SlideShare a Scribd company logo
1 |	
  ©	
  2017	
  Interset	
  Software
User	
  and	
  Entity	
  Behavioral	
  Analytics
Stephan	
  Jou,	
  November	
  2017
2 |	
  ©	
  2017	
  Interset	
  Software
§ CTO	
  at	
  Interset
§ Previously:	
  Cognos and	
  IBM’s	
  Business	
  Analytics	
  
CTO	
  Office
§ Big	
  data	
  analytics,	
  visualization,	
  cloud,	
  predictive	
  
analytics,	
  data	
  mining,	
  neural	
  networks,	
  mobile,	
  
dashboarding and	
  semantic	
  search
§ M.Sc.	
  in	
  Computational	
  Neuroscience	
  and	
  
Biomedical	
  Engineering,	
  and	
  a	
  dual	
  B.Sc.	
  in	
  
Computer	
  Science	
  and	
  Human	
  Physiology,	
  all	
  from	
  
the	
  University	
  of	
  Toronto
Hey.	
  I’m	
  Stephan	
  Jou.	
  I	
  like	
  analytics.
3 |	
  ©	
  2017	
  Interset	
  Software
Rachel	
  Pictures:	
  1	
  of	
  2,365	
  
4 |	
  ©	
  2017	
  Interset	
  Software
Rachel	
  Pictures:	
  2	
  of	
  2,365
5 |	
  ©	
  2017	
  Interset	
  Software
Rachel	
  Pictures:	
  3	
  of	
  2,365	
  
6 |	
  ©	
  2017	
  Interset	
  Software
Rachel	
  Pictures:	
  4	
  of	
  2,365	
  
7 |	
  ©	
  2017	
  Interset	
  Software
Rachel	
  Pictures:	
  5	
  of	
  2,365
8 |	
  ©	
  2017	
  Interset	
  Software
Rachel	
  – Year	
  0	
  alerts	
  
ALERT
9 |	
  ©	
  2017	
  Interset	
  Software
Rachel	
  – Year	
  0	
  False	
  Positives
§ Dent	
  in	
  head!
§ Too	
  many	
  bowel	
  movements!
§ Spitting	
  up	
  too	
  frequently?
§ Horrifying	
  rash!
§ High	
  temperature!	
  Fever?
§ Normal.
§ Normal.
§ Nothing	
  to	
  worry	
  about.
§ Baby	
  acne.	
  Typical.
§ Within	
  normal	
  range.
10 |	
  ©	
  2017	
  Interset	
  Software
Baby	
  Anomaly	
  Detection	
  Advice	
  for	
  Me
§ Rigid	
  rules	
  and	
  thresholds	
  don’t	
  work
§ Every	
  baby	
  is	
  different
§ Learn	
  normal	
  for	
  your	
  baby
§ Look	
  for	
  and	
  quantify	
  deviations	
  from	
  normal
Internal	
  temperature
Skin	
  pattern
Sleeping	
  patterns
Breathing	
  patterns
Speech	
  development
Emotional	
  state
Growth,	
  weight,	
  height
Eating	
  behaviors
…etc
11 |	
  ©	
  2017	
  Interset	
  Software
Scaling	
  Up	
  Baby	
  Anomaly	
  Detection
§ Every	
  parent	
  should	
  do	
  this	
  for	
  
every	
  baby
§ Each	
  parent	
  should	
  look	
  for	
  
multiple	
  deviations,	
  not	
  just	
  a	
  
single	
  deviation
A	
  lot	
  of	
  babies	
  à a	
  lot	
  of	
  data	
  +	
  analysis	
  à
Fewer cases	
  with	
  a	
  low	
  false	
  positive	
  rate
12 |	
  ©	
  2017	
  Interset	
  Software
A	
  Canadian	
  Moment
User and Entity Behavioral Analytics
13 |	
  ©	
  2017	
  Interset	
  Software
From	
  Baby	
  Analytics	
  to	
  Security	
  Analytics…
A  Handful  of  Threat  LeadsBillions  of  Events Hundreds  of  Anomalies
14 |	
  ©	
  2017	
  Interset	
  Software
Place  Subtitle  Here
X
2  Engineers  
stole  data
1  Year
$1  Million  Spent
Large  security  
vendor  failed  to  
find  anything  
2  Weeks
Easily  
identified  the  2  
Engineers
Found  3  
additional  users  
stealing  data  in  
North  America
Found  8  
additional  users  
stealing  data  in  
China
Example	
  #1:	
  $20B	
  Manufacturer
15 |	
  ©	
  2017	
  Interset	
  Software
• Proper	
  math	
  means	
  rapid	
  
deployment	
  &	
  detection	
  with	
  
little	
  maintenance
• But	
  use	
  case	
  >	
  math
• Agree	
  on	
  the	
  use	
  cases	
  in	
  
advance
• POC	
  with	
  historical	
  data
• Engage	
  your	
  red	
  team
Lesson	
  #1:	
  The	
  Math	
  Matters	
  – Test	
  It
16 |	
  ©	
  2017	
  Interset	
  Software
High  Probability  Anomalous  Behavior  Models
• Detected  large  copies  to  the  portable  hard  
drive,  at  an  unusual  time  of  day
• Bayesian  models  to  measure  and  detect  
highly  improbable  events
High  Risk  File  Models
• Detected  high  risk  files,  including  PowerPoints  
used  to  collect  large  amounts  of  inappropriate  
content
• Risk  aggregation  based  on  suspicious  
behaviors  and  unusual  derivative  movement
Example	
  #2:	
  Military	
  Defense	
  Contractor
17 |	
  ©	
  2017	
  Interset	
  Software
• Security  analytics  system  should  allow  
you  to  quantify  risk,  not  just  a  binary  
alert
• Need  to  distinguish  between  true  
emergencies  
• Consider  runbook  integration  with  
downstream  systems,  both  automatic  
and  human
Lesson	
  #2:	
  Automated,	
  Measured	
  Responses
18 |	
  ©	
  2017	
  Interset	
  Software
Place  Subtitle  Here
Millions	
  of	
  events	
  
analyzed	
  with	
  
machine	
  learning
Anomalies	
  
discovered	
  using	
  
models
High	
  quality	
  leads
Example	
  #3:	
  Large	
  U.S.	
  Telco
19 |	
  ©	
  2017	
  Interset	
  Software
• Solution  should  help  you  deal  with  less  
alerts,  not  more  alerts
• Solution  should  leverage  sound  
statistical  methods  to  reduce  false  
positives  and  noise
• Measure work  effort  with  and  without  the  
solution  in  place
Lesson	
  #3:	
  Fewer	
  Alerts,	
  Not	
  More
20 |	
  ©	
  2017	
  Interset	
  Software
6.5  billion  transactions  annually,  750+  
customers,  500+  employees
Team  of  7:  CISO,  1  security  architect,  3  
security  analysts,  2  network  security
Focus  and  prioritized  incident  responses
Incident  alert  accuracy  increased  from  28%  to  92%
Incident  mitigation  coverage  doubled  from  70  per  week  to  140
Example	
  #4:	
  Healthcare	
  Records	
  and	
  Payment	
  Processing
21 |	
  ©	
  2017	
  Interset	
  Software
Place  Subtitle  Here
• Define  meaningful  operational  metrics  
(not  just  “false  positives”)
• Build  process  for  measuring  over  time,  
not  just  during  pilot
• Ensure  the  Security  Analytics  
deployment  supports  a  feedback  
process
Lesson	
  #4:	
  Meaningful	
  Metrics	
  (Hawthorne	
  Effect)
22 |	
  ©	
  2017	
  Interset	
  Software
1. The  Math  Matters  – Test  It
2. Automated,  Measured  Response
3. Fewer  Alerts,  Not  More
4. Meaningful  Metrics
Thank	
  You!
sjou@interset.com
@eeksock

More Related Content

PDF
Machine Learning + AI for Accelerated Threat-Hunting
PPTX
A New Approach to Threat Detection: Big Data Security Analytics
PDF
WEBINAR: How To Use Artificial Intelligence To Prevent Insider Threats
PPTX
How to Operationalize Big Data Security Analytics - Technology Spotlight at I...
PDF
The Myths + Realities of Machine-Learning Cybersecurity
PPTX
Innovation in Cybersecurity [Montreal 2018 CRIAQ RDV Forum]
PPTX
IANS Forum Dallas - Technology Spotlight Session
PDF
IANS Forum Charlotte: Operationalizing Big Data Security [Tech Spotlight]
Machine Learning + AI for Accelerated Threat-Hunting
A New Approach to Threat Detection: Big Data Security Analytics
WEBINAR: How To Use Artificial Intelligence To Prevent Insider Threats
How to Operationalize Big Data Security Analytics - Technology Spotlight at I...
The Myths + Realities of Machine-Learning Cybersecurity
Innovation in Cybersecurity [Montreal 2018 CRIAQ RDV Forum]
IANS Forum Dallas - Technology Spotlight Session
IANS Forum Charlotte: Operationalizing Big Data Security [Tech Spotlight]

What's hot (20)

PPTX
Operationalizing Big Data Security Analytics - IANS Forum Toronto Keynote
PPTX
Operationalizing Big Data Security Analytics - IANS Forum Dallas
PDF
DataWorks 2018: How Big Data and AI Saved the Day
PDF
How to Operationalize Big Data Security Analytics
PPTX
Data Connectors San Antonio Cybersecurity Conference 2018
PDF
Lead On: When More Data Becomes Less Work
PPTX
IANS Forum Seattle Technology Spotlight: Looking for and Finding the Inside...
PDF
TIC-TOC: Disrupt the Threat Management Conversation with Dominique Singer and...
PDF
Fluency - Next Generation Incident Response Utilizing Big Data Analytics Over...
PPT
VeriSign iDefense Security Intelligence Services
PPTX
44CON 2014 - Security Analytics Beyond Cyber, Phil Huggins
PPTX
[Webinar] Supercharging Security with Behavioral Analytics
PDF
Leverage Big Data for Security Intelligence
PPTX
Webinar: Will the Real AI Please Stand Up?
PDF
Taking a Proactive Approach to Combat Ransomware [Druva Webinar]
PDF
Threat Life Cycle Management
PPTX
Philly ETE 2016: Securing Software by Construction
PPTX
How is ai important to the future of cyber security
PDF
Cloud Security - What you Should Be Concerned About
PPTX
The 2018 Threatscape
Operationalizing Big Data Security Analytics - IANS Forum Toronto Keynote
Operationalizing Big Data Security Analytics - IANS Forum Dallas
DataWorks 2018: How Big Data and AI Saved the Day
How to Operationalize Big Data Security Analytics
Data Connectors San Antonio Cybersecurity Conference 2018
Lead On: When More Data Becomes Less Work
IANS Forum Seattle Technology Spotlight: Looking for and Finding the Inside...
TIC-TOC: Disrupt the Threat Management Conversation with Dominique Singer and...
Fluency - Next Generation Incident Response Utilizing Big Data Analytics Over...
VeriSign iDefense Security Intelligence Services
44CON 2014 - Security Analytics Beyond Cyber, Phil Huggins
[Webinar] Supercharging Security with Behavioral Analytics
Leverage Big Data for Security Intelligence
Webinar: Will the Real AI Please Stand Up?
Taking a Proactive Approach to Combat Ransomware [Druva Webinar]
Threat Life Cycle Management
Philly ETE 2016: Securing Software by Construction
How is ai important to the future of cyber security
Cloud Security - What you Should Be Concerned About
The 2018 Threatscape
Ad

Similar to User and Entity Behavioral Analytics (20)

PDF
2016 09-19 - stephan jou - machine learning meetup v1
PPTX
How big data and AI saved the day: critical IP almost walked out the door
PDF
Technical track chris calvert-1 30 pm-issa conference-calvert
PPTX
Making advanced analytics work for you
PDF
IANS Forum DC: Operationalizing Big Data Security [Tech Spotlight]
PDF
Towards HR Insights Management
PDF
PPTX
H2O World - Translating Advanced Analytics for Business Users - Conor Jensen
PDF
Grow your analytics maturity
PDF
Practical Applications of Machine Learning in Cybersecurity
PDF
Common Misperceptions
PDF
Think Like A Data Analyst Meap V02 Chapters 1 To 4 Of 13 Mona Khalil
PPTX
Making advanced analytics work for you
PDF
Fight Fraud with Big Data Analytics
PDF
Interset-advanced threat detection wp
PDF
Cyber Risk Quantification for Employees | Safe Security
PDF
How to breakthrough barriers and drive more value from your data analytics pr...
PPTX
Unit - 4 Security in information system .pptx
PDF
Where's the Brain in Analytics
PDF
A Better Understanding: Solving Business Challenges with Data
2016 09-19 - stephan jou - machine learning meetup v1
How big data and AI saved the day: critical IP almost walked out the door
Technical track chris calvert-1 30 pm-issa conference-calvert
Making advanced analytics work for you
IANS Forum DC: Operationalizing Big Data Security [Tech Spotlight]
Towards HR Insights Management
H2O World - Translating Advanced Analytics for Business Users - Conor Jensen
Grow your analytics maturity
Practical Applications of Machine Learning in Cybersecurity
Common Misperceptions
Think Like A Data Analyst Meap V02 Chapters 1 To 4 Of 13 Mona Khalil
Making advanced analytics work for you
Fight Fraud with Big Data Analytics
Interset-advanced threat detection wp
Cyber Risk Quantification for Employees | Safe Security
How to breakthrough barriers and drive more value from your data analytics pr...
Unit - 4 Security in information system .pptx
Where's the Brain in Analytics
A Better Understanding: Solving Business Challenges with Data
Ad

Recently uploaded (20)

PDF
Mobile App Security Testing_ A Comprehensive Guide.pdf
PPTX
Digital-Transformation-Roadmap-for-Companies.pptx
PDF
Chapter 3 Spatial Domain Image Processing.pdf
PDF
Building Integrated photovoltaic BIPV_UPV.pdf
PDF
Encapsulation_ Review paper, used for researhc scholars
PDF
Dropbox Q2 2025 Financial Results & Investor Presentation
PDF
NewMind AI Weekly Chronicles - August'25-Week II
PDF
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
PPTX
MYSQL Presentation for SQL database connectivity
PPTX
ACSFv1EN-58255 AWS Academy Cloud Security Foundations.pptx
PDF
Approach and Philosophy of On baking technology
PDF
Unlocking AI with Model Context Protocol (MCP)
PDF
Encapsulation theory and applications.pdf
PDF
A comparative analysis of optical character recognition models for extracting...
PDF
Per capita expenditure prediction using model stacking based on satellite ima...
PDF
Electronic commerce courselecture one. Pdf
PPTX
Spectroscopy.pptx food analysis technology
PDF
Assigned Numbers - 2025 - Bluetooth® Document
PPTX
sap open course for s4hana steps from ECC to s4
PDF
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
Mobile App Security Testing_ A Comprehensive Guide.pdf
Digital-Transformation-Roadmap-for-Companies.pptx
Chapter 3 Spatial Domain Image Processing.pdf
Building Integrated photovoltaic BIPV_UPV.pdf
Encapsulation_ Review paper, used for researhc scholars
Dropbox Q2 2025 Financial Results & Investor Presentation
NewMind AI Weekly Chronicles - August'25-Week II
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
MYSQL Presentation for SQL database connectivity
ACSFv1EN-58255 AWS Academy Cloud Security Foundations.pptx
Approach and Philosophy of On baking technology
Unlocking AI with Model Context Protocol (MCP)
Encapsulation theory and applications.pdf
A comparative analysis of optical character recognition models for extracting...
Per capita expenditure prediction using model stacking based on satellite ima...
Electronic commerce courselecture one. Pdf
Spectroscopy.pptx food analysis technology
Assigned Numbers - 2025 - Bluetooth® Document
sap open course for s4hana steps from ECC to s4
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...

User and Entity Behavioral Analytics

  • 1. 1 |  ©  2017  Interset  Software User  and  Entity  Behavioral  Analytics Stephan  Jou,  November  2017
  • 2. 2 |  ©  2017  Interset  Software § CTO  at  Interset § Previously:  Cognos and  IBM’s  Business  Analytics   CTO  Office § Big  data  analytics,  visualization,  cloud,  predictive   analytics,  data  mining,  neural  networks,  mobile,   dashboarding and  semantic  search § M.Sc.  in  Computational  Neuroscience  and   Biomedical  Engineering,  and  a  dual  B.Sc.  in   Computer  Science  and  Human  Physiology,  all  from   the  University  of  Toronto Hey.  I’m  Stephan  Jou.  I  like  analytics.
  • 3. 3 |  ©  2017  Interset  Software Rachel  Pictures:  1  of  2,365  
  • 4. 4 |  ©  2017  Interset  Software Rachel  Pictures:  2  of  2,365
  • 5. 5 |  ©  2017  Interset  Software Rachel  Pictures:  3  of  2,365  
  • 6. 6 |  ©  2017  Interset  Software Rachel  Pictures:  4  of  2,365  
  • 7. 7 |  ©  2017  Interset  Software Rachel  Pictures:  5  of  2,365
  • 8. 8 |  ©  2017  Interset  Software Rachel  – Year  0  alerts   ALERT
  • 9. 9 |  ©  2017  Interset  Software Rachel  – Year  0  False  Positives § Dent  in  head! § Too  many  bowel  movements! § Spitting  up  too  frequently? § Horrifying  rash! § High  temperature!  Fever? § Normal. § Normal. § Nothing  to  worry  about. § Baby  acne.  Typical. § Within  normal  range.
  • 10. 10 |  ©  2017  Interset  Software Baby  Anomaly  Detection  Advice  for  Me § Rigid  rules  and  thresholds  don’t  work § Every  baby  is  different § Learn  normal  for  your  baby § Look  for  and  quantify  deviations  from  normal Internal  temperature Skin  pattern Sleeping  patterns Breathing  patterns Speech  development Emotional  state Growth,  weight,  height Eating  behaviors …etc
  • 11. 11 |  ©  2017  Interset  Software Scaling  Up  Baby  Anomaly  Detection § Every  parent  should  do  this  for   every  baby § Each  parent  should  look  for   multiple  deviations,  not  just  a   single  deviation A  lot  of  babies  à a  lot  of  data  +  analysis  à Fewer cases  with  a  low  false  positive  rate
  • 12. 12 |  ©  2017  Interset  Software A  Canadian  Moment User and Entity Behavioral Analytics
  • 13. 13 |  ©  2017  Interset  Software From  Baby  Analytics  to  Security  Analytics… A  Handful  of  Threat  LeadsBillions  of  Events Hundreds  of  Anomalies
  • 14. 14 |  ©  2017  Interset  Software Place  Subtitle  Here X 2  Engineers   stole  data 1  Year $1  Million  Spent Large  security   vendor  failed  to   find  anything   2  Weeks Easily   identified  the  2   Engineers Found  3   additional  users   stealing  data  in   North  America Found  8   additional  users   stealing  data  in   China Example  #1:  $20B  Manufacturer
  • 15. 15 |  ©  2017  Interset  Software • Proper  math  means  rapid   deployment  &  detection  with   little  maintenance • But  use  case  >  math • Agree  on  the  use  cases  in   advance • POC  with  historical  data • Engage  your  red  team Lesson  #1:  The  Math  Matters  – Test  It
  • 16. 16 |  ©  2017  Interset  Software High  Probability  Anomalous  Behavior  Models • Detected  large  copies  to  the  portable  hard   drive,  at  an  unusual  time  of  day • Bayesian  models  to  measure  and  detect   highly  improbable  events High  Risk  File  Models • Detected  high  risk  files,  including  PowerPoints   used  to  collect  large  amounts  of  inappropriate   content • Risk  aggregation  based  on  suspicious   behaviors  and  unusual  derivative  movement Example  #2:  Military  Defense  Contractor
  • 17. 17 |  ©  2017  Interset  Software • Security  analytics  system  should  allow   you  to  quantify  risk,  not  just  a  binary   alert • Need  to  distinguish  between  true   emergencies   • Consider  runbook  integration  with   downstream  systems,  both  automatic   and  human Lesson  #2:  Automated,  Measured  Responses
  • 18. 18 |  ©  2017  Interset  Software Place  Subtitle  Here Millions  of  events   analyzed  with   machine  learning Anomalies   discovered  using   models High  quality  leads Example  #3:  Large  U.S.  Telco
  • 19. 19 |  ©  2017  Interset  Software • Solution  should  help  you  deal  with  less   alerts,  not  more  alerts • Solution  should  leverage  sound   statistical  methods  to  reduce  false   positives  and  noise • Measure work  effort  with  and  without  the   solution  in  place Lesson  #3:  Fewer  Alerts,  Not  More
  • 20. 20 |  ©  2017  Interset  Software 6.5  billion  transactions  annually,  750+   customers,  500+  employees Team  of  7:  CISO,  1  security  architect,  3   security  analysts,  2  network  security Focus  and  prioritized  incident  responses Incident  alert  accuracy  increased  from  28%  to  92% Incident  mitigation  coverage  doubled  from  70  per  week  to  140 Example  #4:  Healthcare  Records  and  Payment  Processing
  • 21. 21 |  ©  2017  Interset  Software Place  Subtitle  Here • Define  meaningful  operational  metrics   (not  just  “false  positives”) • Build  process  for  measuring  over  time,   not  just  during  pilot • Ensure  the  Security  Analytics   deployment  supports  a  feedback   process Lesson  #4:  Meaningful  Metrics  (Hawthorne  Effect)
  • 22. 22 |  ©  2017  Interset  Software 1. The  Math  Matters  – Test  It 2. Automated,  Measured  Response 3. Fewer  Alerts,  Not  More 4. Meaningful  Metrics Thank  You! sjou@interset.com @eeksock