, 62.83, 207.17, 242.83 3(a) 2 1 1 p 5.(a)  17 15 6. sin 70= 0.9397 b. 0  3  1080 , 12.01  = 56, 64, 176, 184, 296, 304 (b) p 1 (b) 15 8 7. tan 25= 0.4663 c. 0  2   180 , 64  = 232 (c) 2 1 p p  (c)  17 15 5.2.2 7. sin 48 = 0.7431 d.  = 40, 120 (d) p p2 1 (d)  17 8 8. tan 67 = 2.3559 e.  = 5, 275 (e) 2 1 p (e)  17 15 9. cosec 37 = 1.6617 f.  = 30, 210 (f) p (f) 8 15 5.2.3 2a. tan 300 = 3 g.  = 80, 320 (g) p 1 (g) 15 17 b. cos 150 = 3 2  h.  = 62.83, 152.83, 242.83, 332.83 (h) 2 1 1 p (h) 17 8  c. sec 135 = 1 2  i.  = 30, 90, 210, 270 (i) p p2 1 5.2.4 1a.70 , Quadrant I, IV  = 70, 290 j.  = 70, 110 (j) 2 1 p p  b. 0    360 , 50 , Quadrant I, IV  = 30, 330 k.  = 145, 215 (k) -p c. 0    360 , 40 , Quadrant II, III  = 140, 220 m.  = 60, 180, 300 (l) 2 1 p d. 0    360 , 70 Quadrant III, IV  = 250, 290 n.  = 120, 180, 240 4.(a) 17 15 e. 0    360 , 20.01 Quadrant II, IV  = 159.99, 339.99 o.  = 30, 150 (b)  15 8 f. 0    360 , 34 Quadrant II, IV  = 146, 326 p.  = 0, 45, 225 (c)  17 8 g. 0    360 , 27 Quadrant III, IV  = 207, 333 q.  = 90, 199.47, 350.53 (d) 15 17 (e) 17 8  (f) 17 15 (g) 17 8 (h) 8 15