SlideShare a Scribd company logo
Technische Lehrstuhl für Geoinformatik Universität München 
Urban Analytics & Information Fusion 
with CityGML 
Thomas H. Kolbe 
Chair of Geoinformatics 
Technische Universität München 
thomas.kolbe@tum.de 
March 7, 2014 
Open Urban Information Model Seminar, Helsinki
Technische Lehrstuhl für Geoinformatik Universität München 
7. 3. 2014 
3D Model from Berlin Partner 
T. H. Kolbe – Urban Analytics & Information Fusion with CityGML 2
Technische Lehrstuhl für Geoinformatik Universität München 
What are the differences to the previous model? 
(despite some colour variations) 
3D Model from Google 
7. 3. 2014 T. H. Kolbe – Urban Analytics & Information Fusion with CityGML 
3
Technische Lehrstuhl für Geoinformatik Universität München 
Answering by 
• human: 
• computer: 
Answering by 
• human: 
• computer: 
  
  
Queries on the 3D city model: 
• How many buildings, monuments, trees? 
• How many storeys? 
• Where are entrances and exits? 
• From which windows / roofs is plaza XY visible? 
7. 3. 2014 T. H. Kolbe – Urban Analytics & Information Fusion with CityGML 4
Technische Lehrstuhl für Geoinformatik Universität München 
3D City Modeling 
► … is far more than 
just 3D visualization 
of reality 
► in fact, geometry and 
their graphical 
appearance are 
only two aspects 
of an object 
► Key aspect: 
Semantic 
Modeling 
7. 3. 2014 T. H. Kolbe – Urban Analytics & Information Fusion with CityGML 5
Technische Lehrstuhl für Geoinformatik Universität München 
Contents 
► Semantic 3D City Models 
● Urban Information Fusion 
● CityGML 
► Application Example: Strategic Energy Planning 
● Energy Atlas Berlin: Scale and Scope 
● Estimation of Energy Demands for Individual Buildings 
● Aggregation of Energy Demands 
● Interactive 3D Visualization and Decision Support 
► Live Demonstration 
► Further Application Examples 
● Environmental Noise Dispersion Simulation 
● Vulnerability Analysis: Detonation Simulations 
7. 3. 2014 T. H. Kolbe – Urban Analytics & Information Fusion with CityGML 6
Technische Lehrstuhl für Geoinformatik Universität München 
7. 3. 2014 
Semantic 
3D City Models
Technische Lehrstuhl für Geoinformatik Universität München 
Spatio-semantic Modeling of Our World 
► many relevant urban entities are physical objects 
► physical objects occupy space in the real world 
● partitioning of occupied real space  discrete objects 
● criteria for subdivision: thematic classification into different 
topographic elements like buildings, streets, trees etc. 
► spatio-semantic representation 
of the relevant geoinformationen 
● modeling of the city & its constituents 
● classified objects with thematic data 
● spatial aspects: location, shape, extent 
► different, discrete levels of detail (LODs) 
► real world is 3D  semantic 3D city models 
7. 3. 2014 T. H. Kolbe – Urban Analytics & Information Fusion with CityGML 8
Technische Lehrstuhl für Geoinformatik Universität München 
3D Decomposition of Urban Space 
► City is decomposed into meaningful objects with clear 
semantics and defined spatial and thematic properties 
● buildings, roads, railways, terrain, water bodies, vegetation, bridges 
● buildings may be further decomposed into different storeys 
(and even more detailed into apartments and single rooms) 
● energy related data are associated with the different objects 
Image: Paul Cote, Harvard Graduate School of Design 
7. 3. 2014 T. H. Kolbe – Urban Analytics & Information Fusion with CityGML 9
Technische Lehrstuhl für Geoinformatik Universität München 
City Geography Markup Language – CityGML 
Application independent Geospatial Information Model 
for semantic 3D city and landscape models 
► comprises different thematic areas 
(buildings, vegetation, water, terrain, 
traffic, tunnels, bridges etc.) 
► Internat‘l Standard of the Open Geospatial Consortium 
● V1.0.0 adopted in 08/2008; V2.0.0 adopted in 3/2012 
► Data model (UML) + Exchange format (based on GML3) 
CityGML represents 
► 3D geometry, 3D topology, semantics, and appearance 
► in 5 discrete scales (Levels of Detail, LOD) 
7. 3. 2014 T. H. Kolbe – Urban Analytics & Information Fusion with CityGML 10
Technische Lehrstuhl für Geoinformatik Universität München 
7. 3. 2014 T. H. Kolbe – Urban Analytics & Information Fusion with CityGML 11
Technische Lehrstuhl für Geoinformatik Universität München 
Semantic 3D City Model of Berlin 
>550,000 buildings; 
• fully-automatically generated 
from 2D cadastre footprints & 
airborne laserscanning data. 
• textures (automatically 
extracted from aerial images) 
• semantic information (includes 
data from cadastre) 
• 3D utility networks from the 
energy providers 
• modeled according to CityGML www.virtual-berlin.de 
7. 3. 2014 
T. H. Kolbe – Urban Analytics & Information Fusion with CityGML 12
Technische Lehrstuhl für Geoinformatik Universität München 
Application Example: 
Energy Atlas Berlin 
7. 3. 2014 
(+ London)
Technische Lehrstuhl für Geoinformatik Universität München 
The Energy Turn: Reasons and Targets 
► Climate change and natural disasters 
● Reduction of greenhouse gas emissions 
● Energy production with no or low CO2 emissions 
► Finite resources of fossil fuels like gas, coal, or oil 
● Energy production by sustainably available energy sources 
► Security concerns in nuclear power production 
● Exit from nuclear energy production in Germany 
► Improving quality of life in cities 
● Reduction of emissions such as fine dust, 
noise, etc. 
● Power generation with less / no emissions 
in the inner cities 
[Images: focus.de, naanoo.com] 
7. 3. 2014 T. H. Kolbe – Urban Analytics & Information Fusion with CityGML 
14
Technische Lehrstuhl für Geoinformatik Universität München 
Measures for Reorganization of Energy Supply 
► Centralized vs. decentralized energy production 
● e.g. large power stations vs. block heat and power plants 
► Exploitation of regenerative & natural energy 
● Solar thermal & Photovoltaic energy 
● Geothermal energy 
► Extension, construction, alternative usages 
of supply / distribution infrastructures 
► Measures to increase energy efficiency 
● e.g. building retrofitting; always affects individual 
components or buildings in the end 
► Introducing large amount of e-mobility 
► Influencing of consumer behaviors 
7. 3. 2014 T. H. Kolbe – Urban Analytics & Information Fusion with CityGML 15
Technische Lehrstuhl für Geoinformatik Universität München 
Energy Atlas Berlin 
► Collaboration project (2.5M€) partially funded by the 
European Institute of Innovation and Technology EIT 
► located within the Knowledge & Innovation Center 
for Climate Change and Mitigation (Climate KIC) 
● PI: Chair of Geoinformatics, 
Technische Universität München 
● German Research Centre for 
Geosciences Potsdam (GFZ) 
● Vattenfall Europe Berlin AG 
● GASAG AG 
● Berlin Partner GmbH 
● Berlin Senate of Economics, 
Technology and Research 
● City District Administration 
Charlottenburg-Wilmersdorf in Berlin 
► Partners: 
Berlin University of Technology: 
● Innovation Center Energy 
● Institute for Geodesy and 
Geoinformation Science 
● PI: Instit. for Energy Technologies 
● Institute for Energy and Automation 
Technology 
● Institute for Architecture 
● Institute for Technology and 
Management 
● Center for Technology & Society 
7. 3. 2014 T. H. Kolbe – Urban Analytics & Information Fusion with CityGML 
16
Technische Lehrstuhl für Geoinformatik Universität München 
Goals of the Energy Atlas Berlin 
► Tool for holistic energy planning 
● Analysis and representation of the 
actual state of objects and their energy-relevant 
parameters within a city 
● Investigation and balancing of options 
and measures 
● Decision support for various measures 
and visualization of their effects 
► Information backbone for multiple analyses & simulations 
● Estimation of heating, electrical, and warm water energy demands 
● Energetic building characteristics and rehabilitation potentials 
● Design of an optimal electricity network, taking into account the 
current demand and load peaks 
● Usage of geothermal and solar energy potentials 
7. 3. 2014 T. H. Kolbe – Urban Analytics & Information Fusion with CityGML 
17
Technische Lehrstuhl für Geoinformatik Universität München 
Scale Levels of the Energy Atlas 
► City 
► District 
► Quarter / Block 
► Building / Street 
► Appartement 
► Room 
Generalisation / Aggregation 
Resolution / Level of Detail 
7. 3. 2014 T. H. Kolbe – Urban Analytics & Information Fusion with CityGML 
18
Technische Lehrstuhl für Geoinformatik Universität München 
Energy Atlas System Design 
Geoinformatics/ 
Standards developer 
3D City Model 
+ Energy 
ADE 
Acquisition 
+ 
Conversion 
+ 
Editing 
of Cadastre 
Data 
Urban Analytics Toolkit 
Visualization 
+ 
Reporting 
- What-if 
scenarios 
- Application 
data acquisition 
City 
(London) 
City 
City 
Cities 
(e.g. Berlin) 
Solar Potential 
Analyis 
Heating 
Consumption 
Estimation 
Specific energetic 
environmental 
technology 
issues 
Stakeholder 
Cities 
Energy 
Supplier 
Housing 
Companies 
Energy 
service 
provider 
Citizens 
… many 
more modules 
Consulting Development (GIS-Developer / Simulation Experts) 
7. 3. 2014 T. H. Kolbe – Urban Analytics & Information Fusion with CityGML 
GIS 
Specialists 
19
Technische Lehrstuhl für Geoinformatik Universität München 
7. 3. 2014 
Energy Demand 
Estimation
Technische Lehrstuhl für Geoinformatik Universität München 
Correlation Consumption  Building param’s 
Building data Consumption data 
• Electricity 
• Water 
• Gas 
• (Remote) Heating 
Only available for a few 
households (detailed 
data only where Smart 
Meters are installed) 
• Volume [m³] 
• Floor space [m²] 
• Building type 
• Building usage 
• Year of construction 
• (renovation state) 
• Number of habitants 
• 3D City Model 
• Geo Base Data 
Correlation 
What is the 
relation of 
consumption 
with specific 
building 
characteristics? 
Full coverage 
of entire cities! 
7. 3. 2014 T. H. Kolbe – Urban Analytics & Information Fusion with CityGML 
21
Technische Lehrstuhl für Geoinformatik Universität München 
Energy Demand Estimation (I) 
GIS 
3D City Model + 
Geo Base Data 
Estimation of the 
individual energy 
demand for every 
single building 
Quarter level 
Estimation 
of the 
energy demand 
7. 3. 2014 T. H. Kolbe – Urban Analytics & Information Fusion with CityGML 
District level 
City level 
Aggregation 
Correlation 
function + 
22
Technische Lehrstuhl für Geoinformatik Universität München 
Energy Demand Estimation (II) 
GIS 
3D City Model + 
Geo Base Data 
Estimation of the 
individual energy 
demand for every 
single building 
Correlation 
function + 
Changes to the 
city model 
according 
to planned / 
possible measures 
Impacts on the 
energy demand 
can be directly 
estimated and 
compared with the 
current status 
Quarter level 
Estimation 
of the 
energy demand 
7. 3. 2014 T. H. Kolbe – Urban Analytics & Information Fusion with CityGML 
District level 
City level 
Aggregation 
! ! 
23
Technische Lehrstuhl für Geoinformatik Universität München 
Estimation of Heating Energy Demand 
► Building-specific and city-wide calculation based on 
algorithms of the Institut Wohnen und Umwelt (IWU) 
► Based on the virtual 3D city model and official geobase 
data within the Energy Atlas Berlin 
Climate and 
environment 
conditions 
Correlation 
Building Information 
• Geometry 
• Usage 
• Construction 
• Rehabilitation 
• Residents 
• Apartments 
Energy Demand 
• Electricity 
• Warm Water 
• Heating 
7. 3. 2014 T. H. Kolbe – Urban Analytics & Information Fusion with CityGML 
24
Technische Lehrstuhl für Geoinformatik Universität München 
Determination of Input Values 
► Climate conditions: according to VDI 2067 for Berlin 
► Global radiation: standard values from the IWU 
► Building geometry: calculated from 3D city model 
● Energy reference area 
● Building volume 
● Boundary surface areas (walls, windows, roof, ground) 
► Number of storeys: calculated from 3D city model 
► Building usage: taken from 3D city model (geobase data) 
► Building construction: Estimated using building age class 
● Heat transmission coefficient (U-Value) of the components 
● Energy transmittance (g-Value) of the windows 
► Rehabilitation state: definition of rehabilitation classes 
7. 3. 2014 T. H. Kolbe – Urban Analytics & Information Fusion with CityGML 25
Technische Lehrstuhl für Geoinformatik Universität München 
Calculation of Heating Energy Demand 
► The energy demand of a building QH is the difference of 
the heat losses and heat gains: 
QH = QV - QG [kWh/a] 
QV heat losses [kWh/a] 
QG usable heat gains [kWh/a] 
► Calculation of heat losses 
● through the boundary surfaces 
● due to periodical airing 
► Calculation of heat gains 
● sunlight irradiation 
● internal heat sources 
7. 3. 2014 T. H. Kolbe – Urban Analytics & Information Fusion with CityGML 
[http://www.lambdaplus.de] 
26
Technische Lehrstuhl für Geoinformatik Universität München 
Estimated Heating Energy Demand 
Estimated Energy 
Demand [kwh/a] 
7. 3. 2014 T. H. Kolbe – Urban Analytics & Information Fusion with CityGML 
27
Technische Lehrstuhl für Geoinformatik Universität München 
Estimation of Electrical Energy Demand 
► Building-specific and city-wide estimation based on average 
electrical energy consumption statistics for households, 
published by company Vattenfall 
► Household data are estimated from the virtual 3D city model 
and geobase data within the Energy Atlas Berlin 
Climate and 
environment 
conditions 
Correlation 
Building Information 
• Geometry 
• Usage 
• Construction 
• Rehabilitation 
• Residents 
• Apartments 
Energy Demand 
• Electricity 
• Warm Water 
• Heating 
[PhD Work of Robert Kaden, 2013] 
7. 3. 2014 T. H. Kolbe – Urban Analytics & Information Fusion with CityGML 
28
Technische Lehrstuhl für Geoinformatik Universität München 
Estimation of Input Values 
► Building usage: taken from 3D city model (geobase data) 
► # residents: estimated from the given population of a block 
and the building volume of the buildings within the block 
► Number of Apartments: Estimated by using the empirically 
estimated ratio of the number of apartments per building 
volume and the volume of a building 
7. 3. 2014 T. H. Kolbe – Urban Analytics & Information Fusion with CityGML 29
Technische Lehrstuhl für Geoinformatik Universität München 
Estimation of Input Values 
► Building usage: taken from 3D city model (geobase data) 
► # residents: estimated from the given population of a block 
Validation of the estimated number of inhabitants and 
and the building volume of the buildings apartments within per building: 
the block 
► Number of Apartments: Estimated by using the empirically 
For district Mitte: Σ Residents / Σ Apartments = 1.61 
estimated ratio of the number of apartments per building 
volume and the volume of a building 
[Amt für Statistik Berlin Brandenburg, 2011] 
7. 3. 2014 T. H. Kolbe – Urban Analytics & Information Fusion with CityGML 
30
Technische Lehrstuhl für Geoinformatik Universität München 
Calculation of Electrical Energy Demand 
► Electrical energy demand of a building is estimated based 
on the average annual consumption values of households 
and the number of residents per household 
► Distribution of the residents 
per building to the residential 
units of the building 
7,646768624 
7,548100641 Households in Mitte - Berlin 
7. 3. 2014 T. H. Kolbe – Urban Analytics & Information Fusion with CityGML 
[Vattenfall, 2012] 
62,60483473 
22,24963 
1 person 
2 persons 
3 persons 
4 or higher 
[Amt für Statistik Berlin Brandenburg, 2011] 
31
Technische Lehrstuhl für Geoinformatik Universität München 
Estimation of Energy Demand for Warm Water 
► Building-specific and city-wide calculation bases on 
algorithms of the Institut Wohnen und Umwelt (IWU) 
► Based on the virtual 3D city model and official geobase 
data within the Energy Atlas Berlin 
Climate and 
environmen 
t conditions 
Correlation 
Building Information 
• Geometry 
• Usage 
• Construction 
• Rehabilitation 
• Residents 
• Apartments 
Energy Demand 
• Electricity 
• Warm Water 
• Heating 
[PhD Work of Robert Kaden, 2013] 
7. 3. 2014 T. H. Kolbe – Urban Analytics & Information Fusion with CityGML 
32
Technische Lehrstuhl für Geoinformatik Universität München 
Exploration of Building Energy Parameters 
7. 3. 2014 T. H. Kolbe – Urban Analytics & Information Fusion with CityGML 33
Technische Lehrstuhl für Geoinformatik Universität München 
Exploration of Building Energy Parameters 
7. 3. 2014 T. H. Kolbe – Urban Analytics & Information Fusion with CityGML 34
Technische Lehrstuhl für Geoinformatik Universität München 
Aggregating Energy Indicators for Districts 
7. 3. 2014 T. H. Kolbe – Urban Analytics & Information Fusion with CityGML 35
Technische Lehrstuhl für Geoinformatik Universität München 
Aggregating Energy Indicators for Districts 
7. 3. 2014 T. H. Kolbe – Urban Analytics & Information Fusion with CityGML 36
Technische Lehrstuhl für Geoinformatik Universität München 
Analysis of Saving Potentials by Retrofitting 
► Heating energy demand depends on the construction type 
● U values of components: determined using the building age class 
and the building type taken from the 3D city model 
● g values of the windows: determined using the building age class 
and the building type taken from the 3D city model 
● definition of different (and possible) retrofitting levels for each 
building by variations of U and g values 
BAK Zeitraum Durchschn.U-Wert 
Wand 
BAK Zeitraum Durchschn.U-Wert 
W/(m2K) 
Durchschn.U-Wert 
Fenster 
W/(m2K) 
Durchschn. 
g-Wert Fenster 
Durchschn. U-Wert 
Dach 
Durchschn. 
g-Wert Fenster 
W/(m2K) 
Durchschn. U-Wert 
Durchschn. U-Wert 
Kellerdecke 
Durchschn. 
U-Wert 
Fenster 
W/(m2K) 
Durchschn. 
W/(m2K) 
Fenster-Wand- 
Flächen-verhältnisse 
mittleres 
Fenster- 
Wand- 
Flächenverh 
Fenster-Wand- 
Flächen-verhältnisse 
Durchschn. 
U-Wert 
Kellerdecke 
W/(m2K) 
ältnis 
Wand 
BAK Zeitraum Durchschn. 
W/(m2K) 
Durchschn.U-Wert 
Fenster 
W/(m2K) 
Dach 
W/(m2K) 
Durchschn. U-Wert 
Durchschn. 
U-Wert 
Kellerdecke 
W/(m2K) 
U-Wert 
Wand 
W/(m2K) 
g-Wert 
Fenster 
Dach 
1 bis 1918 1,70 2,7 0,76 1,50 1,20 0,25 – 0,34 0,30 
1919 – 1945 W/(m2K) 
2 1,70 2,7 0,76 1,50 1,20 0,20 – 0,35 0,25 
3 1946 – 1961 1,40 2,7 0,76 1,30 1,00 0,20 – 0,31 0,23 
4 1962 – 1974 1,20 2,7 0,76 1,10 0,84 0,20 – 0,42 0,28 
5 1975 – 1993 0,80* 2,7 0,76 0,45 0,60 0,20 – 0,40 0,33 
6 1994 – 2012 0,40* 1,7 0,72 0,30 0,40 0,30 – 0,50 0,35 
7. 3. 2014 T. H. Kolbe – Urban Analytics & Information Fusion with CityGML 
mittleres 
Fenster- 
Wand- 
Flächenverh 
Fenster- 
Wand- 
Flächen-verhältnisse 
ältnis 
1 bis 1918 1,70 2,7 0,76 1,50 1,20 0,25 – 0,34 0,30 
2 1919 – 1945 1,70 2,7 0,76 1,50 1,20 0,20 – 0,35 3 1946 – 1961 1,40 2,7 0,76 1,30 1,00 0,20 – 0,31 0,23 
4 1962 – 1974 1,20 2,7 0,76 1,10 0,84 0,20 – 0,42 0,28 
5 1975 – 1993 0,80* 2,7 0,76 0,45 0,60 0,20 – 0,40 0,33 
6 1994 – 2012 0,40* 1,7 0,72 0,30 0,40 0,30 – 0,50 0,35 
mittleres 
Fenster- 
Wand- 
Flächenver 
hältnis 
1 bis 1918 1,70 2,7 0,76 1,50 1,20 0,25 
– 0,34 0,30 
2 1919 – 1945 1,70 2,7 0,76 1,50 1,20 0,20 – 0,35 0,25 
3 1946 – 1961 1,40 2,7 0,76 1,30 1,00 0,20 – 0,31 0,23 
4 1962 – 1974 1,20 2,7 0,76 1,10 0,84 0,20 – 0,42 0,28 
5 1975 – 1993 0,80* 2,7 0,76 0,45 0,60 0,20 – 0,40 0,33 
6 1994 – 2012 0,40* 1,7 0,72 0,30 0,40 0,30 – 0,50 0,35 
37
Technische Lehrstuhl für Geoinformatik Universität München 
Energy Atlas: 
Information Fusion 
Geothermal potential 
analysis 
Energy Atlas 
Energy savings 
potentials 
Energy demands 
analyses 
Infrastructure 
analysis 
Solar potential 
analysis 
7. 3. 2014 T. H. Kolbe – Urban Analytics & Information Fusion with CityGML 38
Technische Lehrstuhl für Geoinformatik Universität München 
7. 3. 2014 
Live Demo 
Energy Atlas
Technische Lehrstuhl für Geoinformatik Universität München 
Screenshot of the Energy Atlas Webclient 
7. 3. 2014 T. H. Kolbe – Urban Analytics & Information Fusion with CityGML 40
Technische Lehrstuhl für Geoinformatik Universität München 
Application Example: 
7. 3. 2014 
Noise Dispersion 
Simulation and Mapping
Technische Lehrstuhl für Geoinformatik Universität München 
Environmental Noise Dispersion Simulation 
CityGML is basis for the computation of the noise immission 
maps for the state of North-Rhine Westphalia 
● Background: EU directive on reduction of environmental noise 
● Cooperation project of Univ. Bonn, state NRW, and companies 
● Provision and exchange of all data exclusively in CityGML and 
corresponding Web Services (WFS, WCS, WMS): 
● 8.6 million 3D buildings in LOD1 (18.6 million citizens in NRW!) 
● 3D road network NRW in LOD0 (based on 2D models in 
OKSTRA, ATKIS & DTM5), extended by those properties relevant 
ro noise dispersion simulation 
● 3D railway network NRW in LOD0 (based on ATKIS, DTM5) 
● 3D noise barriers in LOD1 
● DTM5 (a 10m raster was used) 
7. 3. 2014 T. H. Kolbe – Urban Analytics & Information Fusion with CityGML 42
Technische Lehrstuhl für Geoinformatik Universität München 
Computation of Noise Immission Maps 
7. 3. 2014 
Noise immission maps 
for reporting to the EU 
(via WMS Service) 
3D Model in 
CityGML (via 
WFS Service) 
DTM 10m 
Raster (via 
WCS Service) 
Noise 
propagation 
simulation 
T. H. Kolbe – Urban Analytics & Information Fusion with CityGML 43
Technische Lehrstuhl für Geoinformatik Universität München 
Application Example: 
Vulnerability Analysis 
(Detonation Simulation) 
7. 3. 2014
Technische Universität München 
‘Controlled‘ Blast of discovered 
unexploded Bomb from World War II 
Detonation in Munich, District Schwabing, 2012 
Unexploded American 500 lbs Bomb (120kg TNT) 
Evacuation of 2500 citizens 
Source: 
Münchner 
Abendzeitung 
Bildzeitung 
Source: Google Maps 
Chair of Metal Structures Prof. Martin Mensinger, Stefan Trometer 45
Technische Universität München 
‘Controlled‘ Blast of discovered 
unexploded Bomb from World War II 
Detonation in Munich, District Schwabing, 2012 
Chair of Metal Structures Prof. Martin Mensinger, Stefan Trometer 46
Technische Lehrstuhl für Geoinformatik Universität München 
Coming to the end . . . 
11. 2. 2011
Technische Lehrstuhl für Geoinformatik Universität München 
Conclusions 
► Semantic 3D City Models ( Urban Information Models) 
● are an appropriate reference model and data platform to attach / 
link domain specific urban information across different disciplines 
● Semantic 3D city models often are provided by authoritative 
sources (municipal agencies, state & national mapping agencies) 
 full coverage of the urban space, high reliability, stability 
Google 3D models, Open Streetmap are not suitable !! 
● facilitate comprehensive analyses on the urban scale in the fields of 
e.g. energy assessment, environmental simulation, urban planning 
● can accumulate knowledge (including analyses results) 
► Interoperability is key for information integration 
● OGC‘s CityGML defines the semantic model + exchange format 
● CityGML is an Open, vendor independent Standard 
● CityGML allows for 3D visualizations AND thematic analyses 
7. 3. 2014 T. H. Kolbe – Urban Analytics & Information Fusion with CityGML 48
Technische Lehrstuhl für Geoinformatik Universität München 
... and what about BIM / IFC ? 
► CityGML is complementary to IFC 
● both, IFC and CityGML are information models 
● IFC: building objects (other man-made objects under devel.) 
● CityGML: man-made and natural objects; geomorphology 
► IFC‘s modeling approach is tailored to support the 
planning, design, construction, and operation of buildings 
● one, high level of detail 
● typ. only available for newly planned / constructed buildings 
► CityGML‘s modeling approach is tailored to describe the 
real world from observations / measurements 
● in five levels of detail; conversion of IFC  CityGML is possible 
● automated data acquisition methods; coverage of entire cities 
● large datasets can be managed within GIS, geodatabases 
7. 3. 2014 T. H. Kolbe – Urban Analytics & Information Fusion with CityGML 49
Technische Lehrstuhl für Geoinformatik Universität München 
References 
► R. Kaden, T. H. Kolbe: City-Wide Total Energy Demand Estimation of Buildings us-ing Semantic 3D 
City Models and Statistical Data. In: Proc. of the 8th International 3D GeoInfo Conference, 28.-29. 11. 
2013 in Istanbul, Turkey, ISPRS Annals of the Photo-grammetry, Remote Sensing and Spatial 
Information Sciences, Volume II-2/W1, 2013 
Click for article download 
► A. Krüger, T. H. Kolbe: Building Analysis for Urban Energy Planning Using Key Indicators on Virtual 
3D City Models - The Energy Atlas of Berlin. In: Proceedings of the ISPRS Congress 2012 in 
Melbourne, International Archives of the Photogrammetry, Remote Sensing and Spatial Information 
Sciences, Volume XXXIX-B2, 2012 
Click for article download 
► D. Carrion, A. Lorenz, T. H. Kolbe: Estimation of the Energetic Rehabilitation State of Buildings for 
the City of Berlin Using a 3D City Model Represented in CityGML. In: Proceedings of the 5th Intern. 
Conference on 3D Geo-Information 2010 in Berlin, International Archives of Photogrammetry, 
Remote Sensing, and Spatial Information Sciences, Vol. XXXVIII-4/W15 
Click for article download 
► T. H. Kolbe: Representing and Exchanging 3D City Models with CityGML. In: J. Lee, S. Zlatanova 
(Eds.), 3D Geo-Information Sciences, Proceedings of the 3rd Intern. Workshop on 3D Geo- 
Information in Seoul, Korea. Springer, Berlin, 2008 
Click for article download 
7. 3. 2014 T. H. Kolbe – Urban Analytics & Information Fusion with CityGML 50
Technische Lehrstuhl für Geoinformatik Universität München 
Credits 
► The Energy Atlas project has been funded 
by Climate-KIC of the European Institute 
for Innovation and Technology (EIT) 
► The 3D City Model of Berlin was provided 
by Berlin Partner GmbH. 
Its creation was supported by the European 
Regional Development Fund (ERDF) and the 
Berlin Senate of Economy, Technology & 
Women‘s Affairs 
► The 3D City Model of London‘s District 
Bromley-By-Bow was generated from 
building footprints from Ordnance Survey 
Mastermap and a DSM and DTM from Infoterra 
7. 3. 2014 T. H. Kolbe – Urban Analytics & Information Fusion with CityGML 51

More Related Content

PPTX
CityGML and BIM
PDF
How to Easily Read and Write CityGML Data (Without Coding)
PPTX
Use of CityGML standard in the context of Smart City
PPTX
How to Easily Read and Write CityGML Data Using FME
PDF
Semantic 3D City Models with CityGML
PDF
Validation and visualization of Revit BIM Models with FME
PPT
CityGML extension for BIM and IFC
DOCX
Cours BIM.docx
CityGML and BIM
How to Easily Read and Write CityGML Data (Without Coding)
Use of CityGML standard in the context of Smart City
How to Easily Read and Write CityGML Data Using FME
Semantic 3D City Models with CityGML
Validation and visualization of Revit BIM Models with FME
CityGML extension for BIM and IFC
Cours BIM.docx

What's hot (20)

PPTX
Session 9- Urban Land values
PDF
Estimating distance decay for the national propensity to cycle tool
PDF
AAM Group GIS - BIM Integration
PPTX
Forme urbaine et mobilité durable à Yaoundé
PDF
Introduction to BIM
PDF
Industry Foundation Classes
PPTX
Lectures 6 rup 2185 new directions in planning
PPTX
Digital city
PDF
Indoor Positioning Systems
PDF
DSD-INT 2022 MIKE wrapper for Delft-FEWS - Vanecek
PPTX
Postmodern Urbanism and the New Psychogeography
PPTX
Fire Risk Mapping using GIS.pptx
PDF
L'elements diagnostic-sur-le-renouvellement-urbain-marc kaszynski-
PDF
BIM BIM.pdf
PPT
Bim Presentation
PPT
HOW TO PREPARE LOCAL DEVELOPMENT PLAN
PDF
The Bim Process Explained
PDF
IOT for Smart City
PDF
The Collaborative Power of BIM
PPTX
BIM to GIS Interoperability
Session 9- Urban Land values
Estimating distance decay for the national propensity to cycle tool
AAM Group GIS - BIM Integration
Forme urbaine et mobilité durable à Yaoundé
Introduction to BIM
Industry Foundation Classes
Lectures 6 rup 2185 new directions in planning
Digital city
Indoor Positioning Systems
DSD-INT 2022 MIKE wrapper for Delft-FEWS - Vanecek
Postmodern Urbanism and the New Psychogeography
Fire Risk Mapping using GIS.pptx
L'elements diagnostic-sur-le-renouvellement-urbain-marc kaszynski-
BIM BIM.pdf
Bim Presentation
HOW TO PREPARE LOCAL DEVELOPMENT PLAN
The Bim Process Explained
IOT for Smart City
The Collaborative Power of BIM
BIM to GIS Interoperability
Ad

Viewers also liked (20)

PPT
Lewis Dijkstra, DG Regional Policy
PDF
Infographic -Small Cell Forum Urban Small Cells Release 4
PPTX
A Visual Ethnography: Aspirations in Urban Chicago
PPT
Bedo Digital Cities5
PDF
Urban Upbound Naming & Visual Identity
PPTX
Infographic planning
PDF
Infographic - Information Visualization
PDF
Information Visualization: Analysis and Communication of Insights
PPTX
Data Visualization Session for K-Hub
PPTX
Workshop - Disaster Health Information Sources: The Basics
PDF
Multi-criteria Fusion of Heterogeneous Information for Improving Sit...
PPTX
Choosing Credible Sources of Information
PDF
Nguyen - Science of Information, Computation and Fusion - Spring Review 2013
PDF
SOF, the Sahel and the African Peace and Security Architecture. Synergies and...
PPTX
Information fusion
PPTX
Information sources and the use of media in Italy (1)
PPT
Types of information sources
PDF
Vyrovnávací můstek poweramp 232 m sklopný
PPTX
Content Management and Collaboration
Lewis Dijkstra, DG Regional Policy
Infographic -Small Cell Forum Urban Small Cells Release 4
A Visual Ethnography: Aspirations in Urban Chicago
Bedo Digital Cities5
Urban Upbound Naming & Visual Identity
Infographic planning
Infographic - Information Visualization
Information Visualization: Analysis and Communication of Insights
Data Visualization Session for K-Hub
Workshop - Disaster Health Information Sources: The Basics
Multi-criteria Fusion of Heterogeneous Information for Improving Sit...
Choosing Credible Sources of Information
Nguyen - Science of Information, Computation and Fusion - Spring Review 2013
SOF, the Sahel and the African Peace and Security Architecture. Synergies and...
Information fusion
Information sources and the use of media in Italy (1)
Types of information sources
Vyrovnávací můstek poweramp 232 m sklopný
Content Management and Collaboration
Ad

Similar to Urban Analytics & Information Fusion with CityGML (20)

PDF
Smart Models for Smart Cities - Modeling of Dynamics, Sensors, Urban Indicato...
PDF
CityGML goes to Broadway - An Open Data 3D City Model for New York City
PPTX
Gonçal Costa, ARC Engineering and Architecture La Salle, Barcelona, Spain.
PDF
SUNSHINE Project: Romain Nouvel, Jean Marie Bahu
PDF
Envie project 3_d_city_models_urban_micro_climate
PDF
Smart Cities and Open Data
PPT
An assessment-based process for modifying the built fabric of historic centre...
PPT
Standard geodata models for Energy Performance of Buildings: experiences from...
PDF
Smarter Together General Assembly 2019, Sofia
PPTX
Álvaro Sicilia, ARC Engineering and Architecture La Salle, Barcelona, Spain.
PDF
CARE4CLIMATE_Leandro_Madrazo_published.pdf
PPTX
Innovatie estafette DEMO Consultants - TNO- Gemeente Rotterdam - 2013
PPT
The Impact of Digital Engineering – Tim Broyd (ICE) #COMIT2016
PPTX
2019 General Assembly - Sofia - presentations
PPTX
Digital Built Environment Management
PDF
TIMES and prospective modelling for urban planning
PDF
Sustainable Construction Research - Smart City Block Project
DOCX
Smart City Energy Planning Integrating Data and Tools .docx
PDF
GM STAVRAKAKIS_CV_2016_EN
PDF
enCOMPASS
Smart Models for Smart Cities - Modeling of Dynamics, Sensors, Urban Indicato...
CityGML goes to Broadway - An Open Data 3D City Model for New York City
Gonçal Costa, ARC Engineering and Architecture La Salle, Barcelona, Spain.
SUNSHINE Project: Romain Nouvel, Jean Marie Bahu
Envie project 3_d_city_models_urban_micro_climate
Smart Cities and Open Data
An assessment-based process for modifying the built fabric of historic centre...
Standard geodata models for Energy Performance of Buildings: experiences from...
Smarter Together General Assembly 2019, Sofia
Álvaro Sicilia, ARC Engineering and Architecture La Salle, Barcelona, Spain.
CARE4CLIMATE_Leandro_Madrazo_published.pdf
Innovatie estafette DEMO Consultants - TNO- Gemeente Rotterdam - 2013
The Impact of Digital Engineering – Tim Broyd (ICE) #COMIT2016
2019 General Assembly - Sofia - presentations
Digital Built Environment Management
TIMES and prospective modelling for urban planning
Sustainable Construction Research - Smart City Block Project
Smart City Energy Planning Integrating Data and Tools .docx
GM STAVRAKAKIS_CV_2016_EN
enCOMPASS

Recently uploaded (20)

PDF
Launch Your Data Science Career in Kochi – 2025
PPTX
MODULE 8 - DISASTER risk PREPAREDNESS.pptx
PDF
Recruitment and Placement PPT.pdfbjfibjdfbjfobj
PPTX
oil_refinery_comprehensive_20250804084928 (1).pptx
PPTX
DISORDERS OF THE LIVER, GALLBLADDER AND PANCREASE (1).pptx
PDF
BF and FI - Blockchain, fintech and Financial Innovation Lesson 2.pdf
PPT
Chapter 2 METAL FORMINGhhhhhhhjjjjmmmmmmmmm
PDF
Lecture1 pattern recognition............
PPTX
Introduction to Knowledge Engineering Part 1
PPTX
Introduction to Basics of Ethical Hacking and Penetration Testing -Unit No. 1...
PDF
168300704-gasification-ppt.pdfhghhhsjsjhsuxush
PPTX
Global journeys: estimating international migration
PPTX
Business Acumen Training GuidePresentation.pptx
PDF
Foundation of Data Science unit number two notes
PPTX
Data_Analytics_and_PowerBI_Presentation.pptx
PDF
Mega Projects Data Mega Projects Data
PPTX
iec ppt-1 pptx icmr ppt on rehabilitation.pptx
PPTX
advance b rammar.pptxfdgdfgdfsgdfgsdgfdfgdfgsdfgdfgdfg
PPTX
Introduction-to-Cloud-ComputingFinal.pptx
PPTX
ALIMENTARY AND BILIARY CONDITIONS 3-1.pptx
Launch Your Data Science Career in Kochi – 2025
MODULE 8 - DISASTER risk PREPAREDNESS.pptx
Recruitment and Placement PPT.pdfbjfibjdfbjfobj
oil_refinery_comprehensive_20250804084928 (1).pptx
DISORDERS OF THE LIVER, GALLBLADDER AND PANCREASE (1).pptx
BF and FI - Blockchain, fintech and Financial Innovation Lesson 2.pdf
Chapter 2 METAL FORMINGhhhhhhhjjjjmmmmmmmmm
Lecture1 pattern recognition............
Introduction to Knowledge Engineering Part 1
Introduction to Basics of Ethical Hacking and Penetration Testing -Unit No. 1...
168300704-gasification-ppt.pdfhghhhsjsjhsuxush
Global journeys: estimating international migration
Business Acumen Training GuidePresentation.pptx
Foundation of Data Science unit number two notes
Data_Analytics_and_PowerBI_Presentation.pptx
Mega Projects Data Mega Projects Data
iec ppt-1 pptx icmr ppt on rehabilitation.pptx
advance b rammar.pptxfdgdfgdfsgdfgsdgfdfgdfgsdfgdfgdfg
Introduction-to-Cloud-ComputingFinal.pptx
ALIMENTARY AND BILIARY CONDITIONS 3-1.pptx

Urban Analytics & Information Fusion with CityGML

  • 1. Technische Lehrstuhl für Geoinformatik Universität München Urban Analytics & Information Fusion with CityGML Thomas H. Kolbe Chair of Geoinformatics Technische Universität München thomas.kolbe@tum.de March 7, 2014 Open Urban Information Model Seminar, Helsinki
  • 2. Technische Lehrstuhl für Geoinformatik Universität München 7. 3. 2014 3D Model from Berlin Partner T. H. Kolbe – Urban Analytics & Information Fusion with CityGML 2
  • 3. Technische Lehrstuhl für Geoinformatik Universität München What are the differences to the previous model? (despite some colour variations) 3D Model from Google 7. 3. 2014 T. H. Kolbe – Urban Analytics & Information Fusion with CityGML 3
  • 4. Technische Lehrstuhl für Geoinformatik Universität München Answering by • human: • computer: Answering by • human: • computer:     Queries on the 3D city model: • How many buildings, monuments, trees? • How many storeys? • Where are entrances and exits? • From which windows / roofs is plaza XY visible? 7. 3. 2014 T. H. Kolbe – Urban Analytics & Information Fusion with CityGML 4
  • 5. Technische Lehrstuhl für Geoinformatik Universität München 3D City Modeling ► … is far more than just 3D visualization of reality ► in fact, geometry and their graphical appearance are only two aspects of an object ► Key aspect: Semantic Modeling 7. 3. 2014 T. H. Kolbe – Urban Analytics & Information Fusion with CityGML 5
  • 6. Technische Lehrstuhl für Geoinformatik Universität München Contents ► Semantic 3D City Models ● Urban Information Fusion ● CityGML ► Application Example: Strategic Energy Planning ● Energy Atlas Berlin: Scale and Scope ● Estimation of Energy Demands for Individual Buildings ● Aggregation of Energy Demands ● Interactive 3D Visualization and Decision Support ► Live Demonstration ► Further Application Examples ● Environmental Noise Dispersion Simulation ● Vulnerability Analysis: Detonation Simulations 7. 3. 2014 T. H. Kolbe – Urban Analytics & Information Fusion with CityGML 6
  • 7. Technische Lehrstuhl für Geoinformatik Universität München 7. 3. 2014 Semantic 3D City Models
  • 8. Technische Lehrstuhl für Geoinformatik Universität München Spatio-semantic Modeling of Our World ► many relevant urban entities are physical objects ► physical objects occupy space in the real world ● partitioning of occupied real space  discrete objects ● criteria for subdivision: thematic classification into different topographic elements like buildings, streets, trees etc. ► spatio-semantic representation of the relevant geoinformationen ● modeling of the city & its constituents ● classified objects with thematic data ● spatial aspects: location, shape, extent ► different, discrete levels of detail (LODs) ► real world is 3D  semantic 3D city models 7. 3. 2014 T. H. Kolbe – Urban Analytics & Information Fusion with CityGML 8
  • 9. Technische Lehrstuhl für Geoinformatik Universität München 3D Decomposition of Urban Space ► City is decomposed into meaningful objects with clear semantics and defined spatial and thematic properties ● buildings, roads, railways, terrain, water bodies, vegetation, bridges ● buildings may be further decomposed into different storeys (and even more detailed into apartments and single rooms) ● energy related data are associated with the different objects Image: Paul Cote, Harvard Graduate School of Design 7. 3. 2014 T. H. Kolbe – Urban Analytics & Information Fusion with CityGML 9
  • 10. Technische Lehrstuhl für Geoinformatik Universität München City Geography Markup Language – CityGML Application independent Geospatial Information Model for semantic 3D city and landscape models ► comprises different thematic areas (buildings, vegetation, water, terrain, traffic, tunnels, bridges etc.) ► Internat‘l Standard of the Open Geospatial Consortium ● V1.0.0 adopted in 08/2008; V2.0.0 adopted in 3/2012 ► Data model (UML) + Exchange format (based on GML3) CityGML represents ► 3D geometry, 3D topology, semantics, and appearance ► in 5 discrete scales (Levels of Detail, LOD) 7. 3. 2014 T. H. Kolbe – Urban Analytics & Information Fusion with CityGML 10
  • 11. Technische Lehrstuhl für Geoinformatik Universität München 7. 3. 2014 T. H. Kolbe – Urban Analytics & Information Fusion with CityGML 11
  • 12. Technische Lehrstuhl für Geoinformatik Universität München Semantic 3D City Model of Berlin >550,000 buildings; • fully-automatically generated from 2D cadastre footprints & airborne laserscanning data. • textures (automatically extracted from aerial images) • semantic information (includes data from cadastre) • 3D utility networks from the energy providers • modeled according to CityGML www.virtual-berlin.de 7. 3. 2014 T. H. Kolbe – Urban Analytics & Information Fusion with CityGML 12
  • 13. Technische Lehrstuhl für Geoinformatik Universität München Application Example: Energy Atlas Berlin 7. 3. 2014 (+ London)
  • 14. Technische Lehrstuhl für Geoinformatik Universität München The Energy Turn: Reasons and Targets ► Climate change and natural disasters ● Reduction of greenhouse gas emissions ● Energy production with no or low CO2 emissions ► Finite resources of fossil fuels like gas, coal, or oil ● Energy production by sustainably available energy sources ► Security concerns in nuclear power production ● Exit from nuclear energy production in Germany ► Improving quality of life in cities ● Reduction of emissions such as fine dust, noise, etc. ● Power generation with less / no emissions in the inner cities [Images: focus.de, naanoo.com] 7. 3. 2014 T. H. Kolbe – Urban Analytics & Information Fusion with CityGML 14
  • 15. Technische Lehrstuhl für Geoinformatik Universität München Measures for Reorganization of Energy Supply ► Centralized vs. decentralized energy production ● e.g. large power stations vs. block heat and power plants ► Exploitation of regenerative & natural energy ● Solar thermal & Photovoltaic energy ● Geothermal energy ► Extension, construction, alternative usages of supply / distribution infrastructures ► Measures to increase energy efficiency ● e.g. building retrofitting; always affects individual components or buildings in the end ► Introducing large amount of e-mobility ► Influencing of consumer behaviors 7. 3. 2014 T. H. Kolbe – Urban Analytics & Information Fusion with CityGML 15
  • 16. Technische Lehrstuhl für Geoinformatik Universität München Energy Atlas Berlin ► Collaboration project (2.5M€) partially funded by the European Institute of Innovation and Technology EIT ► located within the Knowledge & Innovation Center for Climate Change and Mitigation (Climate KIC) ● PI: Chair of Geoinformatics, Technische Universität München ● German Research Centre for Geosciences Potsdam (GFZ) ● Vattenfall Europe Berlin AG ● GASAG AG ● Berlin Partner GmbH ● Berlin Senate of Economics, Technology and Research ● City District Administration Charlottenburg-Wilmersdorf in Berlin ► Partners: Berlin University of Technology: ● Innovation Center Energy ● Institute for Geodesy and Geoinformation Science ● PI: Instit. for Energy Technologies ● Institute for Energy and Automation Technology ● Institute for Architecture ● Institute for Technology and Management ● Center for Technology & Society 7. 3. 2014 T. H. Kolbe – Urban Analytics & Information Fusion with CityGML 16
  • 17. Technische Lehrstuhl für Geoinformatik Universität München Goals of the Energy Atlas Berlin ► Tool for holistic energy planning ● Analysis and representation of the actual state of objects and their energy-relevant parameters within a city ● Investigation and balancing of options and measures ● Decision support for various measures and visualization of their effects ► Information backbone for multiple analyses & simulations ● Estimation of heating, electrical, and warm water energy demands ● Energetic building characteristics and rehabilitation potentials ● Design of an optimal electricity network, taking into account the current demand and load peaks ● Usage of geothermal and solar energy potentials 7. 3. 2014 T. H. Kolbe – Urban Analytics & Information Fusion with CityGML 17
  • 18. Technische Lehrstuhl für Geoinformatik Universität München Scale Levels of the Energy Atlas ► City ► District ► Quarter / Block ► Building / Street ► Appartement ► Room Generalisation / Aggregation Resolution / Level of Detail 7. 3. 2014 T. H. Kolbe – Urban Analytics & Information Fusion with CityGML 18
  • 19. Technische Lehrstuhl für Geoinformatik Universität München Energy Atlas System Design Geoinformatics/ Standards developer 3D City Model + Energy ADE Acquisition + Conversion + Editing of Cadastre Data Urban Analytics Toolkit Visualization + Reporting - What-if scenarios - Application data acquisition City (London) City City Cities (e.g. Berlin) Solar Potential Analyis Heating Consumption Estimation Specific energetic environmental technology issues Stakeholder Cities Energy Supplier Housing Companies Energy service provider Citizens … many more modules Consulting Development (GIS-Developer / Simulation Experts) 7. 3. 2014 T. H. Kolbe – Urban Analytics & Information Fusion with CityGML GIS Specialists 19
  • 20. Technische Lehrstuhl für Geoinformatik Universität München 7. 3. 2014 Energy Demand Estimation
  • 21. Technische Lehrstuhl für Geoinformatik Universität München Correlation Consumption  Building param’s Building data Consumption data • Electricity • Water • Gas • (Remote) Heating Only available for a few households (detailed data only where Smart Meters are installed) • Volume [m³] • Floor space [m²] • Building type • Building usage • Year of construction • (renovation state) • Number of habitants • 3D City Model • Geo Base Data Correlation What is the relation of consumption with specific building characteristics? Full coverage of entire cities! 7. 3. 2014 T. H. Kolbe – Urban Analytics & Information Fusion with CityGML 21
  • 22. Technische Lehrstuhl für Geoinformatik Universität München Energy Demand Estimation (I) GIS 3D City Model + Geo Base Data Estimation of the individual energy demand for every single building Quarter level Estimation of the energy demand 7. 3. 2014 T. H. Kolbe – Urban Analytics & Information Fusion with CityGML District level City level Aggregation Correlation function + 22
  • 23. Technische Lehrstuhl für Geoinformatik Universität München Energy Demand Estimation (II) GIS 3D City Model + Geo Base Data Estimation of the individual energy demand for every single building Correlation function + Changes to the city model according to planned / possible measures Impacts on the energy demand can be directly estimated and compared with the current status Quarter level Estimation of the energy demand 7. 3. 2014 T. H. Kolbe – Urban Analytics & Information Fusion with CityGML District level City level Aggregation ! ! 23
  • 24. Technische Lehrstuhl für Geoinformatik Universität München Estimation of Heating Energy Demand ► Building-specific and city-wide calculation based on algorithms of the Institut Wohnen und Umwelt (IWU) ► Based on the virtual 3D city model and official geobase data within the Energy Atlas Berlin Climate and environment conditions Correlation Building Information • Geometry • Usage • Construction • Rehabilitation • Residents • Apartments Energy Demand • Electricity • Warm Water • Heating 7. 3. 2014 T. H. Kolbe – Urban Analytics & Information Fusion with CityGML 24
  • 25. Technische Lehrstuhl für Geoinformatik Universität München Determination of Input Values ► Climate conditions: according to VDI 2067 for Berlin ► Global radiation: standard values from the IWU ► Building geometry: calculated from 3D city model ● Energy reference area ● Building volume ● Boundary surface areas (walls, windows, roof, ground) ► Number of storeys: calculated from 3D city model ► Building usage: taken from 3D city model (geobase data) ► Building construction: Estimated using building age class ● Heat transmission coefficient (U-Value) of the components ● Energy transmittance (g-Value) of the windows ► Rehabilitation state: definition of rehabilitation classes 7. 3. 2014 T. H. Kolbe – Urban Analytics & Information Fusion with CityGML 25
  • 26. Technische Lehrstuhl für Geoinformatik Universität München Calculation of Heating Energy Demand ► The energy demand of a building QH is the difference of the heat losses and heat gains: QH = QV - QG [kWh/a] QV heat losses [kWh/a] QG usable heat gains [kWh/a] ► Calculation of heat losses ● through the boundary surfaces ● due to periodical airing ► Calculation of heat gains ● sunlight irradiation ● internal heat sources 7. 3. 2014 T. H. Kolbe – Urban Analytics & Information Fusion with CityGML [http://www.lambdaplus.de] 26
  • 27. Technische Lehrstuhl für Geoinformatik Universität München Estimated Heating Energy Demand Estimated Energy Demand [kwh/a] 7. 3. 2014 T. H. Kolbe – Urban Analytics & Information Fusion with CityGML 27
  • 28. Technische Lehrstuhl für Geoinformatik Universität München Estimation of Electrical Energy Demand ► Building-specific and city-wide estimation based on average electrical energy consumption statistics for households, published by company Vattenfall ► Household data are estimated from the virtual 3D city model and geobase data within the Energy Atlas Berlin Climate and environment conditions Correlation Building Information • Geometry • Usage • Construction • Rehabilitation • Residents • Apartments Energy Demand • Electricity • Warm Water • Heating [PhD Work of Robert Kaden, 2013] 7. 3. 2014 T. H. Kolbe – Urban Analytics & Information Fusion with CityGML 28
  • 29. Technische Lehrstuhl für Geoinformatik Universität München Estimation of Input Values ► Building usage: taken from 3D city model (geobase data) ► # residents: estimated from the given population of a block and the building volume of the buildings within the block ► Number of Apartments: Estimated by using the empirically estimated ratio of the number of apartments per building volume and the volume of a building 7. 3. 2014 T. H. Kolbe – Urban Analytics & Information Fusion with CityGML 29
  • 30. Technische Lehrstuhl für Geoinformatik Universität München Estimation of Input Values ► Building usage: taken from 3D city model (geobase data) ► # residents: estimated from the given population of a block Validation of the estimated number of inhabitants and and the building volume of the buildings apartments within per building: the block ► Number of Apartments: Estimated by using the empirically For district Mitte: Σ Residents / Σ Apartments = 1.61 estimated ratio of the number of apartments per building volume and the volume of a building [Amt für Statistik Berlin Brandenburg, 2011] 7. 3. 2014 T. H. Kolbe – Urban Analytics & Information Fusion with CityGML 30
  • 31. Technische Lehrstuhl für Geoinformatik Universität München Calculation of Electrical Energy Demand ► Electrical energy demand of a building is estimated based on the average annual consumption values of households and the number of residents per household ► Distribution of the residents per building to the residential units of the building 7,646768624 7,548100641 Households in Mitte - Berlin 7. 3. 2014 T. H. Kolbe – Urban Analytics & Information Fusion with CityGML [Vattenfall, 2012] 62,60483473 22,24963 1 person 2 persons 3 persons 4 or higher [Amt für Statistik Berlin Brandenburg, 2011] 31
  • 32. Technische Lehrstuhl für Geoinformatik Universität München Estimation of Energy Demand for Warm Water ► Building-specific and city-wide calculation bases on algorithms of the Institut Wohnen und Umwelt (IWU) ► Based on the virtual 3D city model and official geobase data within the Energy Atlas Berlin Climate and environmen t conditions Correlation Building Information • Geometry • Usage • Construction • Rehabilitation • Residents • Apartments Energy Demand • Electricity • Warm Water • Heating [PhD Work of Robert Kaden, 2013] 7. 3. 2014 T. H. Kolbe – Urban Analytics & Information Fusion with CityGML 32
  • 33. Technische Lehrstuhl für Geoinformatik Universität München Exploration of Building Energy Parameters 7. 3. 2014 T. H. Kolbe – Urban Analytics & Information Fusion with CityGML 33
  • 34. Technische Lehrstuhl für Geoinformatik Universität München Exploration of Building Energy Parameters 7. 3. 2014 T. H. Kolbe – Urban Analytics & Information Fusion with CityGML 34
  • 35. Technische Lehrstuhl für Geoinformatik Universität München Aggregating Energy Indicators for Districts 7. 3. 2014 T. H. Kolbe – Urban Analytics & Information Fusion with CityGML 35
  • 36. Technische Lehrstuhl für Geoinformatik Universität München Aggregating Energy Indicators for Districts 7. 3. 2014 T. H. Kolbe – Urban Analytics & Information Fusion with CityGML 36
  • 37. Technische Lehrstuhl für Geoinformatik Universität München Analysis of Saving Potentials by Retrofitting ► Heating energy demand depends on the construction type ● U values of components: determined using the building age class and the building type taken from the 3D city model ● g values of the windows: determined using the building age class and the building type taken from the 3D city model ● definition of different (and possible) retrofitting levels for each building by variations of U and g values BAK Zeitraum Durchschn.U-Wert Wand BAK Zeitraum Durchschn.U-Wert W/(m2K) Durchschn.U-Wert Fenster W/(m2K) Durchschn. g-Wert Fenster Durchschn. U-Wert Dach Durchschn. g-Wert Fenster W/(m2K) Durchschn. U-Wert Durchschn. U-Wert Kellerdecke Durchschn. U-Wert Fenster W/(m2K) Durchschn. W/(m2K) Fenster-Wand- Flächen-verhältnisse mittleres Fenster- Wand- Flächenverh Fenster-Wand- Flächen-verhältnisse Durchschn. U-Wert Kellerdecke W/(m2K) ältnis Wand BAK Zeitraum Durchschn. W/(m2K) Durchschn.U-Wert Fenster W/(m2K) Dach W/(m2K) Durchschn. U-Wert Durchschn. U-Wert Kellerdecke W/(m2K) U-Wert Wand W/(m2K) g-Wert Fenster Dach 1 bis 1918 1,70 2,7 0,76 1,50 1,20 0,25 – 0,34 0,30 1919 – 1945 W/(m2K) 2 1,70 2,7 0,76 1,50 1,20 0,20 – 0,35 0,25 3 1946 – 1961 1,40 2,7 0,76 1,30 1,00 0,20 – 0,31 0,23 4 1962 – 1974 1,20 2,7 0,76 1,10 0,84 0,20 – 0,42 0,28 5 1975 – 1993 0,80* 2,7 0,76 0,45 0,60 0,20 – 0,40 0,33 6 1994 – 2012 0,40* 1,7 0,72 0,30 0,40 0,30 – 0,50 0,35 7. 3. 2014 T. H. Kolbe – Urban Analytics & Information Fusion with CityGML mittleres Fenster- Wand- Flächenverh Fenster- Wand- Flächen-verhältnisse ältnis 1 bis 1918 1,70 2,7 0,76 1,50 1,20 0,25 – 0,34 0,30 2 1919 – 1945 1,70 2,7 0,76 1,50 1,20 0,20 – 0,35 3 1946 – 1961 1,40 2,7 0,76 1,30 1,00 0,20 – 0,31 0,23 4 1962 – 1974 1,20 2,7 0,76 1,10 0,84 0,20 – 0,42 0,28 5 1975 – 1993 0,80* 2,7 0,76 0,45 0,60 0,20 – 0,40 0,33 6 1994 – 2012 0,40* 1,7 0,72 0,30 0,40 0,30 – 0,50 0,35 mittleres Fenster- Wand- Flächenver hältnis 1 bis 1918 1,70 2,7 0,76 1,50 1,20 0,25 – 0,34 0,30 2 1919 – 1945 1,70 2,7 0,76 1,50 1,20 0,20 – 0,35 0,25 3 1946 – 1961 1,40 2,7 0,76 1,30 1,00 0,20 – 0,31 0,23 4 1962 – 1974 1,20 2,7 0,76 1,10 0,84 0,20 – 0,42 0,28 5 1975 – 1993 0,80* 2,7 0,76 0,45 0,60 0,20 – 0,40 0,33 6 1994 – 2012 0,40* 1,7 0,72 0,30 0,40 0,30 – 0,50 0,35 37
  • 38. Technische Lehrstuhl für Geoinformatik Universität München Energy Atlas: Information Fusion Geothermal potential analysis Energy Atlas Energy savings potentials Energy demands analyses Infrastructure analysis Solar potential analysis 7. 3. 2014 T. H. Kolbe – Urban Analytics & Information Fusion with CityGML 38
  • 39. Technische Lehrstuhl für Geoinformatik Universität München 7. 3. 2014 Live Demo Energy Atlas
  • 40. Technische Lehrstuhl für Geoinformatik Universität München Screenshot of the Energy Atlas Webclient 7. 3. 2014 T. H. Kolbe – Urban Analytics & Information Fusion with CityGML 40
  • 41. Technische Lehrstuhl für Geoinformatik Universität München Application Example: 7. 3. 2014 Noise Dispersion Simulation and Mapping
  • 42. Technische Lehrstuhl für Geoinformatik Universität München Environmental Noise Dispersion Simulation CityGML is basis for the computation of the noise immission maps for the state of North-Rhine Westphalia ● Background: EU directive on reduction of environmental noise ● Cooperation project of Univ. Bonn, state NRW, and companies ● Provision and exchange of all data exclusively in CityGML and corresponding Web Services (WFS, WCS, WMS): ● 8.6 million 3D buildings in LOD1 (18.6 million citizens in NRW!) ● 3D road network NRW in LOD0 (based on 2D models in OKSTRA, ATKIS & DTM5), extended by those properties relevant ro noise dispersion simulation ● 3D railway network NRW in LOD0 (based on ATKIS, DTM5) ● 3D noise barriers in LOD1 ● DTM5 (a 10m raster was used) 7. 3. 2014 T. H. Kolbe – Urban Analytics & Information Fusion with CityGML 42
  • 43. Technische Lehrstuhl für Geoinformatik Universität München Computation of Noise Immission Maps 7. 3. 2014 Noise immission maps for reporting to the EU (via WMS Service) 3D Model in CityGML (via WFS Service) DTM 10m Raster (via WCS Service) Noise propagation simulation T. H. Kolbe – Urban Analytics & Information Fusion with CityGML 43
  • 44. Technische Lehrstuhl für Geoinformatik Universität München Application Example: Vulnerability Analysis (Detonation Simulation) 7. 3. 2014
  • 45. Technische Universität München ‘Controlled‘ Blast of discovered unexploded Bomb from World War II Detonation in Munich, District Schwabing, 2012 Unexploded American 500 lbs Bomb (120kg TNT) Evacuation of 2500 citizens Source: Münchner Abendzeitung Bildzeitung Source: Google Maps Chair of Metal Structures Prof. Martin Mensinger, Stefan Trometer 45
  • 46. Technische Universität München ‘Controlled‘ Blast of discovered unexploded Bomb from World War II Detonation in Munich, District Schwabing, 2012 Chair of Metal Structures Prof. Martin Mensinger, Stefan Trometer 46
  • 47. Technische Lehrstuhl für Geoinformatik Universität München Coming to the end . . . 11. 2. 2011
  • 48. Technische Lehrstuhl für Geoinformatik Universität München Conclusions ► Semantic 3D City Models ( Urban Information Models) ● are an appropriate reference model and data platform to attach / link domain specific urban information across different disciplines ● Semantic 3D city models often are provided by authoritative sources (municipal agencies, state & national mapping agencies)  full coverage of the urban space, high reliability, stability Google 3D models, Open Streetmap are not suitable !! ● facilitate comprehensive analyses on the urban scale in the fields of e.g. energy assessment, environmental simulation, urban planning ● can accumulate knowledge (including analyses results) ► Interoperability is key for information integration ● OGC‘s CityGML defines the semantic model + exchange format ● CityGML is an Open, vendor independent Standard ● CityGML allows for 3D visualizations AND thematic analyses 7. 3. 2014 T. H. Kolbe – Urban Analytics & Information Fusion with CityGML 48
  • 49. Technische Lehrstuhl für Geoinformatik Universität München ... and what about BIM / IFC ? ► CityGML is complementary to IFC ● both, IFC and CityGML are information models ● IFC: building objects (other man-made objects under devel.) ● CityGML: man-made and natural objects; geomorphology ► IFC‘s modeling approach is tailored to support the planning, design, construction, and operation of buildings ● one, high level of detail ● typ. only available for newly planned / constructed buildings ► CityGML‘s modeling approach is tailored to describe the real world from observations / measurements ● in five levels of detail; conversion of IFC  CityGML is possible ● automated data acquisition methods; coverage of entire cities ● large datasets can be managed within GIS, geodatabases 7. 3. 2014 T. H. Kolbe – Urban Analytics & Information Fusion with CityGML 49
  • 50. Technische Lehrstuhl für Geoinformatik Universität München References ► R. Kaden, T. H. Kolbe: City-Wide Total Energy Demand Estimation of Buildings us-ing Semantic 3D City Models and Statistical Data. In: Proc. of the 8th International 3D GeoInfo Conference, 28.-29. 11. 2013 in Istanbul, Turkey, ISPRS Annals of the Photo-grammetry, Remote Sensing and Spatial Information Sciences, Volume II-2/W1, 2013 Click for article download ► A. Krüger, T. H. Kolbe: Building Analysis for Urban Energy Planning Using Key Indicators on Virtual 3D City Models - The Energy Atlas of Berlin. In: Proceedings of the ISPRS Congress 2012 in Melbourne, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B2, 2012 Click for article download ► D. Carrion, A. Lorenz, T. H. Kolbe: Estimation of the Energetic Rehabilitation State of Buildings for the City of Berlin Using a 3D City Model Represented in CityGML. In: Proceedings of the 5th Intern. Conference on 3D Geo-Information 2010 in Berlin, International Archives of Photogrammetry, Remote Sensing, and Spatial Information Sciences, Vol. XXXVIII-4/W15 Click for article download ► T. H. Kolbe: Representing and Exchanging 3D City Models with CityGML. In: J. Lee, S. Zlatanova (Eds.), 3D Geo-Information Sciences, Proceedings of the 3rd Intern. Workshop on 3D Geo- Information in Seoul, Korea. Springer, Berlin, 2008 Click for article download 7. 3. 2014 T. H. Kolbe – Urban Analytics & Information Fusion with CityGML 50
  • 51. Technische Lehrstuhl für Geoinformatik Universität München Credits ► The Energy Atlas project has been funded by Climate-KIC of the European Institute for Innovation and Technology (EIT) ► The 3D City Model of Berlin was provided by Berlin Partner GmbH. Its creation was supported by the European Regional Development Fund (ERDF) and the Berlin Senate of Economy, Technology & Women‘s Affairs ► The 3D City Model of London‘s District Bromley-By-Bow was generated from building footprints from Ordnance Survey Mastermap and a DSM and DTM from Infoterra 7. 3. 2014 T. H. Kolbe – Urban Analytics & Information Fusion with CityGML 51